415 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic Retinopathy Detection

    Full text link
    Diabetic Retinopathy (DR) is a significant cause of blindness globally, highlighting the urgent need for early detection and effective treatment. Recent advancements in Machine Learning (ML) techniques have shown promise in DR detection, but the availability of labeled data often limits their performance. This research proposes a novel Semi-Supervised Graph Learning SSGL algorithm tailored for DR detection, which capitalizes on the relationships between labelled and unlabeled data to enhance accuracy. The work begins by investigating data augmentation and preprocessing techniques to address the challenges of image quality and feature variations. Techniques such as image cropping, resizing, contrast adjustment, normalization, and data augmentation are explored to optimize feature extraction and improve the overall quality of retinal images. Moreover, apart from detection and diagnosis, this work delves into applying ML algorithms for predicting the risk of developing DR or the likelihood of disease progression. Personalized risk scores for individual patients are generated using comprehensive patient data encompassing demographic information, medical history, and retinal images. The proposed Semi-Supervised Graph learning algorithm is rigorously evaluated on two publicly available datasets and is benchmarked against existing methods. Results indicate significant improvements in classification accuracy, specificity, and sensitivity while demonstrating robustness against noise and outlie rs.Notably, the proposed algorithm addresses the challenge of imbalanced datasets, common in medical image analysis, further enhancing its practical applicability.Comment: 13 pages, 6 figure

    A Review on Machine Learning Methods in Diabetic Retinopathy Detection

    Get PDF
    Ocular disorders have a broad spectrum. Some of them, such as Diabetic Retinopathy, are more common in low-income or low-resource countries. Diabetic Retinopathy is a cause related to vision loss and ocular impairment in the world. By identifying the symptoms in the early stages, it is possible to prevent the progress of the disease and also reach blindness. Considering the prevalence of different branches of Artificial Intelligence in many fields, including medicine, and the significant progress achieved in the use of big data to investigate ocular impairments, the potential of Artificial Intelligence algorithms to process and analyze Fundus images was used to identify symptoms associated with Diabetic Retinopathy. Under the studies, the proposed models for transformers provide better interpretability for doctors and scientists. Artificial Intelligence algorithms are also helpful in anticipating future health issues after appraising premature cases of the ailment. Especially in ophthalmology, a trustworthy diagnosis of visual outcomes helps physicians in advising disease and clinical decision-making while reducing health management costs

    Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

    Get PDF
    With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligence (XAI) used in deep learning-based medical image analysis. A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location. The paper concludes with an outlook of future opportunities for XAI in medical image analysis.Comment: Submitted for publication. Comments welcome by email to first autho

    A Review on Explainable Artificial Intelligence for Healthcare: Why, How, and When?

    Full text link
    Artificial intelligence (AI) models are increasingly finding applications in the field of medicine. Concerns have been raised about the explainability of the decisions that are made by these AI models. In this article, we give a systematic analysis of explainable artificial intelligence (XAI), with a primary focus on models that are currently being used in the field of healthcare. The literature search is conducted following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) standards for relevant work published from 1 January 2012 to 02 February 2022. The review analyzes the prevailing trends in XAI and lays out the major directions in which research is headed. We investigate the why, how, and when of the uses of these XAI models and their implications. We present a comprehensive examination of XAI methodologies as well as an explanation of how a trustworthy AI can be derived from describing AI models for healthcare fields. The discussion of this work will contribute to the formalization of the XAI field.Comment: 15 pages, 3 figures, accepted for publication in the IEEE Transactions on Artificial Intelligenc

    Deep learning for diabetic retinopathy detection and classification based on fundus images: A review.

    Get PDF
    Diabetic Retinopathy is a retina disease caused by diabetes mellitus and it is the leading cause of blindness globally. Early detection and treatment are necessary in order to delay or avoid vision deterioration and vision loss. To that end, many artificial-intelligence-powered methods have been proposed by the research community for the detection and classification of diabetic retinopathy on fundus retina images. This review article provides a thorough analysis of the use of deep learning methods at the various steps of the diabetic retinopathy detection pipeline based on fundus images. We discuss several aspects of that pipeline, ranging from the datasets that are widely used by the research community, the preprocessing techniques employed and how these accelerate and improve the models' performance, to the development of such deep learning models for the diagnosis and grading of the disease as well as the localization of the disease's lesions. We also discuss certain models that have been applied in real clinical settings. Finally, we conclude with some important insights and provide future research directions

    Enhancing Retinal Scan Classification: A Comparative Study of Transfer Learning and Ensemble Techniques

    Get PDF
    Ophthalmic diseases are a significant health concern globally, causing visual impairment and blindness in millions of people, particularly in dispersed populations. Among these diseases, retinal fundus diseases are a leading cause of irreversible vision loss, and early diagnosis and treatment can prevent this outcome. Retinal fundus scans have become an indispensable tool for doctors to diagnose multiple ocular diseases simultaneously. In this paper, the results of a variety of deep learning models (DenseNet-201, ResNet125V2, XceptionNet, EfficientNet-B7, MobileNetV2, and EfficientNetV2M) and ensemble learning approaches are presented, which can accurately detect 20 common fundus diseases by analyzing retinal fundus scan images. The proposed model is able to achieve a remarkable accuracy of 96.98% for risk classification and 76.92% for multi-disease detection, demonstrating its potential for use in clinical settings. By utilizing the proposed model, doctors can provide swift and accurate diagnoses to patients, improving their chances of receiving timely treatment and preserving their vision
    • …
    corecore