69 research outputs found

    Predicting Multi-actor collaborations using Hypergraphs

    Full text link
    Social networks are now ubiquitous and most of them contain interactions involving multiple actors (groups) like author collaborations, teams or emails in an organizations, etc. Hypergraphs are natural structures to effectively capture multi-actor interactions which conventional dyadic graphs fail to capture. In this work the problem of predicting collaborations is addressed while modeling the collaboration network as a hypergraph network. The problem of predicting future multi-actor collaboration is mapped to hyperedge prediction problem. Given that the higher order edge prediction is an inherently hard problem, in this work we restrict to the task of predicting edges (collaborations) that have already been observed in past. In this work, we propose a novel use of hyperincidence temporal tensors to capture time varying hypergraphs and provides a tensor decomposition based prediction algorithm. We quantitatively compare the performance of the hypergraphs based approach with the conventional dyadic graph based approach. Our hypothesis that hypergraphs preserve the information that simple graphs destroy is corroborated by experiments using author collaboration network from the DBLP dataset. Our results demonstrate the strength of hypergraph based approach to predict higher order collaborations (size>4) which is very difficult using dyadic graph based approach. Moreover, while predicting collaborations of size>2 hypergraphs in most cases provide better results with an average increase of approx. 45% in F-Score for different sizes = {3,4,5,6,7}

    How Much and When Do We Need Higher-order Information in Hypergraphs? A Case Study on Hyperedge Prediction

    Full text link
    Hypergraphs provide a natural way of representing group relations, whose complexity motivates an extensive array of prior work to adopt some form of abstraction and simplification of higher-order interactions. However, the following question has yet to be addressed: How much abstraction of group interactions is sufficient in solving a hypergraph task, and how different such results become across datasets? This question, if properly answered, provides a useful engineering guideline on how to trade off between complexity and accuracy of solving a downstream task. To this end, we propose a method of incrementally representing group interactions using a notion of n-projected graph whose accumulation contains information on up to n-way interactions, and quantify the accuracy of solving a task as n grows for various datasets. As a downstream task, we consider hyperedge prediction, an extension of link prediction, which is a canonical task for evaluating graph models. Through experiments on 15 real-world datasets, we draw the following messages: (a) Diminishing returns: small n is enough to achieve accuracy comparable with near-perfect approximations, (b) Troubleshooter: as the task becomes more challenging, larger n brings more benefit, and (c) Irreducibility: datasets whose pairwise interactions do not tell much about higher-order interactions lose much accuracy when reduced to pairwise abstractions

    Proposing Ties in a Dense Hypergraph of Academics

    Get PDF
    Nearly all personal relationships exhibit a multiplexity where people relate to one another in many different ways. Using a set of faculty CVs from multiple research institutions, we mined a hypergraph of researchers connected by co-occurring named entities (people, places and organizations). This results in an edge-sparse, link-dense structure with weighted connections that accurately encodes faculty department structure. We introduce a novel model that generates dyadic proposals of how well two nodes should be connected based on both the mass and distributional similarity of links through shared neighbors. Similar link prediction tasks have been primarily explored in unipartite settings, but for hypergraphs where hyper-edges out-number nodes 25-to-1, accounting for link similarity is crucial. Our model is tested by using its proposals to recover link strengths from four systematically lesioned versions of the graph. The model is also compared to other link prediction methods in a static setting. Our results show the model is able to recover a majority of link mass in various settings and that it out-performs other link prediction methods. Overall, the results support the descriptive fidelity of our text-mined, named entity hypergraph of multi-faceted relationships and underscore the importance of link similarity in analyzing link-dense multiplexitous relationships

    Weaving the fabric of science: Dynamic network models of science's unfolding structure

    Get PDF
    AbstractScience is a complex system. Building on Latour's actor network theory, we model published science as a dynamic hypergraph and explore how this fabric provides a substrate for future scientific discovery. Using millions of abstracts from MEDLINE, we show that the network distance between biomedical things (i.e., people, methods, diseases, chemicals) is surprisingly small. We then show how science moves from questions answered in one year to problems investigated in the next through a weighted random walk model. Our analysis reveals intriguing modal dispositions in the way biomedical science evolves: methods play a bridging role and things of one type connect through things of another. This has the methodological implication that adding more node types to network models of science and other creative domains will likely lead to a superlinear increase in prediction and understanding

    固有値分解とテンソル分解を用いた大規模グラフデータ分析に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    Extraction and Analysis of Facebook Friendship Relations

    Get PDF
    Online Social Networks (OSNs) are a unique Web and social phenomenon, affecting tastes and behaviors of their users and helping them to maintain/create friendships. It is interesting to analyze the growth and evolution of Online Social Networks both from the point of view of marketing and other of new services and from a scientific viewpoint, since their structure and evolution may share similarities with real-life social networks. In social sciences, several techniques for analyzing (online) social networks have been developed, to evaluate quantitative properties (e.g., defining metrics and measures of structural characteristics of the networks) or qualitative aspects (e.g., studying the attachment model for the network evolution, the binary trust relationships, and the link prediction problem).\ud However, OSN analysis poses novel challenges both to Computer and Social scientists. We present our long-term research effort in analyzing Facebook, the largest and arguably most successful OSN today: it gathers more than 500 million users. Access to data about Facebook users and their friendship relations, is restricted; thus, we acquired the necessary information directly from the front-end of the Web site, in order to reconstruct a sub-graph representing anonymous interconnections among a significant subset of users. We describe our ad-hoc, privacy-compliant crawler for Facebook data extraction. To minimize bias, we adopt two different graph mining techniques: breadth-first search (BFS) and rejection sampling. To analyze the structural properties of samples consisting of millions of nodes, we developed a specific tool for analyzing quantitative and qualitative properties of social networks, adopting and improving existing Social Network Analysis (SNA) techniques and algorithms
    corecore