11,723 research outputs found

    Time Series Analysis of Pavement Roughness Condition Data for use in Asset Management

    Get PDF
    Roughness is a direct measure of the unevenness of a longitudinal section of road pavement. Increased roughness corresponds to decreased ride comfort and increased road user costs. Roughness is relatively inexpensive to measure. Measuring roughness progression over time enables pavement deterioration, which is the result of a complex and chaotic system of environmental and road management influences, to be monitored. This in turn enables the long term functional behaviour of a pavement network to be understood and managed. A range of approaches has been used to model roughness progression for assistance in pavement asset management. The type of modelling able to be undertaken by road agencies depends upon the frequency and extent of data collection, which are consequences of funding available. The aims of this study are to increase the understanding of unbound granular pavement performance by investigating roughness progression, and to model roughness progression to improve roughness prediction methods. The pavement management system in place within the project partner road agency and the data available to this study lend themselves to a methodology allowing roughness progression to be investigated using financial maintenance and physical condition information available for each 1km pavement segment in a 16,000km road network

    Spatiotemporal Calibration of Atmospheric Nitrogen Dioxide Concentration Estimates From an Air Quality Model for Connecticut

    Full text link
    A spatiotemporal calibration and resolution refinement model was fitted to calibrate nitrogen dioxide (NO2_2) concentration estimates from the Community Multiscale Air Quality (CMAQ) model, using two sources of observed data on NO2_2 that differed in their spatial and temporal resolutions. To refine the spatial resolution of the CMAQ model estimates, we leveraged information using additional local covariates including total traffic volume within 2 km, population density, elevation, and land use characteristics. Predictions from this model greatly improved the bias in the CMAQ estimates, as observed by the much lower mean squared error (MSE) at the NO2_2 monitor sites. The final model was used to predict the daily concentration of ambient NO2_2 over the entire state of Connecticut on a grid with pixels of size 300 x 300 m. A comparison of the prediction map with a similar map for the CMAQ estimates showed marked improvement in the spatial resolution. The effect of local covariates was evident in the finer spatial resolution map, where the contribution of traffic on major highways to ambient NO2_2 concentration stands out. An animation was also provided to show the change in the concentration of ambient NO2_2 over space and time for 1994 and 1995.Comment: 23 pages, 8 figures, supplementary materia

    A Multi-Contextual Approach to Modeling the Impact of Critical Highway Work Zones in Large Urban Corridors

    Get PDF
    Accurate Construction Work Zone (CWZ) impact assessments of unprecedented travel inconvenience to the general public are required for all federally-funded highway infrastructure improvement projects. These assessments are critical, but they are also very difficult to perform. Most existing prediction approaches are project-specific, shortterm, and univariate, thus incapable of benchmarking the potential traffic impact of CWZs for highway construction projects. This study fills these gaps by creating a big-data-based decision-support framework and testing if it can reliably predict the potential impact of a CWZ under arbitrary lane closure scenarios. This study proposes a big-data-based decision-support analytical framework, “Multi-contextual learning for the Impact of Critical Urban highway work Zones” (MICUZ). MICUZ is unique as it models the impact of CWZ operations through a multi-contextual quantitative method utilizing sensored big transportation data. MICUZ was developed through a three-phase modeling process. First, robustness of the collected sensored data was examined through a Wheeler’s repeatability and reproducibility analysis, for the purpose of verifying the homogeneity of the variability of traffic flow data. The analysis results led to a notable conclusion that the proposed framework is feasible due to the relative simplicity and periodicity of highway traffic profiles. Second, a machine-learning algorithm using a Feedforward Neural Networks (FNN) technique was applied to model the multi-contextual aspects of iii long-term traffic flow predictions. The validation study showed that the proposed multi-contextual FNN yields an accurate prediction rate of traffic flow rates and truck percentages. Third, employing these predicted traffic parameters, a curve-fitting modeling technique was implemented to quantify the impact of what-if lane closures on the overall traffic flow. The robustness of the proposed curve-fitting models was then scientifically verified and validated by measuring forecast accuracy. The results of this study convey the fact that MICUZ would recognize how stereotypical regional traffic patterns react to existing CWZs and lane closure tactics, and quantify the probable but reliable travel time delays at CWZs in heavily trafficked urban cores. The proposed framework provides a rigorous theoretical basis for comparatively analyzing what-if construction scenarios, enabling engineers and planners to choose the most efficient transportation management plans much more quickly and accurately

    Assessment of the Contribution of Traffic Emissions to the Mobile Vehicle Measured PM2.5 Concentration by Means of WRF-CMAQ Simulations

    Get PDF
    INE/AUTC 12.0

    Prediction and analysis of near-road concentrations using a reduced-form emission/dispersion model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Near-road exposures of traffic-related air pollutants have been receiving increased attention due to evidence linking emissions from high-traffic roadways to adverse health outcomes. To date, most epidemiological and risk analyses have utilized simple but crude exposure indicators, most typically proximity measures, such as the distance between freeways and residences, to represent air quality impacts from traffic. This paper derives and analyzes a simplified microscale simulation model designed to predict short- (hourly) to long-term (annual average) pollutant concentrations near roads. Sensitivity analyses and case studies are used to highlight issues in predicting near-road exposures.</p> <p>Methods</p> <p>Process-based simulation models using a computationally efficient reduced-form response surface structure and a minimum number of inputs integrate the major determinants of air pollution exposures: traffic volume and vehicle emissions, meteorology, and receptor location. We identify the most influential variables and then derive a set of multiplicative submodels that match predictions from "parent" models MOBILE6.2 and CALINE4. The assembled model is applied to two case studies in the Detroit, Michigan area. The first predicts carbon monoxide (CO) concentrations at a monitoring site near a freeway. The second predicts CO and PM<sub>2.5 </sub>concentrations in a dense receptor grid over a 1 km<sup>2 </sup>area around the intersection of two major roads. We analyze the spatial and temporal patterns of pollutant concentration predictions.</p> <p>Results</p> <p>Predicted CO concentrations showed reasonable agreement with annual average and 24-hour measurements, e.g., 59% of the 24-hr predictions were within a factor of two of observations in the warmer months when CO emissions are more consistent. The highest concentrations of both CO and PM<sub>2.5 </sub>were predicted to occur near intersections and downwind of major roads during periods of unfavorable meteorology (e.g., low wind speeds) and high emissions (e.g., weekday rush hour). The spatial and temporal variation among predicted concentrations was significant, and resulted in unusual distributional and correlation characteristics, including strong negative correlation for receptors on opposite sides of a road and the highest short-term concentrations on the "upwind" side of the road.</p> <p>Conclusions</p> <p>The case study findings can likely be generalized to many other locations, and they have important implications for epidemiological and other studies. The reduced-form model is intended for exposure assessment, risk assessment, epidemiological, geographical information systems, and other applications.</p

    Develop Guidelines for Pavement Preservation Treatments and for Building a Pavement Preservation Program Platform for Alaska

    Get PDF
    INE/AUTC 12.0

    Climate Change Impact Assessment for Surface Transportation in the Pacific Northwest and Alaska

    Get PDF
    WA-RD 772.

    Development and evaluation of land use regression models for black carbon based on bicycle and pedestrian measurements in the urban environment

    Get PDF
    Land use regression (LUR) modelling is increasingly used in epidemiological studies to predict air pollution exposure. The use of stationary measurements at a limited number of locations to build a LUR model, however, can lead to an overestimation of its predictive abilities. We use opportunistic mobile monitoring to gather data at a high spatial resolution to build LUR models to predict annual average concentrations of black carbon (BC). The models explain a significant part of the variance in BC concentrations. However, the overall predictive performance remains low, due to input uncertainty and lack of predictive variables that can properly capture the complex characteristics of local concentrations. We stress the importance of using an appropriate cross-validation scheme to estimate the predictive performance of the model. By using independent data for the validation and excluding those data also during variable selection in the model building procedure, overly optimistic performance estimates are avoided. (C) 2017 Elsevier Ltd. All rights reserved
    • …
    corecore