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Abstract—The rise of location-based services has enabled many
opportunities for content service providers to optimize the content
delivery based on user’s location. Since sharing precise location
remains a major privacy concern among the users, many location-
based services rely on contextual location (e.g. residence, cafe etc.)
as opposed to acquiring user’s exact physical location. In this
paper, we present PACL (Privacy-Aware Contextual Localizer),
which can learn user’s contextual location just by passively
monitoring user’s network traffic. PACL can discern a set of vital
attributes (statistical and application-based) from user’s network
traffic, and predict user’s contextual location with a very high
accuracy. We design and evaluate PACL using real-world network
traces of over 1700 users with over 100 gigabytes of total data.
Our results show that PACL (built using decision tree) can predict
user’s contextual location with the accuracy of around 87%.

I. INTRODUCTION

In recent years, tremendous growth has been observed

in location-based services. At large, current location-based

services can be classified into two categories. The first cat-

egory of services require precise location of the users, for

example, smartphone navigation system where exact latitude

and longitude information is essential. The second type of

services only need contextual information about location. For

example, knowing that a user is at a cafeteria or a shopping

mall is sufficient (and necessary) to provide services specific

to that location category. Determination of contextual location

information is also extremely important for content providers

and Content Distribution Networks (CDNs) to optimize the

content delivery and provide recommendations based on user’s

location type. Third party services, also, can provide targeted

advertisements related to the contextual location of the user.

In this paper, we present first-of-its-kind privacy-preserving

system that can determine user’s location category (or contex-

tual location) just by passively monitoring and learning from

aggregate network traffic from different categories of location.

Note that content providers can use existing services such as

FourSquare to map user’s precise location to contextual infor-

mation but this requires users to share their physical location.

Due to increasing concerns about location privacy, more and

more users are unwilling to provide their location information,

especially for contextual location-based services. This led to

the Do Not Track Me Online Act of 2011 [1] which gives

users an option to disable tracking of its location by content

providers or websites. As an example of privacy preferences,

users are willing to share their GPS location for Google Maps

Navigation but when services such as YouTube ask for user’s

location, users often deny the request even though content

delivery could have been optimized by YouTube if the location

was available. In this paper, we propose a network traffic

analysis technique whereby an ISP or any third-party entity

capable of passively monitoring network traffic can determine

user’s contextual location (without knowing user’s exact phys-

ical location). Once the contextual location has been identified,

this information can be shared with content providers using

recently proposed ISP-CDN collaboration model [2], [3].

First, we show that network traffic originating from different

types of locations (such as cafe, university campus, residence

etc.) have built-in distinct signatures. Second, we propose a

traffic analysis engine that can leverage information collected

by existing passive traffic monitoring systems to discern the

contextual location signature. The signature is composed of

different attributes that may differ depending on the type of

location (e.g., applications users access at different locations,

flow length, packet size distributions etc.) These location

signatures can be used to identify the contextual location of

any IP address.

The contributions of our work are as follows:

1) First, we show that traffic originated at different types of

locations have distinct signature embedded in them. To

establish this, we have collected nearly a 100 gigabytes

of real-world network traffic traces for over 1700 users

at different types of locations. We identify a number of

attributes which when used together can create a distinct

contextual location signature.

2) Next, we present a system (named PACL - Privacy-

Aware Contextual Localizer) that can learn user’s con-

textual location only by passively monitoring user’s

traffic flows. The core of PACL is a supervised machine

learning engine built using decision tree that can predict

user’s contextual location efficiently and accurately. We

evaluate PACL using our network traces, and show that

PACL can predict contextual location with an overall

accuracy of 87%.

This paper is structured as follows. We start out with discus-

sion of related research works in Section II. In Section III,

we introduce the PACL system and describe its functioning

in details. Section IV includes details about the dataset used

for analysis. The features which differentiate each contextual
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location are discussed in Section V. In Section VI, we present

the prediction model and the prediction results observed using

our proposed model, followed by conclusions in Section VII.

II. BACKGROUND AND RELATED WORK

Traditional location-based services are built on top of

positioning systems (e.g. GPS) and information layer (e.g.

maps, database of establishments etc.). This is depicted in Fig.

1. Here, location-based services that require exact physical

location typically use data from user’s positioning system

combined with details of information layer. This opens up

many entry points for privacy invasion of users. On the other

hand, certain services (such as targeted advertising, content

delivery optimization etc.) do not require user’s exact physical

location. Also, users are less likely to provide their location for

such services. Our solution, PACL, can address this challenge

by eliminating the need of user’s physical location in the case

of contextual location-based services (see Fig.1). Instead of

querying users for precise location, PACL passively learns

user’s contextual location by monitoring users’ network traffic.

Physical Location – using GPS, WiFi, etc.

Location Context GeneratorPACL

Information Layer - maps, establishments, etc.
Information Layer - maps, establishments, etc.

Contextual Location 

based services

Precise Location 

based services

Fig. 1: PACL as compared to regular localization using

precise location

Determining Location and Preserving Privacy: Signif-

icant amount of past research has mostly focused on two

topics: (i) accurate and energy-efficient determination of user’s

physical location and, (ii) preserving user’s privacy when

sharing user’s location information. In the first category of

research, a variety of location determination mechanisms have

been proposed like in [4], [5]. The central focus of these

studies is to reduce the energy consumption of determining the

location while increasing the accuracy. Also, other techniques

such as map matching [6] are used to improve the accuracy.

Location privacy preserving techniques have attracted a lot

research starting from initial studies such as [7]. Methods such

as cloaking [8] and obfuscation [9] are proposed as ways to

prevent privacy leakage of users using location-based services.

PACL is different from these studies as it does not require

actual physical location and other privacy preserving methods

for protecting the physical location.

Traffic Classification: Another thread of research that is

relevant to PACL is known as Internet traffic classification.

The purpose of traffic classification is to monitor and analyze

CDN 

clients

Traffic 

Monitoring 

Statistical 

Features

IP1 : L1

IP2 : L2

…

Results : Contextual 

Location of IPs

Application 

based Features

PACL 

prediction 

model

Features

Fig. 2: Architecture of the PACL system: Network traffic is

monitored for a number of features, which when used in the

PACL model gives contextual location prediction of an IP.

network traffic for determining applications and protocols be-

ing used. It is a well-established method ( [10] and references

therein) of profiling network traffic, anomaly detection and

detecting file sharing of copyrighted content. Such traffic

classification techniques and PACL share a few common char-

acteristics. They both utilized traffic monitoring and are built

using machine learning algorithms. Nevertheless, we believe

that PACL takes a step forward by learning and predicting

contextual location purely through network traffic analysis.

Another research work relevant to ours is [11] in which

Trestian et al. provide a detailed study on applications accessed

by users at different locations and show that they tend to be

different at work and home, irrespective of the time of the

day. Our model not only profiles the usage of applications

and services by users at different locations but also combines

them with other statistical features to predict their contextual

location.

There are many online third-party software tools which

claim to predict the geographical location of an IP address

[12]. However these services only provide city-level infor-

mation of the IP address but neither the exact location or

the contextual location is available. Some of these tools

provide geographical coordinates, but those mostly refer to

the coordinates of the ISP the IP address is registered to.

III. PRIVACY AWARE CONTEXTUAL LOCALIZER (PACL)

SYSTEM

In this work, we design Privacy Aware Contextual Localizer

(PACL) system, which can determine the category of user’s

location. PACL is built on a simple fundamental idea that

user’s network activity is highly dependent on user’s contex-

tual location. If one is able to identify the attributes of network

traffic that are sufficiently different across different contextual

location, ISP or any third party entity capable of passively

monitoring traffic, can use the same set of attributes to deter-

mine user’s location context. This location context can then

be shared with content service providers who can optimize

the content deliver accordingly. The foremost advantage of

the PACL system is that users are not required to share their
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TABLE I: Dataset Used For Location Signature Analysis

Packet Count Duration
Location Type Traces No. of IPs Total IPs. Total flows (Million) (Hours:Minutes) Size of Network Trace

Apartment-1 91 16695 16.47 7:40 7.2 GB
Apartment-2 78 20505 31.15 10:40 14.9 GB

Residential Apartment-3 72 315 14396 17.45 3:22 7.9 GB
Apartment-4 52 6465 14.82 2:44 6.8 GB
Apartment-5 22 12469 8.38 3:16 3.1 GB

Department hall 114 14887 27.34 5:12 5.9 GB
University Campus Library-1 313 529 20153 83.62 7:55 21.9 GB

Library-2 102 26861 65.29 8:19 19.2 GB

Starbucks-1 234 39532 12.89 8:03 5.6 GB
Cafeteria/Restaurant Starbucks-2 216 450 44720 12.73 8:48 4.9 GB

Washington-1 88 10682 2.01 0:18 682 MB
Sydney-1 80 8586 4.05 1:24 1.4 GB
Orlando 63 2280 1.35 0:20 499 MB

Washington-2 55 3201 1.00 0:13 209 MB
Airport/Travel Denver 53 458 7264 2.02 0:21 515 MB

Washington-3 40 1338 1.37 0:20 340 MB
Los Angeles 39 2691 1.01 0:15 411 MB

Sydney-2 23 872 0.84 0:25 190 MB
San Francisco 17 2024 1.17 0:15 624 MB

precise location with anyone, and at the same time, they can

be served using the content that is optimized based on their

location context. The components of the PACL system are

shown in Fig. 2.

Traffic Monitoring: PACL can be deployed within traffic

monitoring systems of an ISP or an AS (Autonomous System).

Flows originating from user IPs can be monitored for a fixed

amount of time after which PACL determines its contextual lo-

cation. Note that PACL is similar to traditional Internet traffic

classification methods as it performs better when complete bi-

directional network traffic of end-user IPs can be monitored.

Since this is the first attempt towards determining type of

location purely using network traffic, we restrict our study

to the case where PACL is deployed on traffic monitors with

complete bi-directional network flows.

In our measured dataset, we collect network traffic over the

edge at WiFi hotspots deployed at different types of locations

(details in Sec. IV). We build and verify PACL using the traces

of over a 100 gigabytes collected at different location over the

period of 20 days.

Identifying Location Signature: In the PACL, we first

identify specific attributes of IPs which are likely to be

correlated to IP’s location. In the training phase, we use

the available ground-truth of location to find the correlation

between the attributes with the location. The attributes (or

features) we use can be classified in two categories - statistical

features and application-based features. Examples of statistical

features include number of flows originated by an IP, packet

length distribution of all packets of an IP etc. On the other

hand, in the application-based features, we classify user’s

network flows in different categories of applications (such

as emails, games, social-networks etc.). To understand what

kind of content users are interested in (independent of which

application they use to access it) when at a specific location,

we also classify flows into different interest categories. We

show that both statistical and application-based features can

generate a distinct signature for different locations.

Applying Location Signatures to Determine Location

Context: Once the location signature has been identified,

PACL prediction model predicts the contextual location of

a user based on location signature mentioned above and the

observed statistical and application-based features associated

with the particular user (or IP address). As shown in Fig. 2,

the results are stored in a repository, which can be accessed by

the content providers to optimize content delivery and provide

location-specific services. However, even after prediction of

contextual location of an IP address, PACL continues to

predict contextual location as dynamic reallocation of IPs

might change IP’s location category. The prediction model

is built using a decision tree with reduced error pruning.

It is observed that the combination of both the statistical

features and application based features give better prediction of

location context than using each set individually. Application

of this model on our dataset of over 1700 users yeilds a

prediction accuracy of over 87%.

Before describing PACL in details, we discuss the appli-

cation scope and limitations of PACL. First and foremost,

PACL can not be used for location-based services where user’s

precise location is essential. In other words, it can not be used

for applications where precise location is more important than

preservation of privacy. Second, PACL is capable of predicting

most common “location types” but its current form can not

characterize traffic from short-term gatherings (such as a sports

event).

IV. NETWORK TRAFFIC COLLECTION AND DATASETS

One major challenge we faced in developing the PACL

system is to acquire network traffic traces which precisely

originate at specific locations. If network traces from ISP or

AS are used, they might not always have the ground-truth

location for different IPs. To address this challenge, we capture

the network traffic at the edge at different WiFi hotspots

deployed at different locations. The details of the datasets are

presented in Table I.
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A. WiFi Packet Captures

The data is collected by passively sniffing WiFi packets

from the air near the WiFi hotspot. We chose four different

categories of locations - residential, university campus, cafe-

teria/restaurants and airport/travel (see Table I). For each cate-

gory, we collected traces at multiple different locations of that

category to extract/learn the category-specific characteristics.

The traces were collected using TP-Link WN722N WiFi

USB adapters [13] connected to a laptop running Linux. The

WiFi adapters run in monitor mode of ath9k driver [14] and

Wireshark is used to capture the packets. We connect three

different adapters to each laptop in order to simultaneously

capture on 3 different channels (channels 1, 6 and 11 of 2.4

GHz IEEE 802.11 b/g/n). The traces account for a total of

over 100 gigabytes of data captured over 20 different days.

The airport traces were captured in 2012 as described in [15].

The dataset and the subsequent analysis is based on classi-

fication of contextual location into four classes. However, the

PACL model can be extended to incorporate other location

categories, provided the model is trained beforehand based on

the features from those locations. The analysis done here is

based on wireless network traces, but the analysis is applicable

for wired network traffic. We use WiFi traces as they can be

collected easily in public settings, and in any case, most of the

devices that are used at these locations are wireless devices.

B. Data Sanitization

Before processing the data as input to the PACL learning

model, we sanitize the network traces. The process of the

sanitization phase is divided into two steps. First, the collected

dataset is anonymized to remove any personal identity related

information. The second step involves removing all the packets

from the network traces which will not be forwarded to the

ISP. In this step, all the MAC layer frames (such as WiFi

beacons etc.) as well as MAC layer headers are removed from

all IP packets as these information is not forwarded beyond

WLAN.

V. FINDING LOCATION SIGNATURE

We propose a traffic analysis system, which can passively

monitor network traffic and extract the statistical features and

application and service based features, on a per-IP basis, to

be used for learning and prediction.

A. Statistical Features

For each IP address in the trace, we calculated the statistical

features listed below. They are divided into 4 subsets as shown

below. Type I and II attributes hold single numerical values,

while the attributes of Type III and IV are distributions,

which are represented using <min, max, average, median,

standard deviation, skewness, kurtosis>. Note that, a flow is

identified using a 5-tuple <source IP, source port, destination

IP, destination port, protocol>.

Type I - Coarse-grain statistics:

1) Total number of flows

2) Average number of concurrent sessions

3) Percentage ON time - ratio of number of 10 second

blocks when IP was active (had at least one flow) to the

total time of the trace

4) Number of activity periods (one activity period = a

period of time when the IP was continually active, i.e.

had at least one flow active)

5) Number of bytes transferred

6) Number of packets transferred

7) Average throughput

Type II - Protocol level statistics:

8) Number of HTTP flows

9) Number of HTTPS flows

10) Number of TCP (non-HTTP/HTTPS) flows

11) Number of UDP flows

Type III - Flow level statistics:

12) Flow length

13) Flow throughput

14) Bytes transferred per flow

15) Packets transferred per flow

Type IV - Packet level statistics:

16) Packet inter-arrival time

17) Packet size

The total number of statistical features are 53 (1 feature

each for Type I and II and 7 features for each distribution for

the statistics of Type III and IV).

During the entire time of the trace, the DHCP lease to a

particular device does not expire and thus for all calculations,

we assume one IP address is assigned to one device (we also

verify this by checking the MAC addresses corresponding

to each IP address). For the calculation of activity period,

percentage ON time and concurrent flows per IP address,

the entire trace duration was divided into bins of 10 second

intervals each and the analysis was done based on the whether

an IP address created any flow during each of these time bins.

The statistical attributes which are directly dependent on the

total time of the trace (e.g., total flows per IP, total number

of HTTP flows, etc.) were normalized on a per hour basis,

to eliminate any biases due to difference in the duration of

different traces.

Analysis of Statistical Features: The statistical attributes

reveal distinct information that can serve as location signature

and in turn, used to predict contextual location. Some of these

characteristics are shown in Fig. 3. As we can see, airport trace

has the highest number of flows per IP per hour as compared

to the other locations, where as Campus has the lowest, as seen

in Fig. 3a. Airport and cafeteria traces have mostly smartphone

based network traffic and thus each device generates a large

number of flows (due to background applications and ads).

On the other hand, campus traces have a large number of

IP addresses with very low flow count - as there are users

who pass by the WiFi hotspot and their devices, which are

connected to the campus network, by default, may generate

traffic for that transient period of time.

Figs. 3b and 3e show the length of flows and the number of

activity periods per IP are the largest in case of residence
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Fig. 3: Statistical attributes: Figures (a), (b), (d) and (e) represent variation of attributes across four different location classes,

while Figures (c) and (f) represent the variation of a particular attribute across the different traces of the same location class.

as compared to others. This is expected, as in residential

buildings users tend to keep their devices on for longer

duration, even though the usage can be in on-off manner and

not continuously. From Fig. 3b we can observe that more

than 50% of the IP addresses in the residential traces have

flow lengths greater than top 10% IP flow-lengths in cafeteria

trace. This is because most users tend to stay for a very

short time in cafeterias. This proportion of users is smaller

in campus as many users prefer to sit at once place. However

there are several IP addresses with very small flow-lengths in

campus trace, generated due to users who happen to pass by,

as mentioned above.

Activity Period: One of the most distinct attributes among

different location categories is activity period, as we will later

see in Section VII. We calculate activity period count as the

number of times an IP was continuously generating at least

one flow in each of the 10 second time intervals, the whole

trace was divided into. Fig. 3e indicates the higher number of

activity periods in apartments, but questions may arise as to

why such a trend is observed in airports too. This is because

the activity period is normalized on a per-hour basis and the

activity periods actually calculated are for approximately 15-

30 minute traces. Hence we see higher number of activity

periods in airport trace. Around 90% of IP addresses at campus

and cafeteria have activity period count less than five. This is

mainly as a result of passer-by user devices in campus traces

and users in cafeteria traces who connect to the network for

a few specific purposes.

Percentage ON Time: The percentage ON time of each

IP address represents the total time an IP was active, as

a percentage of the entire time of the trace. As seen in

Fig. 3d, apartment and airport traces have the highest ON time

percentage of all the four locations as most user devices are

usually on for almost the entire time of the trace (note that

airport traces are very short in duration). ON time percentages

in cafeteria is smaller than those in campus, but there are some

devices with very high percentage ON time in the cafeteria

dataset. This is most likely to be due to the employees of

the establishment who were present at that location during the

entire data collection time.

Variation across datasets for the same location category:

Figs. 3c and 3f show the variation of two specific attributes

across more than one trace of a particular location. These

two figures help us to show that the variation of a partic-

ular attribute across multiple traces at the same category of

location behaves similarly, inspite of the fact that the trace

was collected in a different date and at a different location

(but same contextual location). Similar trend across different

traces at same location category is seen for almost all of the

above mentioned features, which help us to assign a specific

signature for each type of location.

B. Application based Categorization

To detect the interest of users in various kinds of applica-

tions at different locations, we use a keyword based search on

the content of the captured packets, a method similar to the

one used in [11]. Packets include the HTTP objects like GET,

POST and URLs as well as DNS queries and answers. For the

keyword based search, we created a keyword list, currently
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Fig. 4: Representation of interest categorization (E1: Youtube, E2: Netflix, E3: Pandora, N1: CNN, S1: Facebook, S2:

Twitter, S3: Instagram, M1: Gmail)

around 50 keywords for each category - generated using the

common words of the Keyword Tool from Google Adwords

[16] collected over one week, for each of the categories.

Based on this search, we used the percentage of packets for a

particular IP that had a keyword-match in any category as the

score of the IP for that category. Apart from the 21 categories,

we also did the above analysis on 12 commonly used services

and used the scores as attributes. The 33 attributes in this

category, combined with 53 statistical features, result in 86

attributes, in total.

TABLE II: Application Categories and Services

Entertainment, Games, News-Reading, Finance, Weather,
Social network, Sports, Education-Career, Email, Portals,

Categories Family, File-sharing, Technology, Food-Culture, Travel,
Health, Fashion, Politics, Shopping, Automobiles, Science

Youtube, Netflix, Pandora, Amazon, Craigslist, CNN,
Services Twitter, Facebook, Instagram, ESPN, Gmail, Dropbox

The keyword search on the trace showed that in general,

around 60-70% of the IP addresses could be profiled on the

basis of interest category. A particular IP address is considered

to be interested in a specific application category if there is at

least one packet that gives a keyword-match for that category.

However, we observed that when a particular IP address was

profiled to be belonging to a certain application category there

were substantially large count of packets for which there was

a keyword match in the same category. Table II shows the

list of categories and services used for as the features in this

category and Table III shows a few keywords of some of the

categories. Fig. 4 represents the percentages of IP addresses

that were profiled to be interested in one specific category.

Interpretation of Application based Categorization: The

residential traces have the highest interest percentage in en-

tertainment. Apart from that, food, family, shopping, politics,

fashion and automobiles have higher percentage with lower

interest in mails and portals as compared to the other locations.

TABLE III: Categories and Keywords

Interest Category Keywords
Entertainment youtube, netflix, itunes, mp3, video, music

Games zynga, xbox, games, puzzles, trivia, aws
News and Reading nytimes, bbc, cnn, blogspot, news, magazine

Sports espn, mlb, soccer, olympics, fifa, ncaa, nba
Social Networks facebook, twitter, friends, social, plus.google

Travel maps, expedia, airlines, tripadvisor, yelp
Technology endgadget, cnet, bestbuy, techcrunch, gizmo

Education and Career .edu, stackoverflow, github, courseera, school
Shopping craigslist, amazon, ebay, target.com, groupon

Email gmail, pop3, imap, smtp, hotmail, yahoomail

Mail and portals are not accessed by users at their own homes

as compared to outside, like at work or when on the go. Also

access to file-sharing websites are mostly seen in apartment

traces. Traces collected in a campus WiFi hotspot have a very

high percentage of IPs interested in education related websites,

portals and emails, as can be expected. Music, video and

games are accessed much less in a campus environment as

compared to the others. Results in Fig. 4 verify this claim.

Cafeteria and airport traces have very high number of IPs

with interest in social-networks, portals and email. Outdoor

locations are expected to have high percentage of users check-

ing weather, as is observed in cafeteria and airport traces.

There is a high number of IP addresses accessing travel related

websites in the airport, as compared to other traces, which

is an expected trend. Users interested in entertainment are

much higher in apartment and cafeteria. Gaming websites

or applications are found to be very high in the cafeteria

trace (due to smart-phone games) and in apartments (due to

dedicated gaming services, such as, xbox).

VI. PACL PREDICTION MODEL AND RESULTS

In this section we describe a model, created on the basis

of the aforementioned features to efficiently predict users

contextual location.
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TABLE IV: Comparison of Prediction using Different Feature Subsets

Set of No. of Correctly Size of TP Rate FP Rate ROC Attributes
features Features Classified Tree Area with highest

Instances (%) (Average) information gain
Activity period, Percentage ON time,

Coarse-Grain 7 1335 (76.2) 132 0.762 0.085 0.919 Flow count, Concurrent flows
HTTP flow count,

Protocol Based 4 1461 (83.4) 144 0.834 0.060 0.952 UDP flow count

Flow length:max, Bytes per flow:mean,
Flow Level 26 1095 (62.5) 116 0.625 0.138 0.846 Bytes per flow:std. devn.,

Throughput per flow:mean, Flow length:min
Packet size:min, Packet size:median,

Packet Level 14 1277 (72.9) 135 0.729 0.099 0.906 Packet inter-arrival time:max,
Packet inter-arrival time: median

Education and Career
Application Based 19 952 (54.3) 107 0.543 0.173 0.774 Emails, Portals, Games

Activity Period, Flow length:max,
Entire Set 70 1527 (87.16) 101 0.872 0.046 0.978 Education and Career

UDP flow count, Concurrent Flows

A. Feature Selection

Before creating the model for prediction, we need to identify

the specific features that contribute towards differentiating

between location categories. For this purpose, Chi-squared

statistic evaluation [17] is applied to the 86 attributes and a

score is assigned to each one of the features, which symbolizes

the relation between the attribute and the class.

Chi-Squared Statistic: This statistic is used to evaluate

the “distance” between the distribution of each class for an

attribute. Initially, the values of an attribute are divided into

separate intervals. Based on this division, the frequency of

instances in each interval and class is calculated. Then the

Chi2 value is calcuated based on Equation 1 (with n=2) for

each pair of sorted adjacent intervals to ascertain if the relative

frequencies of the classes are similar enough to justify their

merging. If the Chi2 distance is smaller than a certain threshold

for the pair, the intervals are merged. Merging continues till

all adjacent pairs have a Chi2 value greater than the threshold

(20 in our case).

χ2 =

n∑

i=1

k∑

j=1

(Aij − Eij)
2

Eij

(1)

◦ Aij = frequency of ith interval and jth class.
◦ Eij = expected frequency of Aij =

Ri∗Cj

N

◦ Ri = number of values in ith interval =
∑n

i=1
Aij

◦ Cj = number of values in jth class =
∑k

j=1
Aij

◦ k = number of classes

◦ n = number of intervals

◦ N = total number of values

At the end of this step, if an attribute has been merged

into one interval then the attribute is considered irrelevant in

representing the original data and hence has a Chi2 value

of 0. Otherwise, the score is calculated as per Equation 1.

Fig. 5 represents the normalized Chi-squared statistic score of

the statistical attributes based on a) coarse-grain features b)

protocol-based features c) packet-based features and d) flow-

based features. On the basis of the results, we remove 16

attributes from our data-set which end up with a score of zero

and build our model for prediction based on the remaining 70

features.
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Fig. 5: Chi-Square statistic score for the highest-correlated

features for each subset of statistical attributes.

B. Model : Random Subspace with Decision Tree

Predicting the location category from the statistical and

application based features is non-trivial as many of the sta-

tistical features are dependent on each other and their inter-

relationship is non-linear. To address this issue, we use a

machine learning approach to create the model involving these

individual features. For this purpose we use Random Subspace

algorithm. The algorithm implements a decision tree with

reduced error pruning but also utilizes meta-learning on it.

Due to non-linear nature of the attributes the most prevalent

algorithm used is decision trees. Decision tree models employ

simple if-then-else statements which predict classes efficiently

and are also human readable. Another very important advan-

tage is that they do not require the features to be independent

among themselves.

Decision tree with reduced error pruning: The algorithm

implements a C4.5 decision tree using the information gain

ratio of different features. The information gain of an attribute

is the expected reduction in entropy because of knowing the

value of the attribute [18]. Attributes with higher information

gain are likely to be more distinct among the classes, hence

they are chosen first while building the decision tree from root

to the leaves. The next step is the pruning of the tree. Reduced
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TABLE V: PACL Prediction Results : TP and FP rate is

calculated for one class against all other classes.

Location Class TP Rate FP Rate Precision ROC Area

Airport 0.961 0.029 0.922 0.996
Cafeteria 0.860 0.051 0.852 0.979
Campus 0.883 0.070 0.846 0.976

Residence 0.740 0.025 0.866 0.953
Combined Results 0.872 0.046 0.872 0.978

error pruning starts at the leaves and each node is replaced by

the most popular class. If the accuracy of the prediction of

the class is not altered then the change is kept and steps are

repeated. Using the decision tree with pruning enables our

model to run faster as the tree size reduces.

Meta-learning: The metalearning classifier consists of mul-

tiple trees constructed systematically by pseudo-randomly

selecting subsets of the feature vector, that is, trees are

constructed using random feature subsets. Then the decision of

each tree on the data used for prediction is combined together

by averaging the conditional probability of each class at the

leaves [19].

C. PACL Prediction Accuracy

For prediction of location category, the representative fea-

tures are extracted from an IP address. These features are then

used as an input in the aforementioned model and a location

category is predicted. To check the prediction accuracy of our

model we divide the entire data set into n-folds and use n-

1 folds for training and use the remaining one fold as test

data to predict the location class. We repeat this step for the

remaining n-1 sets of data. Here, we consider n = 10.

We measure the efficiency of prediction of the location

classes on the basis of the following characteristics:

1) True Positive Rate: The fraction of instances correctly

classified as class A, among all instances actually be-

longing to class A =
|TP |

|TP |+|FN | , where TP = number of

true positives and FN = number of false negatives.

2) False Positive Rate: The fraction of instances which

were wrongly classified as class A, among all instances

not belonging to class A =
|FP |

|FP |+|TN | , where FP =

number of false positives and TN = number of true

negatives.

3) Area under ROC Curve: The Receiver Operating

Characteristics curve (ROC) plots the variation of false

positive rate vs. true positive rate for all the instances

of the test data and for each class. The ideal ROC curve

approaches the top left corner for 1 true positive rate

and 0 false positive rate. The area under the ROC curve

(∈ [0,1]) gives an estimate of the effectiveness of the

prediction model. A perfect model has a ROC area of

one.

4) Precision: The fraction of instances which actually

belong to class A, among all classified as class A =
|TP |

|TP |+|FP | .

The results of our model is presented in Table V along with

the confusion matrix for prediction as shown in Table VI.

TABLE VI: Confusion Matrix - Each element is represented

as (x,y) where x is row number representing the number of

IPs actually belonging to that class, and y is column number

representing the number of IPs predicted in the

corresponding class.

Classified Class Airport Cafeteria Campus Residence

Airport 440 6 6 6
Cafeteria 8 387 42 13
Campus 12 33 467 17
Residence 17 28 37 233

Overall, our model predicts 1527 out of the 1752 instances

correctly giving a prediction rate of 87.16%. The ROC curve

for the 4 location categories are shown in Fig. 6b. The

figure as well as Table V shows that the prediction is most

effective for airport traces where as residence traces show least

effectiveness. The exact ROC values are in Table V. Cafeteria

and campus dataset show similar prediction efficiency.

In Fig. 6a, we plot a pruned version of our decision tree

model (built using all the features). The model shows that the

attribute “activity period” has the highest information gain.

Fig. 3e shows that the variation of activity period across differ-

ent location classes is very distinct and hence activity period is

most effective in distinguishing the location categories. Fig. 5

shows that this attribute has the highest Chi-squared statistic

score. The nodes near the root of the tree includes attributes

that belong to all the different subset of features, which shows

that the combination of the features are required for efficient

prediction.

D. Prediction Accuracy with Feature Subsets

We predict contextual location based on a number of fea-

tures which are indicative of network usage patterns of various

users. Combination of all features give a good prediction

accuracy. But a question may arise as to how a certain subsets

of features, calculated on the basis of a particular aspect of an

IP address, contribute towards to the accuracy. Performance

of the individual subsets of features using the same model

and under the same experimental conditions is evaluated. The

results for 4 sets of statistical features and the application

based attributes mentioned in Section V and comparison with

the overall results is shown in Table IV. The table also lists

the attributes that have the highest information gain in each

of the attribute subsets.

Extracting some of the features from the network traffic

by an ISP is relatively easier and faster for some attributes

compared to others. For example, coarse-grain statistics, like

flow count, number of flows belonging to different protocols,

packet count, activity period, etc., are easier to track, hence

leading to faster prediction of the location category. It is

observed from the results in Table IV that the coarse-grain and

protocol based statistical features are most crucial in prediction

among all the subsets. This is specifically important for real-

time prediction.

In our analysis, the statistical features are calculated based

on high-level statistics and header information. Payload infor-
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 < 2.12

Flow Length : Max
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 ... 

 >= 1.54

(a) Decision tree model for prediction of contextual location based on training data of
1752 instances

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5

T
ru

e
 P

o
si

tiv
e
 R

a
te

False Positive Rate

Airport
Cafeteria
Campus
Residence

(b) ROC curve for individual contextual location
classes

Fig. 6: Decision tree and ROC curves for PACL prediction model

mation is used only in the categorization of application interest

among users at various locations. Certain commercial tools

[20] are available for extracting application based information

systematically from the packet payload [21], more commonly

known as Deep Packet Inspection (DPI). There are multiple

issues with using DPI. First, most flows in modern day internet

traffic are encrypted and hence cannot be decoded. Secondly,

looking into the payload leads to privacy leakage issues from

users’ point of view. Thirdly, this procedure is resource and

time intensive. Even though we have looked into payload for

the application-based features, we have applied a keyword

based search and did not look into the specific content accessed

by users. An efficient tool to look into the content accessed

by users might help us to distinguish between the applications

better and in turn improve the result.

VII. CONCLUSIONS

In this paper, we present a model for prediction of users’

contextual location by network traffic analysis. Using real

world traces we train our model on the basis of of statis-

tical and application-based features, to classify users’ into

four representative contextual locations. The PACL prediction

model, in our test case, gives an accuracy of around 87%.

There are multiple directions of future work. First, looking

into the payload of packets is computationally expensive and

as a result, we believe that the application based categorization

has a scope for improvement. Next, the application of PACL to

predict flash-mobs or events (short term gathering) is another

scope of the work.
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