8 research outputs found

    Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning

    Full text link
    Diabetic eye disease is one of the fastest growing causes of preventable blindness. With the advent of anti-VEGF (vascular endothelial growth factor) therapies, it has become increasingly important to detect center-involved diabetic macular edema (ci-DME). However, center-involved diabetic macular edema is diagnosed using optical coherence tomography (OCT), which is not generally available at screening sites because of cost and workflow constraints. Instead, screening programs rely on the detection of hard exudates in color fundus photographs as a proxy for DME, often resulting in high false positive or false negative calls. To improve the accuracy of DME screening, we trained a deep learning model to use color fundus photographs to predict ci-DME. Our model had an ROC-AUC of 0.89 (95% CI: 0.87-0.91), which corresponds to a sensitivity of 85% at a specificity of 80%. In comparison, three retinal specialists had similar sensitivities (82-85%), but only half the specificity (45-50%, p<0.001 for each comparison with model). The positive predictive value (PPV) of the model was 61% (95% CI: 56-66%), approximately double the 36-38% by the retinal specialists. In addition to predicting ci-DME, our model was able to detect the presence of intraretinal fluid with an AUC of 0.81 (95% CI: 0.81-0.86) and subretinal fluid with an AUC of 0.88 (95% CI: 0.85-0.91). The ability of deep learning algorithms to make clinically relevant predictions that generally require sophisticated 3D-imaging equipment from simple 2D images has broad relevance to many other applications in medical imaging

    Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning

    Get PDF
    Center-involved diabetic macular edema (ci-DME) is a major cause of vision loss. Although the gold standard for diagnosis involves 3D imaging, 2D imaging by fundus photography is usually used in screening settings, resulting in high false-positive and false-negative calls. To address this, we train a deep learning model to predict ci-DME from fundus photographs, with an ROC–AUC of 0.89 (95% CI: 0.87–0.91), corresponding to 85% sensitivity at 80% specificity. In comparison, retinal specialists have similar sensitivities (82–85%), but only half the specificity (45–50%, p < 0.001). Our model can also detect the presence of intraretinal fluid (AUC: 0.81; 95% CI: 0.81–0.86) and subretinal fluid (AUC 0.88; 95% CI: 0.85–0.91). Using deep learning to make predictions via simple 2D images without sophisticated 3D-imaging equipment and with better than specialist performance, has broad relevance to many other applications in medical imaging

    A Review on Machine Learning Methods in Diabetic Retinopathy Detection

    Get PDF
    Ocular disorders have a broad spectrum. Some of them, such as Diabetic Retinopathy, are more common in low-income or low-resource countries. Diabetic Retinopathy is a cause related to vision loss and ocular impairment in the world. By identifying the symptoms in the early stages, it is possible to prevent the progress of the disease and also reach blindness. Considering the prevalence of different branches of Artificial Intelligence in many fields, including medicine, and the significant progress achieved in the use of big data to investigate ocular impairments, the potential of Artificial Intelligence algorithms to process and analyze Fundus images was used to identify symptoms associated with Diabetic Retinopathy. Under the studies, the proposed models for transformers provide better interpretability for doctors and scientists. Artificial Intelligence algorithms are also helpful in anticipating future health issues after appraising premature cases of the ailment. Especially in ophthalmology, a trustworthy diagnosis of visual outcomes helps physicians in advising disease and clinical decision-making while reducing health management costs

    Explainable AI for retinal OCT diagnosis

    Get PDF
    Artificial intelligence methods such as deep learning are leading to great progress in complex tasks that are usually associated with human intelligence and experience. Deep learning models have matched if not bettered human performance for medical diagnosis tasks including retinal diagnosis. Given a sufficient amount of data and computational resources, these models can perform classification and segmentation as well as related tasks such as image quality improvement. The adoption of these systems in actual healthcare centers has been limited due to the lack of reasoning behind their decisions. This black box nature along with upcoming regulations for transparency and privacy exacerbates the ethico-legal challenges faced by deep learning systems. The attribution methods are a way to explain the decisions of a deep learning model by generating a heatmap of the features which have the most contribution to the model's decision. These are generally compared in quantitative terms for standard machine learning datasets. However, the ability of these methods to generalize to specific data distributions such as retinal OCT has not been thoroughly evaluated. In this thesis, multiple attribution methods to explain the decisions of deep learning models for retinal diagnosis are compared. It is evaluated if the methods considered the best for explainability outperform the methods with a relatively simpler theoretical background. A review of current deep learning models for retinal diagnosis and the state-of-the-art explainability methods for medical diagnosis is provided. A commonly used deep learning model is trained on a large public dataset of OCT images and the attributions are generated using various methods. A quantitative and qualitative comparison of these approaches is done using several performance metrics and a large panel of experienced retina specialists. The initial quantitative metrics include the runtime of the method, RMSE, and Spearman's rank correlation for a single instance of the model. Later, two stronger metrics - robustness and sensitivity are presented. These evaluate the consistency amongst different instances of the same model and the ability to highlight the features with the most effect on the model output respectively. Similarly, the initial qualitative analysis involves the comparison between the heatmaps and a clinician's markings in terms of cosine similarity. Next, a panel of 14 clinicians rated the heatmaps of each method. Their subjective feedback, reasons for preference, and general feedback about using such a system are also documented. It is concluded that the explainability methods can make the decision process of deep learning models more transparent and the choice of the method should account for the preference of the domain experts. There is a high degree of acceptance from the clinicians surveyed for using such systems. The future directions regarding system improvements and enhancements are also discussed

    Technological Advances in the Diagnosis and Management of Pigmented Fundus Tumours

    Get PDF
    Choroidal naevi are the most common intraocular tumour. They can be pigmented or non-pigmented and have a predilection for the posterior uvea. The majority remain undetected and cause no harm but are increasingly found on routine community optometry examinations. Rarely does a naevus demonstrate growth or the onset of suspicious features to fulfil the criteria for a malignant melanoma. Because of this very small risk, optometrists commonly refer these patients to hospital eye units for a second opinion, triggering specialist examination and investigation, causing significant anxiety to patients and stretching medical resources. This PhD thesis introduces the MOLES acronym and scoring system that has been devised to categorise the risk of malignancy in choroidal melanocytic tumours according to Mushroom tumour shape, Orange pigment, Large tumour size, Enlarging tumour and Subretinal fluid. This is a simplified system that can be used without sophisticated imaging, and hence its main utility lies in the screening of patients with choroidal pigmented lesions in the community and general ophthalmology clinics. Under this system, lesions were categorised by a scoring system as ‘common naevus’, ‘low-risk naevus’, ‘high-risk naevus’ and ‘probable melanoma.’ According to the sum total of the scores, the MOLES system correlates well with ocular oncologists’ final diagnosis. The PhD thesis also describes a model of managing such lesions in a virtual pathway, showing that images of choroidal naevi evaluated remotely using a decision-making algorithm by masked non-medical graders or masked ophthalmologists is safe. This work prospectively validates a virtual naevus clinic model focusing on patient safety as the primary consideration. The idea of a virtual naevus clinic as a fast, one-stop, streamlined and comprehensive service is attractive for patients and healthcare systems, including an optimised patient experience with reduced delays and inconvenience from repeated visits. A safe, standardised model ensures homogeneous management of cases, appropriate and prompt return of care closer to home to community-based optometrists. This research work and strategies, such as the MOLES scoring system for triage, could empower community-based providers to deliver management of benign choroidal naevi without referral to specialist units. Based on the positive outcome of this prospective study and the MOLES studies, a ‘Virtual Naevus Clinic’ has been designed and adapted at Moorfields Eye Hospital (MEH) to prove its feasibility as a response to the COVID-19 pandemic, and with the purpose of reducing in-hospital patient journey times and increasing the capacity of the naevus clinics, while providing safe and efficient clinical care for patients. This PhD chapter describes the design, pathways, and operating procedures for the digitally enabled naevus clinics in Moorfields Eye Hospital, including what this service provides and how it will be delivered and supported. The author will share the current experience and future plan. Finally, the PhD thesis will cover a chapter that discusses the potential role of artificial intelligence (AI) in differentiating benign choroidal naevus from choroidal melanoma. The published clinical and imaging risk factors for malignant transformation of choroidal naevus will be reviewed in the context of how AI applied to existing ophthalmic imaging systems might be able to determine features on medical images in an automated way. The thesis will include current knowledge to date and describe potential benefits, limitations and key issues that could arise with this technology in the ophthalmic field. Regulatory concerns will be addressed with possible solutions on how AI could be implemented in clinical practice and embedded into existing imaging technology with the potential to improve patient care and the diagnostic process. The PhD will also explore the feasibility of developed automated deep learning models and investigate the performance of these models in diagnosing choroidal naevomelanocytic lesions based on medical imaging, including colour fundus and autofluorescence fundus photographs. This research aimed to determine the sensitivity and specificity of an automated deep learning algorithm used for binary classification to differentiate choroidal melanomas from choroidal naevi and prove that a differentiation concept utilising a machine learning algorithm is feasible
    corecore