4 research outputs found

    Classification of Movement Intention Using Independent Components of Premovement EEG

    Get PDF
    Many previous studies on brain-machine interfaces (BMIs) have focused on electroencephalography (EEG) signals elicited during motor-command execution to generate device commands. However, exploiting pre-execution brain activity related to movement intention could improve the practical applicability of BMIs. Therefore, in this study we investigated whether EEG signals occurring before movement execution could be used to classify movement intention. Six subjects performed reaching tasks that required them to move a cursor to one of four targets distributed horizontally and vertically from the center. Using independent components of EEG acquired during a premovement phase, two-class classifications were performed for left vs. right trials and top vs. bottom trials using a support vector machine. Instructions were presented visually (test) and aurally (condition). In the test condition, accuracy for a single window was about 75%, and it increased to 85% in classification using two windows. In the control condition, accuracy for a single window was about 73%, and it increased to 80% in classification using two windows. Classification results showed that a combination of two windows from different time intervals during the premovement phase improved classification performance in the both conditions compared to a single window classification. By categorizing the independent components according to spatial pattern, we found that information depending on the modality can improve classification performance. We confirmed that EEG signals occurring during movement preparation can be used to control a BMI

    Decoding Neural Correlates of Cognitive States to Enhance Driving Experience

    Get PDF
    Modern cars can support their drivers by assessing and autonomously performing different driving maneuvers based on information gathered by in-car sensors. We propose that brain–machine interfaces (BMIs) can provide complementary information that can ease the interaction with intelligent cars in order to enhance the driving experience. In our approach, the human remains in control, while a BMI is used to monitor the driver's cognitive state and use that information to modulate the assistance provided by the intelligent car. In this paper, we gather our proof-of-concept studies demonstrating the feasibility of decoding electroencephalography correlates of upcoming actions and those reflecting whether the decisions of driving assistant systems are in-line with the drivers' intentions. Experimental results while driving both simulated and real cars consistently showed neural signatures of anticipation, movement preparation, and error processing. Remarkably, despite the increased noise inherent to real scenarios, these signals can be decoded on a single-trial basis, reflecting some of the cognitive processes that take place while driving. However, moderate decoding performance compared to the controlled experimental BMI paradigms indicate there exists room for improvement of the machine learning methods typically used in the state-of-the-art BMIs. We foresee that neural fusion correlates with information extracted from other physiological measures, e.g., eye movements or electromyography as well as contextual information gathered by in-car sensors will allow intelligent cars to provide timely and tailored assistance only if it is required; thus, keeping the user in the loop and allowing him to fully enjoy the driving experience

    Predicting Targets of Human Reaching Motions Using Different Sensing Technologies

    No full text
    corecore