731 research outputs found

    Modeling, Predicting and Capturing Human Mobility

    Get PDF
    Realistic models of human mobility are critical for modern day applications, specifically for recommendation systems, resource planning and process optimization domains. Given the rapid proliferation of mobile devices equipped with Internet connectivity and GPS functionality today, aggregating large sums of individual geolocation data is feasible. The thesis focuses on methodologies to facilitate data-driven mobility modeling by drawing parallels between the inherent nature of mobility trajectories, statistical physics and information theory. On the applied side, the thesis contributions lie in leveraging the formulated mobility models to construct prediction workflows by adopting a privacy-by-design perspective. This enables end users to derive utility from location-based services while preserving their location privacy. Finally, the thesis presents several approaches to generate large-scale synthetic mobility datasets by applying machine learning approaches to facilitate experimental reproducibility

    Contextual Localization Through Network Traffic Analysis

    Get PDF
    opportunitiesforcontentserviceproviderstooptimizethecontent delivery based on user’s location. Since sharing precise location remainsamajorprivacyconcernamongtheusers,manylocationbased services rely on contextual location (e.g. residence, cafe etc.) as opposed to acquiring user’s exact physical location. In this paper, we present PACL (Privacy-Aware Contextual Localizer), which can learn user’s contextual location just by passively monitoring user’s network traffic. PACL can discern a set of vital attributes (statistical and application-based) from user’s network traffic, and predict user’s contextual location with a very high accuracy.WedesignandevaluatePACLusingreal-worldnetwork traces of over 1700 users with over 100 gigabytes of total data. OurresultsshowthatPACL(builtusingdecisiontree)canpredict user’s contextual location with the accuracy of around 87%. I

    Discovering and Predicting Temporal Patterns of WiFi-interactive Social Populations

    Full text link
    Extensive efforts have been devoted to characterizing the rich connectivity patterns among the nodes (components) of such complex networks (systems), and in the course of development of research in this area, people have been prompted to address on a fundamental question: How does the fascinating yet complex topological features of a network affect or determine the collective behavior and performance of the networked system? While elegant attempts to address this core issue have been made, for example, from the viewpoints of synchronization, epidemics, evolutionary cooperation, and the control of complex networks, theoretically or empirically, this widely concerned key question still remains open in the newly emergent field of network science. Such fruitful advances also push the desire to understand (mobile) social networks and characterize human social populations with the interdependent collective dynamics as well as the behavioral patterns. Nowadays, a great deal of digital technologies are unobtrusively embedded into the physical world of human daily activities, which offer unparalleled opportunities to explosively digitize human physical interactions, who is contacting with whom at what time. Such powerful technologies include the Bluetooth, the active Radio Frequency Identification (RFID) technology, wireless sensors and, more close to our interest in this paper, the WiFi technology. As a snapshot of the modern society, a university is in the coverage of WiFi signals, where the WiFi system records the digital access logs of the authorized WiFi users when they access the campus wireless services. Such WiFi access records, as the indirect proxy data, work as the effective proxy of a large-scale population's social interactions.Comment: 11 pages, 10 page

    Energy aware and privacy preserving protocols for ad hoc networks with applications to disaster management

    Get PDF
    Disasters can have a serious impact on the functioning of communities and societies. Disaster management aims at providing efficient utilization of resources during pre-disaster (e.g. preparedness and prevention) and post-disaster (e.g. recovery and relief) scenarios to reduce the impact of disasters. Wireless sensors have been extensively used for early detection and prevention of disasters. However, the sensor\u27s operating environment may not always be congenial to these applications. Attackers can observe the traffic flow in the network to determine the location of the sensors and exploit it. For example, in intrusion detection systems, the information can be used to identify coverage gaps and avoid detection. Data source location privacy preservation protocols were designed in this work to address this problem. Using wireless sensors for disaster preparedness, recovery and relief operations can have high deployment costs. Making use of wireless devices (e.g. smartphones and tablets) widely available among people in the affected region is a more practical approach. Disaster preparedness involves dissemination of information among the people to make them aware of the risks they will face in the event of a disaster and how to actively prepare for them. The content is downloaded by the people on their smartphones and tablets for ubiquitous access. As these devices are primarily constrained by their available energy, this work introduces an energy-aware peer-to-peer file sharing protocol for efficient distribution of the content and maximizing the lifetime of the devices. Finally, the ability of the wireless devices to build an ad hoc network for capturing and collecting data for disaster relief and recovery operations was investigated. Specifically, novel energy-adaptive mechanisms were designed for autonomous creation of the ad hoc network, distribution of data capturing task among the devices, and collection of data with minimum delay --Abstract, page iii
    corecore