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Many previous studies on brain-machine interfaces (BMIs) have focused on
electroencephalography (EEG) signals elicited during motor-command execution to
generate device commands. However, exploiting pre-execution brain activity related
to movement intention could improve the practical applicability of BMIs. Therefore, in
this study we investigated whether EEG signals occurring before movement execution
could be used to classify movement intention. Six subjects performed reaching tasks
that required them to move a cursor to one of four targets distributed horizontally and
vertically from the center. Using independent components of EEG acquired during a
premovement phase, two-class classifications were performed for left vs. right trials
and top vs. bottom trials using a support vector machine. Instructions were presented
visually (test) and aurally (condition). In the test condition, accuracy for a single window
was about 75%, and it increased to 85% in classification using two windows. In the
control condition, accuracy for a single window was about 73%, and it increased
to 80% in classification using two windows. Classification results showed that a
combination of two windows from different time intervals during the premovement
phase improved classification performance in the both conditions compared to a single
window classification. By categorizing the independent components according to spatial
pattern, we found that information depending on the modality can improve classification
performance. We confirmed that EEG signals occurring during movement preparation
can be used to control a BMI.

Keywords: brain-machine interface (BMI), electroencephalography (EEG), independent component analysis,
classification, premovement

INTRODUCTION

Brain-machine interfaces (BMIs) are designed to decode neural commands from the brain and use
them as input commands for external devices (Wolpaw et al., 2002; Höhne et al., 2014). Much of the
development in BMIs has been to enable people with motor disabilities to interact with the external
world (Mak and Wolpaw, 2009). Understanding brain activity associated with human intention
leading to a movement task could further advance the effectiveness of BMIs as assistive devices.

Although there are many different methods for measuring brain activity, such as
magnetoencephalography (MEG), electroencephalography (EEG), electrocorticography
(ECoG), functional near-infrared spectroscopy (fNIRS; Naseer and Hong, 2015;
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Hong and Zafar, 2018), and functional magnetic resonance
imaging (fMRI; Chaudhary et al., 2015), non-invasive methods
offer practical advantages when used in BMIs. However, MEG
and fMRI are generally unfit due to the scale of the equipment
involved. Many researchers have tried to decode brain activity to
understand human motor intention from EEG signals. Hybrid
BMI such as EEG-fNIRS also has been tried for decoding
(Hong and Khan, 2017; Khan and Hong, 2017; Hong et al.,
2018). Linear decoding models have been used to predict upper
limb kinematics during center-out reaching tasks (Úbeda et al.,
2017), finger kinematics during reach to grasp movements
(Agashe and Contreras-Vidal, 2011), and hand movement in
three-dimensional space (Bradberry et al., 2010). However, the
suitability of linear regression in modeling such tasks has
been questioned (Antelis et al., 2013). Alternative modeling
methods have also been applied. One study used a Kalman
filter to estimate hand trajectory for a BMI (Robinson et al.,
2015). Several studies on movement intention have also decoded
brain activity as discrete information rather than continuous
information, as in the studies cited above. Classification using
discrete information has been performed for individual finger
movements using a support vector machine (Liao et al., 2014),
analytic movement tasks with the dominant upper limb (Ibáñez
et al., 2015), as well as motor imagery for cursor control (Huang
et al., 2009). Information on targets and movement direction
may offer even greater versatility compared to that focusing
on motor decoding. Several studies have classified movement
direction (Hammon et al., 2008; Robinson et al., 2013) and targets
(Shiman et al., 2017) during reaching tasks. Recently, combining
EEG and fNIRS signals has been performed for early detection
(Khan et al., 2018).

However, compared to the number of studies on brain
activity during movement execution, only a few have
attempted to classify the information before movement
execution. Premovement brain activity has been used to
detect movement intention during self-paced reaching tasks
(Lew et al., 2012) as well as to predict targets (Novak et al.,
2013), target direction (Hammon et al., 2008; Wang and
Makeig, 2009), and hand kinematics (Yang et al., 2015).
Moreover, studies on classification of movement direction
typically used time windows that comprised target recognition
after the target appeared (Hammon et al., 2008; Wang and
Makeig, 2009). However, an interval before movement
execution can be divided into two phases. The first phase
comprises visual information. A person recognizes a target,
which has information about movement direction. Then in
the second phase, the person prepares to move the relevant
body parts to execute movement. If the person does not wish
to move immediately after target recognition, a gap may
occur between target recognition and movement execution.
If there is useful information for classification in this process,
exploiting that information may provide improved capabilities
in BMIs.

Therefore, in this study we investigated whether EEG signals
before movement execution could be used to classify movement
direction. We hypothesized that information from target
recognition to movement can contribute to improvement of

classification accuracy. Using independent components of EEG
acquired during a premovement phase, two-class classifications
were performed for left vs. right trials and top vs. bottom trials
using a support vector machine. Instructions were presented
visually (test) and aurally (control). In the test condition,
accuracy for a single window was about 75%, and it increased
to 85% in classification using two windows. In the control
condition, accuracy for a single window was about 73%,
and it increased to 80% in classification using two windows.
Results showed that a combination of two windows from
different time intervals during the premovement phase improved
classification performance in the both conditions compared
to a single window classification. We confirmed that EEG
signals occurring during movement preparation can be used to
control a BMI.

MATERIALS AND METHODS

Experimental Procedure
Six healthy subjects (males, mean age ± standard deviation:
27.33 ± 1.51 years) participated in the experiment. This study
was carried out in accordance with the recommendations
of the ethics committees of Tokyo Institute of Technology
(Ethics number: 2015062) with written informed consent from
all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol
was approved by the ethics committees of Tokyo Institute
of Technology.

Subjects sat in a comfortable chair in front of a monitor
on a desk with a touch pad. They adjusted their seat and the
position of the touch pad to their comfort. After adjustment,
they placed their hand on the touch pad and waited for
onset of the experiment. Figure 1 shows the process of a
trial. One trial consisted of three phases. In the first phase
(standby phase), nothing appeared on the screen, and subjects
waited for the next phase. In the second phase (premovement
phase), a gray cursor and target appeared on the screen.
The target appeared at one of four positions which were
distributed 4 cm apart from the center in the horizontal and
vertical directions. Subjects were instructed to recognize and
prepare for movement execution, but not to perform it. This
premovement phase lasted 4 s. In the final phase (execution
phase), the color of the markers changed to black, cueing the
subjects to move the cursor from the center to the target using
the touchpad.

In the visual stimuli task, saccadicmovements can dominantly
influence classification regardless of the brain’s cortical process.
This is unwanted information and should be removed. We
provided auditory instruction as a control condition to remove
this problem. As was done in the classifications with visual
instruction, classifications were performed using a single
window, two windows, and spatial categorization. In the control
condition, the target was invisible.When the premovement phase
began, auditory instructions (‘‘left,’’ ‘‘right,’’ ‘‘up’’ and ‘‘down’’)
were provided. The eyes of the subjects were fixated to a cursor on
the screen. When the execution phase began, a short beep sound
was heard to signal the subjects to move to intended direction;
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FIGURE 1 | Experimental design. A target appeared at one of four positions distributed 4 cm from the center in the horizontal and vertical directions. Each trial
consists of three phases. When a trial started, nothing appeared on the screen (Standby), and subjects waited for the next phase. Next, a cursor and target
appeared on the screen, and subjects prepared for movement execution (Premovement). When the color of the markers changed to black, subjects moved the
cursor from the center to the target using the touchpad (Execution). Three windows from the premovement phase were used for analysis (F: window starting at onset
of the premovement phase, M: window starting 1 s after onset of the premovement phase, B: window before the execution phase). Four sizes were used for each
window (0.5 s, 1.0 s, 1.5 s, and 2.0 s).

and, no visual information was provided. All other procedures
remained the same.

One run consisted of 40 trials, with 10 trials for each
direction presented in random order. In the visual stimuli task,
two of the subjects performed five runs, and the other four
subjects performed three runs. In the auditory stimuli task,
all of the subjects performed five runs. There was a rest after
each run.

Data Acquisition and Preprocessing
EEG data were acquired from 30 electrodes (FP1, FP2, AF3,
AF4, F7, F8, F3, FZ, F4, FC5, FC6, T7, T8, C3, Cz, C4, CP5,
CP6, P7, P8, P3, PZ, P4, PO7, PO8, PO3, PO4, O1, O2, A2)
using a Quick-30 Dry EEGHeadset (Cognionics, Inc., San Diego,
CA, USA) designed according to the international 10–20 system
(Klem et al., 1999). A2 was used as a reference electrode and the
ground was placed at FPz. The data were sampled at 500 Hz.

EEGLAB (Delorme and Makeig, 2004) was used for
preprocessing. EEG signals were high-pass filtered at 1.5 Hz
and low-pass filtered at 4 Hz. Because the value at each time
point was used as a feature, low frequency components were
extracted. Cut-off frequency for high-pass filter was set for good
ICA performance (Winkler et al., 2015). Epochs were extracted
from the premovement phase. Noisy channels and trials were
rejected by visual inspection. After that, independent component
analysis was performed using the extended Infomax algorithm
(Bell and Sejnowski, 1995) in EEGLAB. Extracted independent
components showing noise were rejected.

FIGURE 2 | Independent components regarded as eye movement artifacts
for subject 1.

Figure 2 shows examples of independent components
regarded as eye movement artifacts for subject 1. The first
independent component is a typical example of eye blinks.
Similar components were observed in all subjects and rejected.
The other independent components show examples of saccades.
Because targets appeared leftward, rightward, upward, and
downward from the center, saccades may have been included in
the data. Each saccade involves activity at either the left or right
frontal site (Plöchl et al., 2012). All independent components
showing such patterns were rejected for all subjects.

Classification Using a Single Temporal
Window
Independent component analysis can divide EEG signals on the
scalp into multiple electrical sources (Makeig et al., 1996). We
applied independent component analysis after preprocessing to
find sources that could be used as features for classification.
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However, because the data sampled at 500 Hz offered too
many features and imposed excessive computational load, the
data were down-sampled to 100 Hz using EEGLAB function.
Two down-sampled independent components were used for
classification. Classifications were performed separately for each
window using all possible pairs of remaining independent
components after rejecting components. If no components
were rejected, classification was performed 10,440 times for
one subject.

Since the purpose of this study was to examine the usability
of EEG signals in the interval between target appearance and
movement onset, only data in the premovement phase from three
time windows were used (Figure 1). Window F comprised visual
information right after target appearance. Window M was set
such that it would not include visual information. Since target
recognition varies between individuals, start time of window M
was set to 1 s after target appearance. Window B was set such that
it ended at onset of the execution phase. Each window took one
of four window sizes (0.5 s, 1.0 s, 1.5 s, and 2.0 s).

Linear classifiers are widely used in BMI research (Lotte et al.,
2007), and they are less vulnerable to overfitting (Müller et al.,
2003). Of several linear classifiers, we employed support vector
machine classifiers to perform binary classifications (left vs.
right and top vs. bottom) because support vector machines offer
strong generalization performance (Burges, 1998). Classification
performance for each classifier was assessed using eight-fold
cross-validation. Classification accuracy was calculated by
subtracting the percentage of the sum of misclassifications
for every test set from 100%. Using the Statistics and
Machine Learning Toolbox in MATLAB version 9.2.0.556344
(R2017a, The MathWorks, Inc., Natick, MA, USA), support
vector machine classifiers were implemented and classification
performance was evaluated. Before computing classification
performance, the random number generator was initialized to
get the same result by applying the Mersenne Twister method
(Matsumoto and Nishimura, 1998) with seed 1 (rng function
in MATLAB).

Secondary Classification Using Two
Temporal Windows
Accuracies varied when using a single window for classification.
Therefore, we further investigated whether combining
information from different time windows would improve
classification performance. Independent component pairs which
provided classification accuracies greater than 65% for the
single window classifier (chance level of 50%) were used in a
second classifier. Classification was performed using a total
of four independent components from two windows: one pair
of components from window B and another pair from either
window F or window M. For each selected pair, only window
sizes which provided greater than 65% accuracy were used in the
classifier. For example, if only the 0.5-s window F for a pair of
first and second independent components gave a classification
accuracy higher than 65%, pairs from the 1-s, 1.5-s, and 2-s
windows F were not considered. As was done in classification
using a single window, linear support vector machine classifiers
were trained using all possible combinations of independent

FIGURE 3 | Scalp maps of independent components categorized according
to area of peak activity for all subjects.

components from two windows. Evaluation of classification
performance and all other procedures remained the same.

Classification Following Spatial
Categorization
We also performed classification using independent components
with similar spatial patterns for each subject. Figure 3 shows
scalp maps of independent components categorized into four
areas of peak activity for the test condition: frontal, central,
parietal, and occipital. Figure 4 shows scalp maps for the control
condition. The number of independent components with similar
patterns was not the same for all subjects. Linear support vector
machine classifiers were trained for all possible combinations of
two independent components for each temporal window and
brain area group. Two-class classifications (left vs. right and
top vs. bottom) were performed, and classification performances
were evaluated using the same procedure as that of the other
classification methods.
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FIGURE 4 | Scalp maps of independent components categorized according
to area of peak activity for all subjects (control).

RESULTS

In the case of left vs. right classification using a single window,
all independent components that remained after noise rejection
were used. Table 1 shows classification accuracies for left vs.
right. Most classification accuracies were above 70% except for
that of subject 3, window M (67.88%). The highest classification
accuracy obtained was from subject 5, window B (87.25%). Mean
classification accuracies were 76.46 ± 5.58%, 73.67 ± 3.94%,
and 76.19 ± 5.77% for windows F, M, and B, respectively.
Table 2 shows classification accuracies for left vs. right in the
control condition. The lowest classification accuracy obtained
was from subject 4, windowB (67.09%). The highest classification
accuracy obtained was from subject 6, window B (85.42%). Mean
classification accuracies were 73.23 ± 5.24%, 73.53 ± 4.40%,
73.65 ± 6.60% for windows F, M, and B, respectively.

Left vs. right classification using two windows of independent
component pairs (those with single window accuracies greater
than 65%) resulted in higher accuracies than those using a

single window (Table 1). Classification accuracies for subject
6 were 78.33% and 76.67%, using windows FB and MB,
respectively. Classification accuracies for the other subjects were
higher than 80%. Consistent with single window classification,
the highest classification accuracy obtained was from subject
5 using window MB (97.06%). Mean classification accuracies
were 86.41 ± 5.63% and 85.92 ± 6.93% for windows FB
and MB, respectively. Accuracies for single window and
double window showed significant difference (p < 0.01, paired
t-test between window F and window FB; p < 0.01, paired
t-test between window B and window FB; p < 0.01, paired
t-test between window M and window MB; p < 0.01, paired
t-test between window M and window MB). In the control
condition, the highest classification accuracy obtained was from
subject 6 using window MB (92.71%). Mean classification
accuracies were 80.51 ± 6.21% and 80.92 ± 7.37% for windows
FB and MB, respectively. Accuracies for single window and
double window showed significant difference (p < 0.01, paired
t-test between window F and window FB; p < 0.01, paired
t-test between window B and window FB; p < 0.05, paired
t-test between window M and window MB; p < 0.01, paired
t-test between window M and window MB). We did not
find significant differences between test and control in all
windows (p > 0.1 for all cases). We shuffled conditions
and extracted signals from it to apply input to models
which achieved the highest classification accuracy. Values in
parenthesis of Tables 1, 2 show accuracies for models using
random inputs in left vs. right classification. In all cases,
accuracies were about 50%.

Table 3 shows classification accuracies for top vs. bottom. As
with left vs. right classification, values shown for each subject
are the mean of the three highest classification accuracies among
those of all independent component pairs. All classification
accuracies obtained were above 70%. The highest accuracy
obtained was from subject 2, window F (86.21%). Mean
classification accuracies were 76.78 ± 5.12%, 75.99 ± 4.12%, and
74.65 ± 4.17% for windows F, M, and B, respectively. Table 4
shows classification accuracies for top vs. bottom in the control
condition. The lowest classification accuracy obtained was from
subject 4, window F (67.98%). The highest classification accuracy
obtained was from subject 6, window F and B (82.76%). Mean
classification accuracies were 74.11 ± 5.46%, 74.06 ± 4.72%,
74.55 ± 5.00% for windows F, M, and B, respectively.

Top vs. bottom classification using two windows achieved
higher accuracy than that using a single window (Table 3).
The lowest classification accuracy obtained was from subject 6,
window MB (75.69%). Classification accuracies for the other
subjects were higher than 80%. Consistent with left vs. right
classification, the highest classification accuracy obtained was
from subject 5, window FB (93.16%). Mean classification
accuracies were 86.40 ± 5.61% and 85.48 ± 5.58% for windows
FB and MB, respectively. Accuracies for single window and
double window showed significant difference (p < 0.01, paired
t-test between window F and window FB; p < 0.01, paired t-test
between window B and window FB; p < 0.01, paired t-test
between window M and window MB; p < 0.01, paired t-test
between window M and window MB). In the control condition,
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TABLE 1 | Classification accuracies for left vs. right.

Window position [%]

F M B FB MB

S1 73.72 (45.51) 73.72 (51.15) 73.72 (54.56) 85.90 (52.38) 85.26 (53.00)
S2 81.61 (49.46) 75.86 (49.07) 77.01 (48.87) 89.66 (48.01) 88.51 (54.59)
S3 70.91 (50.74) 67.88 (50.58) 75.15 (50.27) 85.45 (48.42) 81.21 (51.35)
S4 77.08 (48.97) 77.08 (50.27) 72.92 (49.87) 84.03 (49.78) 86.81 (50.74)
S5 84.31 (49.05) 77.45 (49.61) 87.25 (47.42) 95.10 (46.28) 97.06 (51.03)
S6 71.11 (48.80) 70.00 (49.40) 71.11 (50.41) 78.33 (47.26) 76.67 (51.47)
Mean 76.46 ± 5.58 73.67 ± 3.94 76.19 ± 5.77 86.41 ± 5.63 85.92 ± 6.93

Values outside parenthesis are means of the three highest classification accuracies obtained among all independent component pairs. Values in parenthesis are means of accuracies
when five inputs in shuffled conditions were fed to model which made values outside parenthesis. S indicates subject.

TABLE 2 | Classification accuracies for left vs. right (control).

Window position [%]

F M B FB MB

S1 68.28 (50.74) 72.04 (49.73) 73.66 (51.48) 75.81 (49.37) 79.03 (50.33)
S2 71.43 (48.89) 70.37 (51.89) 75.66 (48.53) 83.07 (48.68) 81.48 (51.12)
S3 70.98 (50.47) 72.55 (50.83) 68.24 (49.17) 76.86 (51.93) 76.86 (46.67)
S4 71.79 (49.06) 70.94 (49.34) 67.09 (50.21) 73.93 (51.73) 70.94 (51.21)
S5 73.56 (48.84) 72.99 (52.57) 71.84 (50.13) 82.76 (49.14) 84.48 (48.99)
S6 83.33 (50.32) 82.29 (49.23) 85.42 (49.97) 90.63 (47.46) 92.71 (47.35)
Mean 73.23 ± 5.24 73.53 ± 4.40 73.65 ± 6.60 80.51 ± 6.21 80.92 ± 7.37

Values outside parenthesis are means of the three highest classification accuracies obtained among all independent component pairs. Values in parenthesis are means of accuracies
when five inputs in shuffled conditions were fed to model which made values outside parenthesis. S indicates subject.

TABLE 3 | Classification accuracies for top vs. bottom.

Window position [%]

F M B FB MB

S1 70.99 (54.00) 72.84 (46.34) 74.07 (50.33) 80.86 (54.11) 88.27 (52.55)
S2 86.21 (52.03) 83.91 (48.89) 79.31 (46.24) 93.10 (49.73) 89.66 (49.12)
S3 75.33 (50.72) 74.00 (52.42) 71.33 (51.31) 83.33 (53.19) 86.00 (52.36)
S4 74.67 (52.03) 74.67 (50.02) 72.00 (50.24) 86.67 (50.63) 82.67 (52.14)
S5 77.78 (47.31) 76.92 (49.44) 80.34 (51.89) 93.16 (49.82) 90.60 (49.65)
S6 75.69 (54.41) 73.61 (46.44) 70.83 (52.62) 81.25 (54.42) 75.69 (49.55)
Mean 76.78 ± 5.12 75.99 ± 4.12 74.65 ± 4.17 86.40 ± 5.61 85.48 ± 5.58

Values outside parenthesis are means of the three highest classification accuracies obtained among all independent component pairs. Values in parenthesis are means of accuracies
when five inputs in shuffled conditions were fed to model which made values outside parenthesis. S indicates subject.

TABLE 4 | Classification accuracies for top vs. bottom (control).

Window position [%]

F M B FB MB

S1 69.23 (48.98) 69.87 (45.88) 75.64 (49.33) 78.21 (49.07) 80.77 (49.94)
S2 72.58 (49.48) 71.51 (50.07) 69.89 (50.21) 77.42 (48.13) 77.42 (48.95)
S3 77.27 (44.44) 75.76 (47.70) 72.22 (48.43) 86.36 (49.56) 86.36 (47.88)
S4 67.98 (50.62) 69.30 (48.55) 69.74 (49.71) 70.18 (51.43) 74.12 (49.31)
S5 74.81 (50.34) 76.30 (48.11) 77.04 (50.01) 83.70 (48.41) 82.96 (48.83)
S6 82.76 (51.92) 81.61 (45.62) 82.76 (51.25) 91.95 (48.33) 93.10 (51.49)
Mean 74.11 ± 5.46 74.06 ± 4.72 74.55 ± 5.00 81.30 ± 7.66 82.46 ± 6.73

Values outside parenthesis are means of the three highest classification accuracies obtained among all independent component pairs. Values in parenthesis are means of accuracies
when five inputs in shuffled conditions were fed to model which made values outside parenthesis. S indicates subject.

the highest classification accuracy obtained was from subject
6 using window MB (93.10%). The lowest classification accuracy
obtained was from subject 4, window FB (70.18%). Mean
classification accuracies were 81.30 ± 7.66% and 82.46 ± 6.73%

for windows FB and MB, respectively. Accuracies for single
window and double window showed significant difference
(p < 0.01, paired t-test between window F and window FB;
p < 0.05, paired t-test between window B and window FB;
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FIGURE 5 | Classification accuracies using independent components categorized by spatial pattern. Values depicted are means of the highest accuracies obtained
in left vs. right and top vs. bottom classifications averaged across subjects.

p < 0.01, paired t-test between window M and window MB;
p < 0.01, paired t-test between window M and window MB).
We did not find significant differences between test and control
in all windows (p > 0.1 for all cases). Values in parenthesis
of Tables 3, 4 show accuracies for models using random
inputs in top vs. bottom classification. In all cases, accuracies
were about 50%.

Figure 5 shows accuracies for classification using independent
components categorized by spatial pattern. In the classifications
using window F, accuracies for the parietal and occipital areas
(70.46% and 68.47%, respectively) were higher than those for
the frontal and central areas (63.82% and 63.72%, respectively).
The difference between the former two and latter two accuracies
was about 6% (p < 0.05, t-test between the former group
and latter group), while accuracies within both were less than
1% (p > 0.05, t-test between the frontal and central area;
p > 0.05, t-test between the parietal and occipital area). In
the classifications using window M, the central area provided
the highest accuracy (67.26%), while the frontal area provided
the lowest (65.31%); however, the difference between them
was small. In the classifications using window B, parietal area
achieved the highest accuracy (66.68%). The frontal area showed
the lowest performance (62.99%). In the case of the control
condition, accuracies for the frontal area increased to 65.30%,
66.93%, and 68.57%. The central area showed a similar pattern in
the test and control conditions. The classification using window
M showed higher performance than that of window F or B.
Unlike in the test condition, the difference between accuracies
for the parietal and occipital areas and accuracies for the frontal
and central areas was not high in window F.

DISCUSSION

In this study, we investigated utilization of premovement
EEG signals to classify movement direction. Previous studies
on classification of premovement EEG used brain activity
during phases related to visual processes (Hammon et al.,
2008; Wang and Makeig, 2009). Wang and Makeig (2009)
reported a mean classification accuracy of 80.25%. In our
results, accuracy using a single window was lower, at about
75%, but higher using two windows, at about 85%. Hammon
et al. (2008) reported accuracies around 80% for left vs.
right classification and 68% for top vs. bottom classification.
However, an exact comparison cannot be made since their
experimental tasks differed from ours, with targets appearing
at one of four positions distributed diagonally from the
center. They also used independent components as features for
classification, but they set their window after the first 500 ms.
We showed that combining windows in different time phase
before movement execution and using independent components
for each window could improve classification performance,
which suggests that optimal components may exist for each
time phase. Through our results, if we found the optimal
spatial area suitable for each time phase, we could improve
classification performance by selecting components strategically
to understand human intention. Therefore, performances in
previous studies might be improved by combining information
in other time phases.

Under the control condition, which could exclude
the possibility of saccadic movements, the two-window
classifications showed higher accuracies than those of the
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single window classifications. Even when we used the windows
which did not include recognition information, using both
(the windows MB) showed higher accuracies compared to
using either. Regardless of modalities, our result showed that
combining independent components from different windows
improves classification performance. In addition, we confirmed
consistent performance regardless of modalities (p> 0.1 between
test and control in all windows).

In the classifications using independent components
categorized according to brain area, they showed high accuracies
in the control condition, unlike the components from the
frontal area which showed low accuracy in the test condition.
As opposed to visual instructions which are intuitive, auditory
instructions require subjects to remember and translate them. It
has been reported that in verbal working memory, the prefrontal
cortex showed greater activation during auditory stimuli in
comparison to visual stimuli (Crottaz-Herbette et al., 2004). The
central area showed a similar pattern in the test and control
conditions. The accuracy for window F was higher than the
other windows in both conditions. The central area contributes
to accuracies regardless of the modality, but the central area did
not show the highest accuracies for all windows. This implies
that, though there are optimal independent components for
classification according to the modality, if we sacrifice some
accuracy, we can use less optimal components from the central
area to achieve greater generalizability. Furthermore, because
the central area includes the motor cortex, which is involved
in motor planning (Li et al., 2015), this trend may reflect the
motor area’s influence on motor preparation at each phase.
The differences between accuracies for the visual stimuli and
auditory stimuli were 4.38% (window F), 1.59% (window
M) and −0.16% (window B) in the parietal area. The higher
difference in window F may reflect that a wider parietal lobe
is used to process visual stimuli compared to auditory stimuli
(Poremba et al., 2003). In both conditions, the accuracies
were small when the parietal area in window M was used.
However, we cannot disregard the parietal area as unessential
in window M. The parietal area is involved in motor planning
(Cui and Andersen, 2007) and has been used for predicting
movement intention (Wang and Makeig, 2009). Desmurget
et al. (2009) reported that motor intention unconsciously leads
to increased parietal activity. Components from the occipital
area for windows F during the test task showed the highest
accuracy in both conditions. Because target recognition takes
up a large portion of the early phase, it is reasonable that
the occipital area, which processes visual information, would
provide high performance. This trend may reflect the availability
of visual information at different phases. It is useful to exploit the
occipital area using an early-phase window when visual stimuli
are provided.

Although we removed components related to saccadic
movements, the differences between accuracies in both
conditions show that the accuracy is related to the modality.
It implies that the brain’s activation related to stimuli can
improve the accuracy. In goal directed tasks, movement
is planned in the extrinsic coordinate system, but the
muscle activation requires neural commands planned in

the intrinsic coordinate system (Sarlegna and Sainburg,
2009). It has been reported that transformation into the
intrinsic coordinate system is related to proprioception
(Sober and Sabes, 2003). This physiological process could
conceivably allow for decoding direction of movement
even before the movement has started. However, further
study is needed to determine whether the independent
components used here reflect information about coordinate
system transformations.

We used only EEG signals for decoding and confirmed
that combining windows can improve performance. However,
combining not only time phases but also other non-invasive
methods can improve classification accuracy (Hong and Khan,
2017). Hybrid BMI has been studied for decoding (Hong
et al., 2018) and should be studied in more detail. Therefore,
features for different phases also should be investigated in
hybrid BMI.

In this study, we confirmed that combining windows from
different premovement phases offers improved performance
over that using a single window. We used pairs of windows
for classification. However, combining three windows, with
each related to a different phase in movement preparation,
may offer better performance. Because the purpose of this
study was to investigate availability of classifiable premovement
EEG, the time range was divided coarsely. Further studies
that include calibration to determine optimal brain areas
and time ranges could offer further progress toward a
practical BMI.

CONCLUSION

In conclusion, we investigated whether EEG signals occurring
before movement execution could be used to classify movement
intention. The result showed combining windows from different
time phases can improve classification accuracy rather than using
single window. In addition, we found consistent performance
in different modalities. Furthermore, by categorizing the
independent components according to spatial pattern, we found
that information depending on the modality can improve
classification performance. We confirmed that EEG signals
occurring during movement preparation can be used to
control a BMI.
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