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Abstract—Modern cars can support their drivers by assess-
ing and performing autonomously different driving maneuvers,
based on information gathered by in-car sensors. We propose
that brain machine interfaces (BMIs) can provide complementary
information that can ease the interaction with intelligent cars in
order to enhance the driving experience. In our approach, the
human remains in control, while a BMI is used to monitor the
driver’s cognitive state and use that information to modulate
the assistance provided by the intelligent car. In this review,
we gather our proof-of-concept studies demonstrating the fea-
sibility of decoding electroencephalography (EEG) correlates of
upcoming actions and those reflecting whether the decisions of
driving assistant systems are in-line with the driver intentions.
Experimental results while driving both simulated and real cars
consistently showed neural signatures of anticipation, movement
preparation and error processing. Remarkably, despite the in-
creased noise inherent to real scenarios, these signals can be
decoded on a single-trial basis, reflecting some of the cognitive
processes that take place while driving. However, moderate
decoding performance compared to the controlled experimental
BMI paradigms indicate there exists room for improvement of
the machine learning methods typically used in the state-of-
the-art BMIs. We foresee that fusion of neural correlates with
information extracted from other physiological measures; e.g. eye
movements or electromyography (EMG) as well as contextual
information gathered by in-car sensors will allow intelligent cars
to provide timely and tailored assistance only if it is required;
thus keeping the user in the loop and allowing him to fully enjoy
the driving experience.
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I. INTRODUCTION

In recent years, there has been an impressive development
in technology-enabled intelligent cars. By processing the en-
vironment, these cars can provide their drivers with extra
information (e.g. distance to the nearest car) or autonomously
assess and perform different driving maneuvers, including lane
changing assistance, parking or even fully autonomous naviga-
tion. Although these features improve the driving experience,
we believe that an optimal car-driver symbiotic interaction
would be fully achieved once the car can also take into account
the driver’s goals and preferences. In the case of a lane change,
if a car can recognize a driver’s intention to change the lane,
the car’s assistance system can better align its behavior to

the driver’s one and provide them with a suitable and timely
assistance when executing the action.

To communicate driver’s cognitive processes to cars, we
propose the use of non-invasive brain-machine interfaces
(BMIs) as illustrated in Figure 1. In this review, as a proof
of concept, we bring together the studies on the transfer
of the state-of-the-art BMI to the driving application. These
works demonstrated the feasibility of electroencephalography
(EEG) -based decoding of cognitive processes in simulated and
real-car driving scenarios. It is worth noticing that recording
and decoding EEG signals during driving poses a particular
challenge compared to the conventional BMI experiments. The
latter are typically performed in well-controlled laboratory
conditions: based on simple tasks (e.g. finger movement,
anticipation of simple objects in a sequence) and minimizing
potential sources of signal contamination such as body and eye
movements, and environmental noise [1], [2]. In consequence,
development of BMI systems suited for driving scenarios
represents a unique opportunity for improving the signal
processing and decoding methods typically used in the field.

The focus of this review is on decoding the cognitive
processes of movement preparation, anticipation and error
monitoring in driving. Movement preparation is a cognitive
process preceding the execution of any motor actions, such
as steering or pressing a pedal in driving. Decoding of the
corresponding neural correlates would allow a car to infer
ahead of time about the drivers’ intention to act. Moreover,
the neural correlates of anticipation can be informative about
driver’s future behavior in dynamic driving environments,
where their actions are led by external events, such as traffic
light changes – a driver anticipates the appearance of the
color requiring certain action from him, namely the actions of
brake/accelerate which have to be executed upon the transition
green-yellow-red or vice versa. Complementarily, decoding the
neural correlates of error monitoring is particularly interesting
for closing the loop in a driver-car symbiotic interaction.
This cognitive process can reflect whether the car behavior
coincided with the driver’s intention, what may have strong
impact on adapting the assistance the intelligent vehicle can
provide (e.g. the maneuvers it can perform autonomously).

Before entering in the driving-related BMI studies (Sections
III–V), we make a concise and general overview of the BMI
framework for driving in Section II. First, we review existing
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work on decoding neural correlates of drowsiness, workload
and emergency actions (Section II-A), and then we discuss
cognitive processes that can be used for enhancing human-
machine symbiosis (Section II-B).

II. BRAIN-MACHINE INTERFACES FOR DRIVING

A. Drowsiness, workload and emergency

Previous studies on BMI systems for drivers have focused
on brain correlates of the level of drowsiness and work-
load [3]–[10]. Driving, although a part of our daily routine,
requires a high level of alertness and responsiveness that often
can be affected by secondary activities (e.g. communication
with a fellow passenger, using a navigation system) or different
mental states (e.g. drowsiness after a long ride). Consequently,
the idea of monitoring the driver’s state using EEG and other
physiological signals has been proposed as a convenient tool
for obtaining an objective assessment of workload, vigilance
or drowsiness [11]. Some of the challenges of this research
line are the definition of the states to be detected (e.g. awake,
drowsy, and sleep), the ability to modulate in a controlled way
the mental states by the experimental conditions (often made
through changes in the driving conditions or by introducing
secondary tasks [3], [12]), and obtaining reliable ground truth
labels. The latter process usually relies on the subjective
post-experiment self-assessment made by participants using
questionnaires (e.g. NASA-TLX [13]) which limits the reli-
ability and temporal resolution at which such labels can be
obtained [14].

A large body of studies have pointed out to changes in
alpha and theta waves related to fluctuations in vigilance and
performance degradation. This is complemented by increases
in beta oscillations associated with increased alertness and
arousal, as well as increase alpha activity for decreased
attention levels. A review of these correlates can be found
in reference [11]. Nonetheless, there is not yet a full char-
acterization of how consistent these modulations are across
different tasks or subjects. Hence, the generalization of these
results over a wide range of scenarios is still to be assessed.
Based on these studies, spectral EEG analysis is typically
used for studying the neural correlates of drowsiness and vig-
ilance [8]. Khushaba and colleagues extracted features using
a Fuzzy mutual-information based wavelet packet transform
on a combination of EEG, electrooculography (EOG) and
electrocardiogram (ECG) signals recorded during simulated
driving [4]. Alternatively, other researchers have explored
whether different levels of fatigue could be discriminated
based on interactions among different brain areas estimated
using Granger causality [7], transfer entropy [6], or partial
directed coherence [15]. Another approach has looked at the
stability of the ICA-estimated neural sources [16].

A wide range of classification methods has been applied
for EEG-based mental state detection – from simple classifier
models such as Linear Discriminant Analysis (LDA) [4],
[17], and Support Vector Machines [18], [19] to artificial
neural networks [10], [19]–[21]. Interestingly, some research
groups have evaluated the possibility of applying transfer
learning methods to reduce the amount of subject-specific

data required to calibrate the EEG decoder [8], [9]. Recent
studies performing simultaneous EEG and functional near-
infrared spectroscopy (fNIRS) recordings showed promising
results on the use of the latter modality to obtain information
about driver’s drowsiness [17], [22]. Upon recognition of these
mental states, the driving assistance system can make actions
aimed at improving driver alertness [23]. One proposal is to
use personalized music recommendation as the feedback when
a higher level of drowsiness is detected [19]. Nonetheless, the
efficacy of these approaches is yet to be evaluated.

Another driving situation that has been studied for potential
use of BMI systems is emergency situations. In these cases,
there is an external event (e.g. sudden braking of the front car)
initiating a driver’s reaction. Recognition of such critical event
followed by an appropriate action selection and execution is
reflected in the evoked potentials in the driver’s EEG as shown
in the study [24]. Moreover, the authors demonstrated that this
EEG signature can be detected about 130 ms before the actual
braking, discussing its usage in prevention of traffic accidents
by integrating it in braking assistance systems. The authors
verified the results in a real-car driving task [25], and further
explored real-world driving challenges by considering diverse
braking situations in simulated driving [26]. In the latter
study, the authors proposed a combination of EEG features
– the readiness potential and event-related desynchronization
together with the ERPs – for improved decoding performance
using the regularized linear discriminant analysis.

B. Decoding cognitive processes for driver-car symbiosis

Complementing the above described BMI approaches for
driving, we address the possibility of decoding brain correlates
of cognitive states reflecting upcoming actions and driver’s
perception of the feedback provided by the car. We aim to use
these signals to predict future actions and/or evaluate whether
the decisions of the intelligent system are coherent with the
user intentions.

BMI-supported driving assistance requires the interpretation
of the neural signals in real-time. To realize efficient decoding
of the driver’s cognitive processes from high-dimensional
neural data, despite the high trial-to-trial variability, it is
necessary to exploit tools and methods from both neuroscience
and engineering. In particular, to identify appropriate features
(i.e. brain areas and patterns of activity that are actually re-
lated to the phenomenon of interest), we combine data-driven
approaches and existing knowledge about brain organization.
In the reported studies, we used commonly applied decoding
techniques in state-of-the-art closed-loop BMI studies. Al-
though more advanced decoding techniques are promising,
their application is often limited due to the small number
of training samples available in BMI scenarios. Nonetheless,
simple techniques have low computational complexity that is
critical for real-time applications while preserving a satisfac-
tory single-trial decoding performance [27], [28].

Concerning cognitive processes of interest in the frame
of BMI-mediated car-driver symbiosis, it has been largely
reported that anticipatory and preparatory processes are re-
flected in slow negative potentials, preceding the anticipated
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Fig. 1. Overview of the BMI-supported car-driving symbiotic approach. The controller of the intelligent car takes into account environmental information,
driver’s physiological signals, as well as their cognitive states inferred by the BMI from EEG to decide on the type and level of assistance it provides. This
review shows examples of potential information that can be extracted by the BMI system for closing the driver-vehicle loop (denoted by red arrows).

stimuli or the motor action. The anticipation-related potential
is commonly referred to as the Contingent Negative Varia-
tion (CNV) [29] and has been shown as a slow negative EEG
deflection in fronto-central areas that starts developing after
a warning cue. A vast amount of studies report the pres-
ence of these processes using simple experimental protocols
and, more recently, evidence about their presence in realistic
applications such as web-browsing application protocol and
driving is emerging [30]–[32]. Regarding EEG signals related
to preparatory processes, the so-called motor related cortical
potential (MRCP)1 corresponds to a negative deflection of
the EEG activity over motor areas appearing as early as 1s
before the movement onset [33]. Single-trial analysis of these
signals can be used to extract information about upcoming
actions for both upper and lower limbs [34], [35]. Evidence
that such correlates can be successfully decoded in a single-
trial basis [30] shows that they can provide markers of the
user’s preparedness to execute a given action.

The existence of anticipation- and preparatory- potentials
elicited while driving both in a car simulator and a real vehicle
allows to infer upcoming driving actions. This can complement
information from other sources (e.g. in-car sensors or other
physiological signals) to decide the type of assistance required
by the user in that context [36]. Here, we present our work in
this line proving the feasibility of detection of the cognition-
related signatures in the EEG while driving, what was previ-
ously demonstrated in some other realistic applications such

1Also referred to as readiness potential or Bereitschaft potential.

as a web-browsing application, a navigation task and a self-
paced reaching movement [30], [32], [35], [37]. Moreover, the
presented work contributes to the perspective on the blending
of human and machine intelligences through shared control
[38].

These decisions, however, may be prone to errors which
may hinder performance. Previous works in BMI have pro-
posed the decoding of human perception of machine decisions
as a means to improve performance [39]. In particular, error-
related brain activity provides information on whether the
user agrees with the actions of an external device and can
be exploited to adapt such device to tailor the user’s goals
and preferences [39], [40]. We studied this approach in a
scenario where a driving assistance system provides feedback
on predicted upcoming turning directions (e.g. based on envi-
ronmental information) [41].

This paper reviews recent results showing that both action-
and error-related brain responses observed during driving
are consistent with previous studies in simpler experimental
protocols. Furthermore, these signals can be decoded in a
single-trial basis above chance levels, thus making it possible
to infer the driver’s cognitive processes. Overall, these results
validate the consistency of the reported brain signals, and
provide initial evidence supporting the possibility of using
them in practical applications.
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Fig. 2. Driving simulator used in the experiments. The subject drives a
simulated vehicle through a simulated environment shown in three 3D screens
while wearing a 64–channel EEG acquisition system.

III. EXPERIMENTAL SET-UP

Experiments were performed in both a realistic car simulator
and a real car. The custom-made simulated car, shown in
Figure 2, corresponds to a small size vehicle. A passive system
based on springs and fluid damping was used to generate
a realistic steering feeling (electrical force feedback were
avoided to reduce potential contamination of EEG recordings).
A virtual driving scene is presented to the subject using
three 27” 3D monitors. These monitors do not require the
subject to wear glasses and present the scene from 8 points of
view, reproducing not only binocular parallax, but also motion
parallax (i.e. the scene changes accordingly if subjects move
their head sideways). The simulator continuously records the
steering and pedal positions, vehicle dynamics and the position
of the vehicle in space.

Experiments in the real car setup were performed in an
Infiniti FX30 vehicle, Figure 1. This car has an automatic
gearshift, therefore subject’s arm movements were limited to
steering actions. Although the car provides several driving
assistance systems –intelligent cruise control, lane departure
prevention and vehicle dynamic control– they were disabled
during the experiments. The vehicle has been fitted with a
driving logger (provided by the manufacturer) that records
steering, pedal positions and vehicle dynamics. This informa-
tion is obtained directly from the in-car CAN bus. For safety
reasons, real driving experiments were performed in a closed
road with no other vehicles. Traffic lights and signs were
specifically deployed according to the experimental protocols
(see below).

EEG signals of the driver were recorded at 2048 Hz using
a 64 channel BioSemi ActiveTwo System, in an extended
10/20 layout configuration. Signals were then downsampled to
256 Hz. Eye movement activity was simultaneously recorded
using electrodes positioned above the nasion and below the
outer canthi of both eyes. Furthermore, one bipolar elec-
tromyography (EMG) channel was placed on the driver’s right
leg (tibialis anterior muscle) to monitor pedal activity. EMG
signals were band-pass filtered in the range [20 50] Hz and
smoothed using a moving average (t=25 samples).

In both the real and simulated setups, recordings were

(a)

(b)

(c)

Fig. 3. Anticipation-related potentials. (a) Experimental protocol in the simu-
lated driving. (b-c) Grand average ERP (Cz electrode) of an exemplar subject
for both brake and accelerate conditions (red and blue lines, respectively).
The negative EEG deflection can be clearly observed after the last warning
stimulus (Go condition; [-1 0] s period), but not in the preceding ones (No-go
condition; [-3 -1] s period). (b) Simulated driving. Bottom plot shows EMG
activity. (c) Real car driving.

synchronized via hardware using a pulse train (frequency
256 Hz) sent from the driving simulator or car logger to the
EEG recording device via parallel port.

IV. BRAIN CORRELATES OF UPCOMING DRIVING ACTIONS

A. Actions driven by environmental cues

During driving, environmental cues warn the driver about
upcoming situations where an action may be required (e.g.
accelerate when a traffic light changes to green). The existence
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of anticipation-related signals in such driving situations was
demonstrated both in simulated and real driving.

In the simulated experiment, subjects (N=18) were driving
along a highway at 100 Km/h and their task was to accelerate
or brake at specific points cued by visual stimuli (’GO’ or
’STOP’) [31]. The visual stimuli consist of a numerical count-
down starting at ’4’ shown in the middle of the screen, Figure
3(a). The countdown finishes with the cue to the required
action to be performed. This setting enables us to evaluate
brain responses in two conditions depending on the required
upcoming behavior. On the one hand, there are periods where
no action (i.e. braking or accelerating) is required after the
next stimulus (i.e. No-Go condition: in the period between
the stimuli ’4’ and ’1’). On the other hand, in the remaining
condition (between the ’1’ stimulus and the GO cue) the
subject should prepare to quickly act at the appearance of
the final stimulus (Go condition). This experiment yielded
about 360 instances of accelerating and braking situations per
subject, with their corresponding ’GO’ and ’No-Go’ trials. It
is worth to notice that the appearance of the warning stimuli
allows the driver to anticipate and prepare for the upcoming
action, opposite to the emergency brake behavior tested by
Haufe and colleagues [24], [25].

In the real car experiment, subjects (N=8) were asked to
drive at maximum 65 Km/h and safely brake or accelerate
as soon as the traffic light changed color to red or green
respectively [42]. In this case the period when the yellow light
is on before turning to red or green corresponds to the ’Go’
condition for the brake or accelerate trials. In both cases, the
yellow light stayed on for three seconds. The traffic lights
were deployed to ensure that they will turn to red before the
car reached their location without requiring sudden brakes.

Based on previous studies, we focused on the slow cortical
potentials (SCP, [0.1 1] Hz). Both in the simulated and real
driving experiments we found EEG correlates of anticipation
and movement preparation that are consistent with signals
previously reported in much simpler setups. Namely, a centro-
medial slow negative signal can be observed well before
anticipated actions (accelerate/brake) both in simulated and
real driving, c.f., Figures 3(b) and 3(c).

In order to test single-trial detection of EEG activity re-
flecting the action anticipation, we created two types of trials
corresponding to those periods before an action is performed
(i.e. Go trials), and those when no response is required (i.e.
No-Go trials). We then use a Quadratic Discriminant Analysis
(QDA) classifier to discriminate these two types of trials [31].
The feature vector consisted of the EEG activity at the location
of the Cz electrode at time-points 800 ms, 600 ms, 400 ms
and 200 ms before the end of the trial. EEG data was spatially
filtered using a Common Average Reference (CAR) and a
smoothing Weighted Average Filter (WAVG) [30], prior to the
spectral filtering between 0.1 Hz and 1 Hz.

The performance evaluation of the learned models was done
using a sliding window starting from 6 seconds before the
onset of the imperative stimulus. The results are reported with
reference to the chance level obtained at each time point by
shuffling the labels of the training data and performing 1000
times 4-fold cross validation.

In the driving simulator, the average classification perfor-
mance in terms of the Area Under the specificity-sensitivity
Curve (AUC) using temporal features up to 200 ms before the
action was 0.78 ± 0.04 and 0.83 ± 0.05 for accelerating and
braking actions, respectively (N=18; 4-fold cross-validation).
The choice of a classification window finishing 200ms before
the possible action is motivated by the need to decode potential
actions before they happen to provide enough time for a
potential driving assistance system to perform the classification
and take a corresponding action if required. Preliminary results
in the in-car experiment suggest that these signals can also
be discriminated in the real scenario. For the subject shown
in Figure 3(c) the AUC values are 0.88 and 0.72 for the
acceleration and brake trials, respectively.

B. Self-generated actions

We also studied neural activity preceding self-generated
actions and assessed the possibility of decoding it to detect
whether the driver would perform a lane change in the
immediate future. We analyzed the EEG activity while drivers
(N=6) performed self-paced lane changes (LC) in a simulated
highway [43]. In this experiment, subjects drive in an oval-
shaped road and change the driving lane during the straight
segments at the moment of their choice. No other cars were
included in the simulation.

The EEG data was filtered between 0.1 Hz and 1 Hz to ana-
lyze SCPs and segmented into trials corresponding to straight
driving and steering actions based on the driving simulator
data; c.f., Figure 4(a). We used as features the EEG activity
at the positions of six channels (C1, Cz, C2, CP1, CPz, CP2)
within a time window preceding the LCs and LDA was used
for classification. As seen in Figure 4(b), slow negative EEG
deflections appear over central areas, which is consistent with
the movement-related potentials before 500 ms prior to lane
changes. Decoding performance yielded a true positive rate
of 79.4±9.2 (5-fold cross-validation), with average detection
times of 613±169 ms before the actual steering action.

C. Driver‘s response variability

A critical factor for any intelligent car is timely assistance
that matches the driver’s behavior and intention. To this end,
we performed an EEG study on the neural basis of stimulus
driven behavior during car driving. In particular, we addressed
the neural markers of the response variability in an obstacle
avoidance driving task [44]. We explored how EEG activity,
elicited by the appearance of obstacles which required lane
changes, relate to the steering reaction. These correlates could
be used to track neural processes that influence changes in the
driver’s response time and allow the intelligent car to adapt to
the driver’s response variability in diverse road situations.

In this experiment, subjects (N = 15) were asked to con-
tinuously drive at 95 Km/h along a virtual two-lane road
avoiding the obstacles. Appearance of an obstacle on the road
would require an action (i.e. lane changing) only if it was
located in the same lane as the car. During the experiment, the
probability of this situation was 25%. The distance between
the car and an obstacle at the moment of its appearance varied
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(a) (b)

Fig. 4. Movement-related cortical activity preceding lane changes. (a) Car trajectories in one straight segment of the simulated highway are shown in the
top plot. Blue traces correspond to single laps. Dots represent different conditions depending on the steering angle (bottom). Green: Change towards the left ;
Red: lane change towards the right; Magenta: Straight driving. Bottom: Steering pattern. (b) Grand average ERP during lane changes (top) and straight driving
periods (bottom). Topographical activity represented by a top view of the scalp (nose up). t=0 corresponds to the moment of steering.

randomly between 40 m and 70 m (uniformly distributed) and
the time between two consecutive obstacles was about 5s. The
variability in the distance to the obstacle elicited different types
of drivers’ reactions. Obstacles at close distance provoked
rapid responses, while those appearing in the far distance led
to slower and self-paced responses.

The results showed EEG-based neural markers of steering
response variability in both time- and spectral- domains. A
significant correlation between the peak latency of the event-
related potentials (the EEG data filtered between 1-10 Hz)
and the onset of the steering behavior was found in frontal
and parietal areas. Moreover, reaction time was significantly
correlated with theta power modulation (4-8 Hz) in the fronto-
central (ρ = −0.3 in FCz; p < 0.005) and parietal (ρ = −0.34
in CPz; p < 0.001) regions in a way that stronger increase
in theta reflects faster reactions. The p values were obtained
using Student’s t-distribution with the assumption of bivariate
normal distribution. A positive correlation was found between
the beta power modulation (20-35 Hz) and the reaction time
(ρ = 0.2 and 0.18 for FCz and CPz respectively), suggesting
that the faster the reaction, the more decrease in beta. However,
these correlations were not statistically significant (p > 0.05).

V. ERROR-RELATED BRAIN POTENTIALS IN HUMAN-CAR
INTERACTION

As mentioned earlier, error-related brain activity provides
information on whether the user agrees with the actions of an
external device and can be exploited to adapt such device to the
user’s goals [39], [40]. We evaluated how the same approach
can be used in intelligent cars. In this case, we assume the
car is endowed with a means to infer driver’s behavior (e.g.
directions of turning at intersections) and uses this information
to assist in the upcoming maneuvers. The driving assistance
system can inform the driver about its inferences and the
elicited brain response is used to confirm or refute such
inference [32].

The experiments were performed in both the car simulator
(N=23) and the real car (N=8) [41]. In both cases, traffic
signs showed the driver the designated path (i.e. the direction

in which they should turn at the next intersection). When
approaching an intersection, the car displays visual stimuli
(i.e. arrows) that indicate its inference about the next direction
of turning, as shown in Figure 5(a). Erroneous feedback –
pointing to a different direction than the one marked by the
signs – was presented 30% of the times. The experiment
yielded about 150 trials per subject.

To differentiate between purely visually evoked activity and
brain response modulations due to the information displayed
by the stimuli, we first showed grey arrows corresponding
to all possible directions of turning (i.e. neutral warning
stimulus). Then, one second later, we highlighted in green
the arrow that corresponds to the car’s expected direction (i.e.
directional stimulus). This stimulus was always showed before
the car reached the actual intersection.

Both the neutral and directional stimuli elicited clear visual
evoked potentials. As expected, the responses after neutral
stimuli (i.e. grey arrows) do not differ between correct and
erroneous feedback. In contrast, we see clear differences in the
EEG response over fronto-central areas when the directional
stimulus does not match the user’s intention; c.f., Figures
5(c) and 5(d) for the data in the simulated and the real car,
respectively. Statistical differences between error and correct
conditions were observed between 200 ms and 600 ms after
feedback.

To assess single-trial decoding, discriminant features (i.e.
electrodes and time samples in the window [0.2 0.7] s after
the directional cue) were selected using canonical variate
analysis and fed to a LDA classifier (erroneous vs. correct
feedback) [41]. In both simulated and real driving, the mean
accuracy of the error-related decoding was about 0.68 across
subjects (10-fold cross-validation).

Although it can be argued that this performance is not
very high, it indicates the possibly of extracting meaningful
information about the driver’s assessment of the provided
assistance. Interestingly, novel methods based on reinforce-
ment learning have shown the possibility of improving human
machine interaction even in the case of low detection rates of
error-related potentials [40], [45].
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(a) (b)

(c)

0.5s
0 s

5μV

FCz
Error
Correct

p < 0.01

(d)

Fig. 5. Error-related potentials in driving scenarios [41]. (a) Experimental protocol. Screenshot of the driver’s view when the directional cue is presented. (b)
Grand average ERPs in the driving simulator for both the neutral and directional stimuli. Each plot depicts topographical activity at the onset of the directional
cue (t=0) and the peak latencies after the warning and directional cues. (c) Grand average error-related potential (FCz electrode) in the driving simulator. (d)
Error-related potential for one exemplar subject in the real car experiment.

VI. DISCUSSION

Advances in sensing and control techniques have made it
possible to endow cars with a growing set of features that assist
drivers and can contribute to improve the driving experience.
Some of these features can take control of specific aspects
of the driving task (e.g cruise control, autonomous driving) or
provide information to the driver to support specific maneuvers
(e.g. lane departure). We propose that knowledge about the
driver’s cognitive states – decoded through a BMI – can
contribute to better integrate these features to the driver’s
commands and preferences. Following the shared control
approach, information about user’s intention provided by the
BMI and other sensors [12], [46]–[48] together with external
context information (inferred from in-car sensors) [49]–[52]
are taken into account to provide suitable driving assistance.
In consequence, the intelligent car will provide timely and
tailored assistance only when required; thus keeping the user
in the loop.

As a first step towards this goal, we report that neural sig-
natures of anticipation, movement preparation and error pro-
cessing can be consistently found while subjects drive both in
a simulator and a real car. Despite the increased level of noise
in the signal that can be expected in this realistic scenario,
obtained EEG correlates are well in line with those previously
reported in simpler experimental paradigms. Deployment of
BMI technologies seems thus promising. The reported EEG-
decoding performances are sufficient as a proof of concept,
yet, they are indicative of the necessity for improvements be-
fore translating them into automotive applications. We believe
that to this end, the machine learning/computational intelli-
gence community can significantly contribute. As previously

discussed, the state-of-the-art BMI approaches are mainly
focused on simple methods, what is perfectly justified in the
classical paradigms created to isolate the cognitive processes
of interest and minimize the sources of EEG artifacts. Moving
to scenarios involving a complex and dynamic environment,
and consequently more complex human behavior, motivates
the need for methods suitable to tackle these new challenges
–e.g. models robust to temporal variability of neural corre-
lates, increased noise, interaction of neural processes. Some
promising approaches include the use of novel features based
on the connectivity across brain areas [6], [7], [15], [53]–[55]
or the covariance across channels [56], deep learning [10],
[57], as well as techniques for robust decoder training using
limited samples such as transfer learning or semi-supervised
approaches [9], [40], [58]–[61]. A recent review on current
trends for EEG decoding in BMI applications can be found in
reference [62].

Evidently, further studies are required to fully characterize
neural activity related to driving tasks. In particular, it is of
great importance to assess the actual decoding performance
that can be expected from in-car BMIs in different conditions.
For instance, comparing results in situations with different
levels of traffic such as highways, secondary roads, or urban
streets. In addition, other brain signals can potentially be
exploited for similar purposes as those described in this
paper. Recent works have focused on the decoding of brain
correlates of visual attention processes [63]. Preliminary
evidence suggests that these correlates can also be observed
during driving [64], but further studies are required to validate
these findings. At a certain point, the experimental paradigms
would need to address the interaction of all these individual
neural processes moving closer to the real-world driving
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scenario, where drivers are faced with dynamical and cluttered
environment. In such scenario, driver’s actions are somewhere
in-between the cued and the self-paced actions.

Accordingly, further work is also needed on the assessment
of the different processing techniques that can be applied
to improve the reliability of these interfaces. Among these
techniques, we can mention artifact detection and removal, as
well as sensing technologies. The former are clearly needed as
the driving task requires continuous eye and limb movements
that can contaminate the recordings. It is worth noticing that
in the results reported here we only applied simple techniques
for artifact removal as threshold-based trial or channel rejec-
tion, so more advanced techniques are expected to improve
the decoding performance [65]–[67]. Regarding the sensing
technology, the usage of wearable, dry-electrode devices can
have a considerable impact on the feasibility of using a BMI
while driving. Significant improvements have been recently
reported along these lines [54], [68]–[72], but further efforts
have to be devoted to evaluate new sensing platforms in this
application.

To summarize, in this work we introduced the possi-
bility to decode cognition-related EEG activity of drivers
complementing previous approaches for decoding informa-
tion about the driver’s state from both neural, physiological
and behavioral. We envision hybrid systems where all these
information sources are fused to reliably infer the driver’s
state. In consequence, another outstanding challenge lies on
the characterization of the information that can be obtained
from different sources such as EEG, EMG, eye/face tracking,
driving profile, among others; and in consequence, the devel-
opment of methods that fuse such information according to the
specific context. Some efforts have been done in this line in
other domains such as rehabilitation robotics [73] and activity
recognition [74], and we foresee similar endeavours to be of
great utility for automotive applications.

Finally, this information can be further leveraged by ex-
ploiting the sensing capabilities of intelligent cars. Adequate
design of the human-car interaction can not only dynamically
adjust the level of assistance provided to user, but also can
provide feedback to better inform the user about the car’s
decisions or operation. In addition, this feedback may help
to draw the user’s attention to relevant information. This is
not only beneficial for the driver to have better awareness of
key information, but also can result in stronger neural and
physiological responses (e.g. error-related potentials) that are
in turn exploited by the BMI.
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and José del R. Millán. Teaching brain-machine interfaces as an
alternative paradigm to neuroprosthetics control. Scientific Reports,
5:13893, 2015.

[41] H. Zhang, R. Chavarriaga, Z. Khaliliardali, L. Gheorghe, I. Iturrate, and
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