4,779 research outputs found

    Hierarchical Attention Network for Visually-aware Food Recommendation

    Full text link
    Food recommender systems play an important role in assisting users to identify the desired food to eat. Deciding what food to eat is a complex and multi-faceted process, which is influenced by many factors such as the ingredients, appearance of the recipe, the user's personal preference on food, and various contexts like what had been eaten in the past meals. In this work, we formulate the food recommendation problem as predicting user preference on recipes based on three key factors that determine a user's choice on food, namely, 1) the user's (and other users') history; 2) the ingredients of a recipe; and 3) the descriptive image of a recipe. To address this challenging problem, we develop a dedicated neural network based solution Hierarchical Attention based Food Recommendation (HAFR) which is capable of: 1) capturing the collaborative filtering effect like what similar users tend to eat; 2) inferring a user's preference at the ingredient level; and 3) learning user preference from the recipe's visual images. To evaluate our proposed method, we construct a large-scale dataset consisting of millions of ratings from AllRecipes.com. Extensive experiments show that our method outperforms several competing recommender solutions like Factorization Machine and Visual Bayesian Personalized Ranking with an average improvement of 12%, offering promising results in predicting user preference for food. Codes and dataset will be released upon acceptance

    A recommender system for process discovery

    Get PDF
    Over the last decade, several algorithms for process discovery and process conformance have been proposed. Still, it is well-accepted that there is no dominant algorithm in any of these two disciplines, and then it is often difficult to apply them successfully. Most of these algorithms need a close-to expert knowledge in order to be applied satisfactorily. In this paper, we present a recommender system that uses portfolio-based algorithm selection strategies to face the following problems: to find the best discovery algorithm for the data at hand, and to allow bridging the gap between general users and process mining algorithms. Experiments performed with the developed tool witness the usefulness of the approach for a variety of instances.Peer ReviewedPostprint (author’s final draft

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD

    Image-based Recommendations on Styles and Substitutes

    Full text link
    Humans inevitably develop a sense of the relationships between objects, some of which are based on their appearance. Some pairs of objects might be seen as being alternatives to each other (such as two pairs of jeans), while others may be seen as being complementary (such as a pair of jeans and a matching shirt). This information guides many of the choices that people make, from buying clothes to their interactions with each other. We seek here to model this human sense of the relationships between objects based on their appearance. Our approach is not based on fine-grained modeling of user annotations but rather on capturing the largest dataset possible and developing a scalable method for uncovering human notions of the visual relationships within. We cast this as a network inference problem defined on graphs of related images, and provide a large-scale dataset for the training and evaluation of the same. The system we develop is capable of recommending which clothes and accessories will go well together (and which will not), amongst a host of other applications.Comment: 11 pages, 10 figures, SIGIR 201

    Personality in Computational Advertising: A Benchmark

    Get PDF
    In the last decade, new ways of shopping online have increased the possibility of buying products and services more easily and faster than ever. In this new context, personality is a key determinant in the decision making of the consumer when shopping. A person’s buying choices are influenced by psychological factors like impulsiveness; indeed some consumers may be more susceptible to making impulse purchases than others. Since affective metadata are more closely related to the user’s experience than generic parameters, accurate predictions reveal important aspects of user’s attitudes, social life, including attitude of others and social identity. This work proposes a highly innovative research that uses a personality perspective to determine the unique associations among the consumer’s buying tendency and advert recommendations. In fact, the lack of a publicly available benchmark for computational advertising do not allow both the exploration of this intriguing research direction and the evaluation of recent algorithms. We present the ADS Dataset, a publicly available benchmark consisting of 300 real advertisements (i.e., Rich Media Ads, Image Ads, Text Ads) rated by 120 unacquainted individuals, enriched with Big-Five users’ personality factors and 1,200 personal users’ pictures
    corecore