5,679 research outputs found

    Improving Search through A3C Reinforcement Learning based Conversational Agent

    Full text link
    We develop a reinforcement learning based search assistant which can assist users through a set of actions and sequence of interactions to enable them realize their intent. Our approach caters to subjective search where the user is seeking digital assets such as images which is fundamentally different from the tasks which have objective and limited search modalities. Labeled conversational data is generally not available in such search tasks and training the agent through human interactions can be time consuming. We propose a stochastic virtual user which impersonates a real user and can be used to sample user behavior efficiently to train the agent which accelerates the bootstrapping of the agent. We develop A3C algorithm based context preserving architecture which enables the agent to provide contextual assistance to the user. We compare the A3C agent with Q-learning and evaluate its performance on average rewards and state values it obtains with the virtual user in validation episodes. Our experiments show that the agent learns to achieve higher rewards and better states.Comment: 17 pages, 7 figure

    Personalised Search Time Prediction using Markov Chains

    Get PDF
    For improving the effectiveness of Interactive Information Retrieval (IIR), a system should minimise the search time by guiding the user appropriately. As a prerequisite, in any search situation, the system must be able to estimate the time the user will need for finding the next relevant document. In this paper, we show how Markov models derived from search logs can be used for predicting search times, and describe a method for evaluating these predictions. For personalising the predictions based upon a few user events observed, we devise appropriate parameter estimation methods. Our experimental results show that by observing users for only 100 seconds, the personalised predictions are already significantly better than global predictions

    DCU-TCD@LogCLEF 2010: re-ranking document collections and query performance estimation

    Get PDF
    This paper describes the collaborative participation of Dublin City University and Trinity College Dublin in LogCLEF 2010. Two sets of experiments were conducted. First, different aspects of the TEL query logs were analysed after extracting user sessions of consecutive queries on a topic. The relation between the queries and their length (number of terms) and position (first query or further reformulations) was examined in a session with respect to query performance estimators such as query scope, IDF-based measures, simplified query clarity score, and average inverse document collection frequency. Results of this analysis suggest that only some estimator values show a correlation with query length or position in the TEL logs (e.g. similarity score between collection and query). Second, the relation between three attributes was investigated: the user's country (detected from IP address), the query language, and the interface language. The investigation aimed to explore the influence of the three attributes on the user's collection selection. Moreover, the investigation involved assigning different weights to the three attributes in a scoring function that was used to re-rank the collections displayed to the user according to the language and country. The results of the collection re-ranking show a significant improvement in Mean Average Precision (MAP) over the original collection ranking of TEL. The results also indicate that the query language and interface language have more in uence than the user's country on the collections selected by the users

    Validating simulated interaction for retrieval evaluation

    Get PDF
    A searcher’s interaction with a retrieval system consists of actions such as query formulation, search result list interaction and document interaction. The simulation of searcher interaction has recently gained momentum in the analysis and evaluation of interactive information retrieval (IIR). However, a key issue that has not yet been adequately addressed is the validity of such IIR simulations and whether they reliably predict the performance obtained by a searcher across the session. The aim of this paper is to determine the validity of the common interaction model (CIM) typically used for simulating multi-query sessions. We focus on search result interactions, i.e., inspecting snippets, examining documents and deciding when to stop examining the results of a single query, or when to stop the whole session. To this end, we run a series of simulations grounded by real world behavioral data to show how accurate and responsive the model is to various experimental conditions under which the data were produced. We then validate on a second real world data set derived under similar experimental conditions. We seek to predict cumulated gain across the session. We find that the interaction model with a query-level stopping strategy based on consecutive non-relevant snippets leads to the highest prediction accuracy, and lowest deviation from ground truth, around 9 to 15% depending on the experimental conditions. To our knowledge, the present study is the first validation effort of the CIM that shows that the model’s acceptance and use is justified within IIR evaluations. We also identify and discuss ways to further improve the CIM and its behavioral parameters for more accurate simulations

    Fast Data in the Era of Big Data: Twitter's Real-Time Related Query Suggestion Architecture

    Full text link
    We present the architecture behind Twitter's real-time related query suggestion and spelling correction service. Although these tasks have received much attention in the web search literature, the Twitter context introduces a real-time "twist": after significant breaking news events, we aim to provide relevant results within minutes. This paper provides a case study illustrating the challenges of real-time data processing in the era of "big data". We tell the story of how our system was built twice: our first implementation was built on a typical Hadoop-based analytics stack, but was later replaced because it did not meet the latency requirements necessary to generate meaningful real-time results. The second implementation, which is the system deployed in production, is a custom in-memory processing engine specifically designed for the task. This experience taught us that the current typical usage of Hadoop as a "big data" platform, while great for experimentation, is not well suited to low-latency processing, and points the way to future work on data analytics platforms that can handle "big" as well as "fast" data
    corecore