
 Eindhoven University of Technology

MASTER

Hyperlink prediction with Modular Directed Hypergraph Neural Networks

Wientjes, Manon

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a42b4fec-2a6c-4081-bcdb-3499bf441991

Hyperlink prediction
with Modular Directed

Hypergraph Neural
Networks
Master’s Thesis

Manon Wientjes

Department of Mathematics and Computer Science
Software Engineering and Technology Group

Supervisors:
Dr. Yaping Luo (ING and TU/e)

Dr. Yulong Pei (TU/e)
Ir. Kevin van der Vlist (ING)

Eindhoven, July 2021

Abstract

Link prediction is a graph learning problem in which unobserved links are predicted

based on the observed features and structure of the graph. In many applications,

modelling of higher-order relationships among entities is needed. Link prediction on

hypergraphs (hyperlink prediction) is the problem of predicting missing higher-order

relationships in a hypergraph. Moreover, modelling directions between these relation-

ships is also useful in many practical applications.

Hyperlink prediction as a field of research is still emerging. Meanwhile, directed

hyperlink prediction is underexplored. A model that uses the directions as well as the

hypergraph structure as information to make predictions has not been proposed yet.

In this thesis, we propose Modular Directed Hypergraph Neural Network (MDHNN)

as a model that can be used for directed hyperlink prediction. MDHNN uses the

direction of the edges and the structure of the hypergraph as information to make

predictions. Besides, we carry out an extensive comparison of existing (directed)

hyperlink prediction methods based on three different evaluation metrics. The exper-

iments run on real-world data show that MDHNN has better performance than most

baseline models and on some dataset even outperforms all existing baseline methods.

The results of the experiments show that using the structure of the graph is not

well exploited in current methods. Besides, using the direction of the edges to make

predictions can increase the performance by 5 percent.

2

Acknowledgments

I would like to thank my supervisor Yaping Luo for the supervision of my thesis and

giving great feedback on conducting research and the report.

My grateful thanks are also extended to Yulong Pei for giving useful suggestions and

insights in deep and graph learning.

I also would like to thank Kevin van der Vlist for giving me such an interesting

problem and valuable practical feedback.

Finally, special thanks to my bunny Kiko for not destroying my power cable.

3

Contents

1 Introduction 9

2 Related work 12

2.1 Graph learning . 12

2.2 Graph neural networks . 14

2.3 Hypergraph learning . 15

2.4 Hypergraph neural networks . 17

3 Methodology 19

3.1 Definitions . 19

3.2 Modular Directed Hypergraph Neural Network 23

3.3 Research methodology . 25

4 Dataset selection 26

4.1 ING’s challenge . 26

4.2 Alternative datasets . 28

4.2.1 Metabolic datasets . 29

4.2.2 Co-citation datasets . 30

4.2.3 Final pre-processing . 34

4.3 Hypergraph similarity . 35

5 Experiments 38

5.1 Experiment design . 38

5.2 Baseline models . 41

4

5.3 Evaluation metrics . 43

6 Results and discussion 44

6.1 Specific experiment settings . 44

6.2 Results . 45

6.3 Threats to validity . 54

7 Conclusions and future work 55

7.1 Conclusions . 55

7.2 Future work . 56

A ING’s experiment details 58

A.1 Data preparation . 58

A.2 Hyperparameter search . 59

B Model selection and testing algorithms 61

C Violin plots hyperedge degrees and sizes 63

D Hyperparameter search spaces 67

E Optimal hyperparameters 69

F Violin plots AUC scores 72

G Full recall and precision scores 78

5

List of Figures

3-1 Example of an undirected and directed hypergraph 19

4-1 Example of a co-citation network . 30

6-1 AUC scores of MDHNN over embedding dimension 52

6-2 AUC scores of MDHNN over train/test ratio 52

C-1 Hyperedge degree distribution of the different datasets 63

C-2 Hyperedge in-degree distribution of the different datasets 64

C-3 Hyperedge out-degree distribution of the different datasets 64

C-4 Tail size distribution of the different datasets 65

C-5 Head size distribution of the different datasets 65

C-6 Edge size distribution of the different datasets 66

F-1 AUC scores distribution on the iAF692 metabolic network 73

F-2 AUC scores distribution on the iAF1260b metabolic network 74

F-3 AUC scores distribution on the iJO1366 metabolic network 75

F-4 AUC scores distribution on the dblp dataset 76

F-5 AUC scores distribution on the MAG dataset 77

6

List of Tables

4.1 Performance on ING’s use case . 27

4.2 Statistics of metabolic networks . 29

4.3 Statistics of co-citation networks . 30

4.4 Cosine similarities of different organizations 31

4.5 Cosine similarities of the same organizations 31

4.6 Hypergraph metrics of the different datasets 36

5.1 Technical specifications of the HPC cluster 40

6.1 AUC scores on the metabolic networks 45

6.2 Recall@10 scores of on the metabolic networks 46

6.3 Precision@10 scores on the metabolic networks 46

6.4 AUC scores of on the co-citation networks 46

6.5 Recall@10 scores of on the co-citation networks 47

6.6 Precision@10 scores of on the co-citation networks 47

6.7 CPU training time in minutes . 49

6.8 AUC scores of directed and non-directed HGNN 50

6.9 AUC scores of different modules of MDHNN 51

6.10 Performance on ING’s dataset from February 2021 53

6.11 Performance on ING’s dataset from July 2021 53

E.1 Optimal hyperparameters for HyperGCN 69

E.2 Optimal hyperparameters for HGNN 69

E.3 Optimal hyperparameters for HyperSAGE 70

7

E.4 Optimal hyperparameters for HyperSAGNN 70

E.5 Optimal hyperparameters for NHP 70

E.6 Optimal hyperparameters for MDHNN 71

E.7 Optimal hyperparameters for MLP 71

G.1 Full recall@𝑘 results on the iAF692 metabolic network 78

G.2 Full precision@𝑘 results on the iAF692 metabolic network 78

G.3 Full recall@𝑘 results on the iAF1260b metabolic network 79

G.4 Full precision@𝑘 results on the iAF1260b metabolic network 79

G.5 Full recall@𝑘 results on the iJO1366 metabolic network 79

G.6 Full precision@𝑘 results on the iJO1366 metabolic network 80

G.7 Full recall@𝑘 results on the dblp dataset 80

G.8 Full precision@𝑘 results on the dblp dataset 80

G.9 Full recall@𝑘 results on the MAG dataset 81

G.10 Full precision@𝑘 results on the MAG dataset 81

8

Chapter 1

Introduction

As a major financial services provider, ING leverages a large number of IT systems.

To interact with those systems, a sizeable portion of software is part of the class mid-

dleware components. Whilst these systems certainly apply specialized features that

are not necessarily generalizable, there is also a major part that is more generic and

reusable. Examples of this are data mapping and service orchestration. To achieve

lower maintenance costs and improve the time to market, a project within ING pro-

posed to use model-driven engineering techniques to automate these generic parts of

software systems, whilst still allowing for manual work on the more specific parts in a

software system. In order to automate this, large domain models need to be available.

Such a domain model can be represented as a directed (for now) unweighted hy-

pergraph. In one such hypergraph, defined by 𝐻 = (𝑋,𝐸), each vertex 𝑥𝑖 ∈ 𝑋

denotes type information and each hyperedge, also called hyperlink, 𝐸𝑖 ∈ 𝐸 describes

an operation that is possible with the types on the edge. This makes the hypergraph

a reflection of a (partial) business domain. Any business has separate subdomains

that are likely to be barely related or not related at all to other subdomains. This

shows in the hypergraph by having multiple weakly connected components/clusters.

In ING’s context, business is the finance domain and two examples of subdomains

are payments and mortgages.

We use this hypergraph to automatically discover paths given a desired start and end

9

requirement. If such a path exists, we can generate a middleware component. We are

interested in the case where we cannot find a path, for example because there is no

connection between two weakly connected components, since this poses a problem:

software generation becomes impossible. Hence, we want to introduce hyperedges into

the graph that would be sufficient to provide us with new paths and thus increase the

connectivity of the graph. Such a hyperedge can only be introduced if it is accepted

by a domain expert because it must comply with the business rules and logic. This

problem of predicting missing hyperlinks is also known as hyperlink prediction.

Link prediction in simple graphs is a problem in which new links between vertices

are predicted based on the observed features and structure of the graph. However, in

many applications, there is need to model higher-order relationships among entities.

Link prediction on hypergraphs (hyperlink prediction) is the problem of predicting

missing higher-order relationships in a hypergraph. Hyperlink prediction has been

especially popular in social networks [37, 5, 51]. Besides higher-order relationships,

modelling directions between these relationships is also useful in many practical ap-

plications. However, hyperlink prediction as a field of research is still emerging.

Moreover, directed hyperlink prediction is under explored. A model that uses the

directions as well as the hypergraph structure as information to make predictions has

not been proposed yet.

To address all of these challenges, in this thesis Modular Directed Hypergraph Neural

Network (MDHNN) for directed hyperlink prediction is proposed and the applica-

bility of directed hyperlink prediction in the field of software generation is tested.

The output of MDHNN reflects the probability that the edge will be accepted by

a domain expert. MDHNN can take the information in the vertices (and therefore

implicit business concepts) into account. This drives the following research question:

How can we design an algorithm for directed hyperlink prediction?

10

The sub-questions that are supporting this research question are:

1. What are the state-of-the-art (hyper)link prediction models and can they be used

on ING’s use case?

2. How can the direction of the edges be captured in a hyperlink prediction model?

3. Which datasets can be used for evaluation?

4. How does the performance of the proposed model compare with the different

baseline models?

In the remaining part of the thesis, we will first discuss the related work in Chapter 2.

Thereafter, in Chapter 3 the preliminaries are introduced and MDHNN is proposed.

Before conducting experiments as explained in Chapter 5, we have to select evaluation

datasets. The selection of the evaluation datasets have been elaborated on in Chap-

ter 4. Finally, in Chapter 6 multiple baseline models are compared and performance

of MDHNN is given. The final conclusions and suggestions for future work are given

in Chapter 7.

11

Chapter 2

Related work

Link prediction is a domain in machine learning and can be performed in simple graphs

or hypergraphs. In this chapter, we will discuss four type of related work in details:

graph learning, graph neural networks, hypergraph learning and hypergraph neural

networks. The first exploration of learning over graphs have been done over simple

graphs. Therefore, we first discuss related work on graph learning and especially

graph neural networks. Graphs neural networks are the basis for hypergraph neural

networks. After this, we discuss the related work on hypergraph learning of which

hypergraph neural networks are a part.

2.1 Graph learning

Graphs are widely used as a representation of the network structure of connected

data. Over recent years, graph learning has gained attention from researchers and

practitioners. Graph learning is used to perform many tasks, such as clustering,

classification and link prediction. Here, graph learning refers to applying machine

learning on graphs.

A (supervised) machine learning algorithm requires a set of informative features as

input. Hence, to make predictions on either nodes or edges, a feature vector represen-

tations is needed for the nodes and edges, respectively. Such feature vectors can be

12

created manually using expert knowledge. However, those domain-specific features

often do not generalize between different prediction tasks.

Recent research in the field of representation learning has led to a less work-intensive

way of generating feature vectors: using machine learning to solve an optimization

problem [7]. One such feature vectors, also known as embeddings, could be learned

in an supervised or unsupervised way. In the supervised task, the embeddings can

be learned such that performance of a downstream prediction task is optimized, e.g.

a pipeline. This will have good predictive accuracy as the embeddings are optimal

for the specific task, but at the cost of computational efficiency as the number of

parameters that need to be estimated will grow. On the other hand, if the embed-

dings are learned in an unsupervised manner, the objective function will be defined

independent of the downstream task. This leads to more computational efficiency

and results in task-independent embeddings.

Network embedding methods aim to obtain a low-dimensional representation of nodes

in a network. In this low-dimension space the structural and inherent properties of

the network are preserved such that the nodes from the network can be represented

by the low-dimensional vectors.

There are several methods to generate such node embeddings. Early graph learning

approaches use a matrix factorization approach to generate node embeddings [56].

More recently, node embeddings are generated by using a random walk procedure.

One such random walk procedure is Deepwalk [46]. This method is inspired by skip-

gram [41]. skip-gram learns context-based embeddings for tokens given sentences of

a corpus of text. The context of each token consists of the tokens in a window of

size 𝑐 around the token. Deepwalk uses skip-gram, but treats random walks on a

graph as sentences and vertices as tokens. The context is defined for each node of

the graph by generating a neighborhood as a set of nodes within a window of size

𝑘 in each random walk. Grover and Leskovec [23] proposed node2vec for generating

node embeddings using a random walk. node2vec is similar to Deepwalk, only the

definition of the context is different. The context is now defined for each node of the

13

graph by generating a neighborhood by performing a second-order random walk. This

second-order random walk is a biased random walk which balances the breadth-first

and depth-first exploration in the network.

The matrix factorization and random walk based methods are not suitable for di-

rected hyperlink prediction. As later discussed in Section 5.2, both methods have

their limitations and therefore cannot be extended to directed hyperlink prediction.

2.2 Graph neural networks

The previous two methods to learn node embeddings, i.e. matrix factorization and

random walk based methods, are unsupervised. Another method is to use deep learn-

ing, which can be both unsupervised and supervised methods. Recently, the gen-

eralization of deep learning to graphs has shown good performance across different

domains, such as social networks [24, 47], recommendation systems [60], knowledge

graphs [55], chemistry [20], etc. Especially, there is a growing interest in graph neu-

ral networks because they can efficiently and automatically extract relevant features

from a graph. The first notions of graph neural networks were introduced by Gori et

al. [22] and Scarselli et al. [49]. They apply recurrent neural networks to deal with

graph structures.

Some current state-of-the-art methods are: Graph Convolutional Networks (GCNs)

[34], Graph Sample and Aggregate (GraphSAGE) [25], Graph Attention Networks

(GATs) [54] and Variational Graph Auto-Encoders (VGAEs) [32]. GCN is a method

which is based on Convolution Neural Networks (CNNs) [3]. GCNs operate CCNs di-

rectly on graphs. CNNs have proven to be extremely powerful on grid-like structures

in various research domains, such as image classification/segmentation [28], speech

recognition [1] etc. However, because of the strict assumption that the input data

should have regular and grid-like structure, they could not directly be applied on

graphs. This problem has being overcome by the introduction of GCNs.

14

GCNs repeatedly aggregate feature vectors from neighbors to learn node embeddings.

Those embeddings encode both local graph structure and node features. Kipf and

Welling [34] have demonstrated that GCNs are superior over baseline models by a

significant margin.

GraphSAGE is an extension to GCNs. In GraphSAGE, a function is learned that

generates embeddings by sampling and aggregating features from a node’s local neigh-

borhood. The sampling procedure makes batching possible. GAT is also an extension

to GCNs. The extra component of GAT is that nodes are able to attend over their

neighborhoods’ features. This is done by learning attention coefficients for each node

in a neighborhood. Graph convolutions have also been used in VGAE. VGAE uses

a GCN encoder and an inner product decoder. After the VGAE has been trained,

node embeddings can be generated by applying the encoder to network-structured

data. Unlike the graph neural network methods mentioned, VGAE is an unsuper-

vised method.

We refer the interested readers to two comprehensive surveys on the topic of graph

neural networks [66, 68].

Graph neural networks can be extended to work for directed hyperlink prediction.

However, as introduced in Section 2.4, hypergraph neural networks are generaliza-

tions of graph neural networks. Therefore, the application of graph neural networks

to hypergraphs is covered by hypergraph neural networks.

2.3 Hypergraph learning

Sometimes, unlike a graph, interactions happen between multiple entities, i.e. higher-

order interactions. Hypergraphs, as proposed by Berge [9, 10], were argued by Estrada

& Rodriguez-Velazquez [15] as a model to represent complex networks with higher-

order relations between sets of entities across a variety of domains. Higher-order

relations could also be represented with, for example, simplicial complexes [42, 8] or

sets [62, 26, 48]. However, hypergraphs are more naturally represented. Hypergraphs

15

have been used to model higher-order relations in different fields, such as biology [35],

social networks [5], databases [16], etc.

However, despite the fact that hypergraphs are expressive objects, hypergraph learn-

ing is lesser studied than simple graph learning. Most existing models assume that

the interactions between entities are pairwise. A reason for this is that pairwise rela-

tionships remain ubiquitous, because higher-order interactions are often not recorded

explicitly in network data. Another reason is that hypergraph learning is more dif-

ficult, because the space of higher-order relationships is large. Nonetheless, some

approaches for hypergraph learning have been proposed.

Hypergraph learning is first introduced by Zhou et al. [67]. They generalized spec-

tral clustering to hypergraphs and proposed Spectral Hypergraph Clustering (SHC)

which aims to minimize the label difference among vertices with stronger connections

on hypergraph.

Matrix factorization methods have also been exploited for hypergraphs. However,

these methods do not learn node embeddings but are directly applied to hyperlink

prediction since a probability is generated for every hyperedge. Coordinated matrix

maximization (CMM) [63] predicts hyperlinks in the adjacency space, of size 𝒪(𝑛2),

using an expectation-maximization algorithm. CMM has been extended to Clique-

Closure based Coordinated Matrix Minimization [52]. A drawback of these methods

is that they rely on the fact that there is a set of candidate hyperedges which is

smaller than the set of unobserved hyperedges. Besides, they cannot handle informa-

tion in the nodes. A more suitable method is hyperedge2vec [50]. hyperedge2vec’s

Hypergraph Tensor Decomposition performs tensor decompositions over the hyper-

graph (dual) to generate node and hyperedge embeddings.

Similarly as for graphs, random walks on hypergraphs have been established. hy-

per2vec [29] is a generalization of node2vec to hypergraphs. Deep Hyperedges [44]

performs specialized random walks on the hypergraph.

16

Similarly as with graph learning, random walk based methods cannot be applied

to directed hyperlink prediction. Furthermore, the matrix factorization methods also

cannot be applied since they are designed for undirected hypergraphs.

2.4 Hypergraph neural networks

Recently, a lot of methods have been introduced that use deep learning to get 𝑑-

dimensional embeddings for the nodes in a hypergraph. These embeddings can be

aggregated over the hyperedges to predict the missing links.

Hypergraph convolution and attention approaches have been proposed which define

a hypergraph Laplacian matrix and perform convolutions on this matrix. Some of

those supervised node embedding models are:

• HyperSAGE [4] is a model that learns static embeddings. The model is a gener-

alization of both Graph Convolutional Networks (GCNs) [34] and GraphSAGE

[25]. HyperSAGE learns embeddings by aggregating information of intra-edge,

i.e. within a hyperedge, neighbors as well as inter-edges, i.e. across hyperedges,

neighbors.

• Feng et al. [17] proposed Hypergraph Neural Networks (HGNNs). HGNNs use

the clique expansion [2] of a hypergraph over which a GCN is applied. Hence,

they extend GCNs for hypergraphs.

• Hypergraph Convolution and Attention [6] also uses the clique expansion to

apply GCNs to hypergraphs to define hypergraph convolution. Hypergraph

attention learns a dynamic incidence matrix that can better reveal the dynamic

connections of hyperedges.

• HyperGCN [57] generalizes GCNs to hypergraphs. HyperGCN performs convo-

lutions over the hypergraph Laplacian with mediators. In contrary to HGNNs

17

which use a quadratic number of edges for each hyperedge, HyperGCN only

uses at most a linear number edges.

• Inspired by GraphSAGE [25] and GATs [54], Zhang et al. [65] proposed Hy-

perSAGNN which is a model to learn node embeddings for hypergraphs. The

model learns static (the embedding is the same for every node) and dynamic (the

embedding depends on the hyperedge considered) embeddings using multi-head

self-attention and combines these to get final node embeddings.

• hyperedge2vec [50] learns hyperedge embeddings by using an autoencoder. The

autoencoder is trained to reconstruct the original hyperedge from 𝑝 noisy hy-

peredges. The 𝑝 noisy hyperedges are selected by a random walk over the Hasse

lattice.

Above models all work for undirected hypergraphs. Directed hypergraphs have been

introduced by Gallo et al. [19]. Only one related work has been found that explicitly

solves directed hyperlink prediction. Yadati et al. [58] proposed NHP which is a

pipeline that consists of a hyperlink-aware GCN layer which takes the clique expan-

sion of the hypergraph and pass it through a GCN to get vertex embeddings then

each directed hyperedge gets a score by the hyperlink and direction scoring layers.

However, it should be noted that the method does not use the direction of the edges

of the graph in the model but only in the training procedure.

All hypergraph neural networks discussed can be extended for directed hyperlink pre-

diction since they generate node embeddings. In Section 5.2, we will discuss which

baseline models are used.

18

Chapter 3

Methodology

In this chapter, we first present the definitions needed to understand the methodology.

Thereafter, the details of methodology will be presented.

3.1 Definitions

Definition 1 (Simple graph). A simple graph is defined as a pair 𝐺 = (𝑉,𝐸) where

𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is the finite set of vertices and 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚} is the finite

set of edges. Each edge is denoted by a pair of vertices.

v1 v2

v3

v4 v5

v6
v7 v8

v9

v10

E1

E2

E3

E4

(a) Undirected hypergraph.

v1 v2 v3 v4 v5

v6 v7 v8 v9 v10

E1 E2
E3 E4

(b) Directed hypergraph.

Figure 3-1: Example of an undirected and directed hypergraph.

Definition 2 (Hypergraph). A hypergraph [10], an example is shown in Figure 3-1a,

is defined as 𝐻 = (𝑉,𝐸) where 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is the finite set of vertices and

19

𝐸 = {𝐸1, 𝐸2, . . . , 𝐸𝑚} is the finite set of hyperedges. Each hyperedge 𝐸𝑖 is a subset

of 𝑉 such that

• 𝐸𝑖 ̸= ∅ ∀𝑖 = 1, 2, . . . ,𝑚,

• ∪𝑚
𝑖=1𝐸𝑖 = 𝑉 .

If the cardinality of each hyperedge is two, then you have a simple graph. Hence,

hypergraphs are generalizations of simple graphs.

Definition 3 (Directed hypergraph). A directed hypergraph [19], an example is shown

in Figure 3-1b, is a hypergraph with directed hyperedges, also called hyperarcs. Each

directed hyperedge is an ordered pair of disjoint subsets of vertices 𝐸𝑖 = (𝑋𝑖, 𝑌𝑖) such

that

• 𝑇 (𝐸𝑖) = 𝑋𝑖 ∀𝑖 = 1, 2, . . . ,𝑚, also called the tail of the hypearc,

• 𝐻(𝐸𝑖) = 𝑌𝑖 ∀𝑖 = 1, 2, . . . ,𝑚, also called the head of the hypearc,

• ∪𝑚
𝑖=1𝑇 (𝐸𝑖) ∪𝐻(𝐸𝑖) = 𝑉 .

It must be noted that 𝑇 (𝐸𝑖) and 𝐻(𝐸𝑖) can be empty.

Definition 4 (Static and dynamic networks). A network is a collection of connected

objects and hence is often represented as a graph. We distinguish two types of net-

works: static and dynamic networks. Dynamic networks change over time, i.e. edges

and nodes can be added and removed. Static networks remain unchanged over time.

Definition 5 (Link prediction on directed hypergraphs). Link prediction is a binary

classification problem where we predict missing links (static network) or links that are

likely to occur in the future (dynamic network). Formally, this can be defined as the

problem of learning a function 𝑓 such that

𝑓(𝐸𝑖) =

⎧⎪⎨⎪⎩1, if 𝐸𝑖 ∈ 𝐸

0, if 𝐸𝑖 /∈ 𝐸,

where 𝐸𝑖 ⊆ 𝑋.

20

Definition 6 (Message passing). Message passing is the principle that (hyper)graph

neural networks, like GCNs, use. Message passing algorithms learn the node embed-

dings by aggregating information from immediate neighbors, where the initial features

of neighbors are represented in the feature matrix X. In one message passing step,

each node sends its current feature vector to its neighbors and receives the aggregated

feature representation of its neighbors.

Multiple message passing steps can be stacked. This is also called 𝑙 hops because you

include node features at a distance 𝑙 away in the representations.

Definition 7 (Graph convolutional layer). GCNs apply convolutions over graphs.

GCNs repeatedly aggregate feature vectors from neighbors to learn node embeddings.

The graph convulational layer is formulated as:

X(𝑙+1) = 𝜎
(︁
D̃−1/2ÃD̃−1/2X(𝑙)P𝑙

)︁
,

where 𝜎 is a non-linear activation function, A is the adjacency matrix, Ã = A + 𝐼𝑛

is the adjacency matrix with self connections, �̃�𝑖𝑖 =
∑︀

𝑗 𝐴𝑖𝑗 and P𝑙 is a trainable

weight matrix. The rows of X(𝑙+1) contain the final representations of the nodes in

layer 𝑙 + 1.

A GCN consists of multiple graph convolutional layers and can be used both in the

supervised and unsupervised setting. If a GCN is used for a supervised task, then the

last layer is a softmax layer.

Definition 8 (Hypergraph neural networks). Hypergraph neural networks apply a

GCN over the clique expansion of a hypergraph. In a hypergraph neural network, the

embedding of the 𝑖-th vertex in the (𝑙)-th layer 𝑥
(𝑙)
𝑖 is formulated as:

𝑥
(𝑙)
𝑖 = 𝜎

(︃
𝑛∑︁

𝑗=1

𝑚∑︁
𝑒=1

𝐻𝑖𝑒𝐻𝑗𝑒𝑊𝑒𝑒𝑥
(𝑙)
𝑗 P

)︃
.

The vector representation of each layer in the network is:

X(𝑙+1) = 𝜎
(︀
HWH𝑇X(𝑙)P𝑙

)︀
,

21

where

𝜎 = non-linear activation function,

P𝑙 = 𝑑𝑖𝑛 × 𝑑𝑜𝑢𝑡 weight neural network matrix,

H = (𝐻𝑖𝑒) is a 𝑛×𝑚 incidence matrix,

W = (𝑊𝑒𝑒) is a 𝑚×𝑚 hyperedge weight matrix.

For an undirected hypergraph 𝐻𝑖𝑒 is defined by:

𝐻𝑖𝑒 =

⎧⎪⎨⎪⎩1, if 𝑣𝑖 ∈ 𝐸𝑒

0, if 𝑣𝑖 /∈ 𝐸𝑒.

Normalizing this gives:

X(𝑙+1) = 𝜎
(︀
D−1/2HWB−1H𝑇D−1/2X(𝑙)P𝑙

)︀
,

where

D = (𝐷𝑖𝑖), where 𝐷𝑖𝑖 =
𝑚∑︁
𝑒=1

𝑊𝑒𝑒𝐻𝑖𝑒, is a 𝑛× 𝑛 vertex degree matrix,

B = (𝐵𝑒𝑒), where 𝐵𝑒𝑒 =
𝑛∑︁

𝑖=1

𝐻𝑖𝑒, is a 𝑚×𝑚 hyperedge degree matrix.

Which is the vector form of

𝑥
(𝑙)
𝑖 = 𝜎

(︃
𝑛∑︁

𝑗=1

𝑚∑︁
𝑒=1

𝐻𝑖𝑒𝐻𝑗𝑒𝑊𝑒𝑒

𝐵𝑒𝑒

√︀
𝐷𝑖𝑖𝐷𝑗𝑗

𝑥
(𝑙)
𝑗 P

)︃
.

This formulation makes sure that information is shared within each hyperedge and

between hyperedges. The number of layers controls how deep the information of each

node flows.

22

3.2 Modular Directed Hypergraph Neural Network

In this thesis, we design a directed hyperlink prediction model based on a graph neu-

ral network approach since recent developments have shown the potential of graph

neural networks for making predictions over graphs [25, 34, 54]. Besides, all state-of-

the-art (hyper)graph learning models are graph neural networks.

In most graph neural network models, an embedding for a hyperedge is generated by

aggregating its node embeddings. We follow this principle for our directed hyperlink

predictor.

HGNN [17] is designed for undirected hypergraphs and propagates messages within

each hyperedge and between hyperedges. Therefore, HGNN cannot be directly ap-

plied on directed hypergraphs since it does not consider the direction of a hyperedge.

For directed hypergraphs we also want a model where information is shared within

each hyperedge and between hyperedges. Hence, we propose MDHNN which is a

model consisting of three modules named induced tail hypergraph, induced head hy-

pergraph and directed hypergraph.

First of all, we will introduce the induced tail hypergraph module. In this module, we

want to propogate information within and between the tails of the hyperedges. We do

this by “inducing" an undirected hypergraph 𝐻𝑡𝑎𝑖𝑙 from 𝐻, i.e. create an undirected

edge from every tail in 𝐻. Formally, 𝐻𝑡𝑎𝑖𝑙 is defined by

𝑉𝑡𝑎𝑖𝑙 = {𝑣𝑖 | 𝑣𝑖 ∈ 𝑇 (𝐸𝑒) and 𝐸𝑒 ∈ 𝐻},

𝐸𝑡𝑎𝑖𝑙 = {{𝑣𝑖 | 𝑣𝑖 ∈ 𝑇 (𝐸𝑒)} | 𝐸𝑒 ∈ 𝐻}.

Now we can share the information by applying the undirected hypergrah convolution

𝜎
(︁
Dtail

−1/2HtailWBtail
−1Htail

𝑇Dtail
−1/2X(𝑙)P𝑙

)︁
.

23

The same principle can be applied for sharing information within and between the

heads. This module is called induced head hypergraph.

Lastly, we also want to diffuse information between the tail and the head of a hy-

peredge. We do this in the directed graph module by applying GCN to the directed

clique expansion 𝐷𝐶𝐸. 𝐷𝐶𝐸 is defined by

𝐸𝐷𝐶𝐸 = {(𝑣𝑖, 𝑣𝑗) | 𝑣𝑖 ∈ 𝑇 (𝐸𝑒) and 𝑣𝑗 ∈ 𝑇 (𝐸𝑒) and 𝐸𝑒 ∈ 𝐻}.

Since the adjacency matrix of a directed graph can be asymmetric and thus the

information of the nodes need to diffuse asymmetrically, we adapted the normalization

of GCN to D̃−1Ã and the convolution will be

X(𝑙+1) = 𝜎
(︁
D̃−1ÃX(𝑙)P𝑙

)︁
where D̃ = D̃in + ˜Dout.

By aggregating the three different embeddings of the different modules, we get a final

embedding for each node in the directed hypergraph

X(𝑙+1) = 𝐴𝐺𝐺

(︂
𝜎
(︁
Dhead

−1/2HheadWBhead
−1Hhead

𝑇Dhead
−1/2X(𝑙)P𝑙

)︁
,

𝜎
(︁
Dtail

−1/2HtailWBtail
−1Htail

𝑇Dtail
−1/2X(𝑙)P𝑙

)︁
,

𝜎
(︁
D̃−1ÃX(𝑙)P𝑙

)︁)︂
.

To get the embeddings of the edges we aggregate the embeddings of the nodes in

each hyperedge. We perform aggregation by either maxmin+ or mean+. maxmin+ is

defined by

maxmin+{xv}𝑣∈𝐸 = (max
𝑠∈𝑇 (𝐸)

𝑥𝑠𝑙 − min
𝑖∈𝐻(𝐸)

𝑥𝑖𝑙)+, (3.1)

where 𝑙 = 1, 2, . . . , 𝑑, 𝑑 is the dimension of the node embeddings xv and m+ = 𝑚 if

𝑚 > 0 and m+ = 0 otherwise.

24

mean+ is defined by

mean+{xv}𝑣∈𝐸 = (mean
𝑠∈𝑇 (𝐸)

𝑥𝑠𝑙 − mean
𝑖∈𝐻(𝐸)

𝑥𝑖𝑙)+, (3.2)

where 𝑙 = 1, 2, . . . , 𝑑 and 𝑑 is the dimension of the node embeddings xv.

After we get the edge embeddings, we feed those to a multi layer perceptron (MLP).

The final layer has one node which outputs if the hyperedge is (to-be) present in the

graph or not.

In the architecture of MDHNN we use ReLU for 𝜎 and add dropout between each

convolutional layer. We use ReLU since it is commonly used in deep learning and

graph neural networks.

3.3 Research methodology

The architecture of MDHNN has been defined. In the next steps, the model will be

implemented. After the implementation, proper datasets are collected/selected and

pre-processed as discussed in Chapter 4. Thereafter, an experiment set-up has been

determined. We refer to Chapter 5 for the experiment set-up. The results of the

experiments have been reported in Chapter 6. The final conclusions and suggestions

for future work are given in Chapter 7.

25

Chapter 4

Dataset selection

In this chapter, we first describe the challenges that were encountered in ING’s

use case. Next, we describe the selected datasets used for evaluation and the pre-

processing steps that are applied. Finally, we compare the original dataset of ING to

the validation datasets.

4.1 ING’s challenge

The hypergraph used that reflects a domain model is created by using data from the

Github 1 and Gitlab 2 APIs. The dataset contains a set of higher-order relations.

In such a higher-order relation < {𝑎, 𝑏}, {𝑓}, {𝑐} >, the first set {𝑎, 𝑏} is the set of

inputs, the second set {𝑓} is the callable unit and the last set {𝑐} is the output.

This is (almost) naturally encoded as a hypergraph where each high-order relation

would represent an edge. Since the task is to predict new higher-order relations, i.e.

hyperedges, in this dataset and the callable unit is unique for each hyperedge, the

callable unit is removed.

After removing the callable unit there are some duplicate edges. Since we only care

about the paths in the graph, the duplicate edges are removed.

A special characteristic of the hypergraph is that the output set always has a size

1https://docs.github.com/en/rest
2https://docs.gitlab.com/ee/api/

26

https://docs.github.com/en/rest
https://docs.gitlab.com/ee/api/

of one. Besides, the final hypergraph, retrieved on 22𝑡ℎ of February 2021, has |𝑉 | =

956 and |𝐸| = 3935. The majority of the edges are derived, i.e. automatically

generated, and only 25 edges are non-derived, i.e. manually defined. According to

expert knowledge, only these manually defined edges are relevant, given that the

others are systemically generated by software.

Table 4.1: Performance on ING’s use case. The AUC scores have been calculated
over five different runs. The set of random hyperedges has a size of five percent of
the dataset size.

Mean ± std Max
AUC 0.96 ± 0.00
Probability test non-derived hyperedges 0.57 ± 0.12
Probability train non-derived hyperedges 0.62 ± 0.15
Probability random hyperedges 0.21 ± 0.27 0.90

By logical reasoning, one might conclude that making relevant hyperedges recommen-

dations based on a set of 25 hyperedges will be impossible. Since the graph is sparse,

i.e. density of 0.029, the set of unobserved hyperedges is much larger than the set of

(relevant) observed hyperedges and the logical reasoning that can be done on such a

small dataset is limited. However, the expectation is that the full hypergraph can be

used to learn a prediction function that give high probability to relevant non-derived

hyperedges. Moreover, it is expected that the hypergraph will grow over time and

thus the predictions a model makes will improve.

For the first experiment, a simple model has been used. The model uses node2vec [23]

to learn node embeddings. After the node embeddings are generated, the embeddings

for the hyperedges need to be created. Therefore, the node embeddings for the head

and tail of each hyperedge are aggregated. The embeddings for the head and tail for

each hyperedge are fed into a MLP where the last layer consists of one node. This

node outputs the probability that the hyperedge is existent in the graph or not (the

metric that measures the effort of adding hyperedges to a hypergraph), i.e. sigmoid

activation. The optimizer used is stochastic gradient descent and the loss function is

binary cross-entropy. The full details of the experiment can be found in Appendix A.

27

From the AUC in Table 4.1 it can be concluded that the model has good performance.

However, most of the edges are derived and the probability for the non-derived edges

need to be high in order to make relevant predictions. If we look at the predictions

table, it can be seen that the probabilities for the non-derived edges are low. Com-

bining this with the fact that the AUC is high, we can conclude that the ranking of

non-derived edges is low. Besides, randomly created hyperedges sometimes get a high

score while they were expected to, according to the domain expert, get a low score.

The reasoning behind this is that each hyperedge has a meaning in the business con-

text. Hence, a random hyperedge does not represent a concept known from business.

Some random hyperedges get a high score because there are only 25 edges to learn

from for relevant suggestions. Therefore, it is unlikely to have relevant suggestions.

Hence, we use other datasets for the experiments. However, for setting up those ex-

periments ING’s use case is kept in mind. Such that we could conclude which model

to test once the dataset is larger.

4.2 Alternative datasets

The graph datasets chosen represent a relevant subset of those most frequently used

in literature to compare hypergraph neural networks. Some literature uses metabolic

networks while others uses social graphs. The assumption is that the social graphs

are most similar to ING’s domain models. The reason for this is that a domain model

consists of separate sub domains that are likely to be barely related or not related

at all to other sub domains and the expectation is that those groups of sub domains

behave like groups/clusters of people.

All graph datasets used in the experiments are publicly available. However, some

pre-processing would still need to be applied.

28

Table 4.2: Statistics of metabolic networks.

Metabolic network |𝑉 | |𝐸| Number of features
iAF692 628 616 24

iAF1260b 1,668 2,063 46
iJO1366 1,805 2,231 46

4.2.1 Metabolic datasets

Metabolic networks are essential tools for, among others, understanding the metabolic

basis of human diseases, genetic engineering and drug discovery [12]. However, one

issue is that these networks are inherently incomplete since unknown reactions are

missing from them. This severely impairs the use of these networks [36]. The problem

of finding the missing hyperlinks can be modeled as a hyperlink prediction problem. A

metabolic network can be modeled as a directed hypergraph by taking the metabolites

(reactants and products) as vertices and the reactions as hyperarcs connecting the

reactants and products. The tail of a hyperarc contains the reactants and the head

contains the products of the reaction.

We have used three different metabolic networks, i.e. iAF692, iAF1260b and iJO1366,

from BiGG 3 that have also been used in previous studies [52, 58, 63]. The statistics

of the three metabolic networks are shown in Table 4.2. Before the data can be used,

the networks have been pre-processed by performing the following steps:

1. Generate feature matrix X. First, retrieve the features charge, compartment

and the chemical elements of the formula. These are the only features related

to the nodes that could be retrieved. Thereafter, create a binary matrix using

the bag-of-words model.

2. Reactions can appear multiple times in metabolic networks. The copies of the

reaction have different gene reaction rules or reaction bounds. Since hyperlink

prediction does not use features of the edges, those reactions are considered as

duplicate and are filtered. This step is only applicable to metabolic network

iJO1366.
3http://bigg.ucsd.edu/

29

http://bigg.ucsd.edu/

3. There are also pseudo-reactions among the reactions. Biomass, exchange, de-

mand, and source/sink reactions are all pseudo-reactions. Pseudo-reactions do

not represent a specific enzyme-catalyzed transformation. Hence, these are also

filtered.

4.2.2 Co-citation datasets

Ashley Blake

Bob

Ralph

RobertTrudy

Donald Garfield

Harold

Kim

Ryan

Scott

Ida

cited

Paper X

Paper Y

Paper Z

Paper T

Figure 4-1: Example of a co-citation network. Each node represents an author and
each tail/head represents a paper. Each hyperedge represents a citation.

Table 4.3: Statistics of co-citation networks.

Co-citation network |𝑉 | |𝐸| Number of features
dblp 10,804 11,097 300
MAG 28,976 25,135 9,157

MAG subset 6,480 3,898 4,027

We model two bibliography datasets as (directed) co-citation hypergraphs. In these

hypergraphs, authors are the nodes and the tail and head of each hyperedge repre-

sents a paper. Where the paper representing the tail cited the paper representing

the head. Hence, this graph models which authors have written a paper together and

which papers a paper has cited. An example is shown in Figure 4-1.

The bibliography datasets are retrieved from dblp 4 and Microsoft Academic Graph

4https://www.aminer.org/citation

30

https://www.aminer.org/citation

(MAG) 5. The statistics of both social graphs are shown in Table 4.3.

In this section it should be noted that both graphs are inherently dynamic. So you

could split the data based on time. However, as explained in Section 5.1, multiple

splits are needed to get a fair comparison between the different model architectures.

Hence, time is ignored and random splits for the sake of a fair comparison are created.

Table 4.4: Cosine similarities of different organizations. The cosine similarity is
calculated between the embeddings of the different organizations.

Organization Cosine similarity
Australian Centre for Field Robotics,
The University of Sydney, Sydney, Australia 0.978
Australian Centre for Field Robotics,
The University of Sydney, NSW, Australia
Australian Centre for Field Robotics,
The University of Sydney, Sydney, Australia 0.900
Australian Centre for Robotic Vision,
Queensland University of Technology, Brisbane, Australia
Australian Centre for Field Robotics,
The University of Sydney, NSW, Australia 0.916
Australian Centre for Robotic Vision,
Queensland University of Technology, Brisbane, Australia

Organization Cosine similarity
Computer Science Department, Stanford University,
Stanford, CA 0.929

Computer Science Department, Stanford University,
California 94305 USA 0.758

Computer Science Department, Rutgers University,
New Brunswick, NJ 0.789

Table 4.5: Cosine similarities of the same organizations. The cosine similarity is
calculated between the embeddings of the different organizations.

Organization Cosine similarity
Microsoft Corporation, One Microsoft Way,
Redmond, WA 98052 0.889
Microsoft Corporation, Redmond, WA, USA

5https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
?from=https%3A%2F%2Fresearch.microsoft.com%2Fmag

31

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/?from=https%3A%2F%2Fresearch.microsoft.com%2Fmag
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/?from=https%3A%2F%2Fresearch.microsoft.com%2Fmag

dblp

dblp is a computer science bibliography. The dataset, as retrieved on the 9th April

2020, contains almost 5M papers. Therefore, we take a subset of the data and pre-

process it using the following steps:

1. Retrieve all papers and their authors and citations that have their field of study

in deep learning.

2. Create hyperedges by joining papers on the citation paper ids. We only join

papers that have the field of studies in the set just mentioned, i.e. the tail and

the head papers must have a field of study in the mentioned set. In this way

we focus on connected component(s) and do not take other fields of study into

the graph.

3. Remove duplicate hyperedges.

4. The node feature matrix X is constructed by using the author’s organization.

However, no unique identifiers are known for the organizations. We only have or-

ganization strings which might differ between papers. You could perform string

matching to link every organization name to a unique set of organizations. How-

ever, we do not have such a unique set of organizations. Therefore, we use a

word embedding approach. We used pre-trained word vectors, of dimension 300

trained by GloVe [45] on Wikipedia’s text, to get an embedding for every token

in the organization name and take the mean to get a final embedding. This

final embedding represents the full organization name, where the expectation

is that the same organization names end up with similar embeddings. Before

getting the embeddings, we pre-process the raw text by the following steps: to

lowercase, remove "#tab#" at the end of some organization names, remove

numbers, remove non-alphabetic characters, remove white spaces, remove stop

words, remove single letters and tokenize the string.

We tested if the embeddings of same organizations will be closer than embed-

dings of different organizations. In Table 4.4, it can clearly be seen that the

32

same organizations are closer than different organizations. Furthermore, from

Table 4.5 we can conclude that even if the strings are very different, then the

similarity is still high. To measure the similarity, we have used cosine similarity

since this measure is widely used for text similarity. Another advantage of using

embeddings is that an organization name like “Carnegie Mellon University and

Microsoft Research Asia” could be well represented using embeddings since it

will take the mean of the two.

Microsoft Academic Graph

The Microsoft Academic Graph (MAG) contains over 200M scientific publication

records. Hence, we take a subset of the data, retrieved on the 7th of June 2021, and

pre-process it by taking the following steps:

1. Retrieve all papers and their authors and citations that have their field of study

in either: deep neural networks, deep cnn, deep belief network, super resolution

convolutional neural network, autoencoder or softmax function.

2. Create hyperedges by joining papers on the citation paper ids. We only join

papers that have the field of studies in the set just mentioned, i.e. the tail and

the head papers must have a field of study in the mentioned set. In this way

we focus on connected component(s) and do not take other fields of study into

the graph.

3. Remove duplicate hyperedges.

4. Retrieve authors’ citation count, publication count and affiliation id for the

authors that appear in the graph. Generate feature matrix X by creating a

binary matrix using the bag-of-words model and the authors’ data.

33

4.2.3 Final pre-processing

The problem with the datasets is that the hypergraphs are sparse. Therefore, ex-

treme class imbalance is introduced since most edges are unobserved. The amount of

unobserved edges are of order 𝒪(2|𝑉 | − |𝐹 |), where 𝐹 is the set of unobserved edges.

For this reason, we need to undersample the negative class and need to decide on

a ratio of negative edges. We use a ratio of 1.5, i.e. 1.5 more negative edges than

positive edges. This is done such that the problem does not get too unbalanced. The

ratio of 1.5 has been chosen because Caselles-Dupré et al. [13] found that a similar

parameter setting was optimal for word2vec. The negative edges are created by tak-

ing a positive edge and permuting 50 percent of the nodes. This approach is called

sized negative sampling. Sized negative sampling is preferred over randomly sampling

negative edges, also known as uniform negative sampling. Randomly sampling of non-

hyperedges is not preferred because the distribution of non-hyperlink sizes would be

completely different than the distribution of hyperedge sizes [43]. Therefore, in that

case we could solve the problem by a single trivial feature, i.e. hyperlink size. By

using sized negative sampling the model would learn a more interesting function since

the edges would be harder to separate. Moreover, two state-of-the-art models that

have been evaluated on hyperlink prediction, NHP [58] and HyperSAGNN [65], did

also use sized negative sampling.

Finally, before inputting the data to the models we need to represent the hyper-

graph data in the right format, e.g. incidence matrix in coordinate or dense format,

edgelist, etc.

34

4.3 Hypergraph similarity

To test if our assumption that the domain model graph is most similar to the social

graphs holds, we have made a comparison based on different graph metrics. The

idea is that similar graphs probably share certain properties. The calculated measure

could be aggregated by using a similarity measures to have one final measure which

can be used to assess the similarity of the different graphs. However, since it is not

known which measures are important, the measures are not aggregated. The mea-

sures are compared individually.

This method of graph similarity is used since this method is powerful and scales well

since the graphs are mapped to several measures which are much smaller in size than

the graphs.

The used measures are simple measures because of their feasibility to calculate them

in limited time. The following measures are calculated over the graphs:

1. ratio strongly connected components (SCCs): number of strongly connected

components of the directed clique expansion divided by the number of nodes;

2. ratio weakly connected components (WCCs): number of weakly connected com-

ponents of the directed clique expansion divided by the number of nodes;

3. assortativity coefficient: the assortativity coefficient measures the preference of

nodes to attach to other nodes which have similar degrees. This is calculated

by the Pearson correlation coefficient of degrees between pairs of connected

vertices. If assortativity is positive, then nodes of similar degrees are correlated.

Else, nodes of different degrees are correlated. The assortativity coefficient is

calculated over the directed clique expansion;

4. mean/variance tail size: mean/variance of the number of nodes in the tails;

5. mean/variance head size: mean/variance of the number of nodes in the heads;

35

6. mean/variance edge size: mean/variance of the number of nodes in the edges

(head+tail);

7. mean/variance in-degree: mean/variance of the number of times nodes appear

in the tail;

8. mean/variance out-degree: mean/variance of the number of times nodes appear

in the head;

9. mean/variance degree: mean/variance of in-degree plus out-degree;

Besides reporting those statistics, violin plots have been created, see Appendix C,

over the degrees and sizes.

Table 4.6: Hypergraph metrics of the different datasets.

base MAG dblp iJO1366 iAF1260b iAF692
Ratio SCC 0.530 0.149 0.159 0.171 0.174 0.041
Ratio WCC 0.011 0.002 0.005 0.0006 0.0006 0.003
Assortativity 0.914 -0.093 -0.098 -0.289 -0.292 -0.315
Density 0.029 0.0005 0.002 0.005 0.005 0.014
Mean tail size 13.222 3.893 4.066 2.027 1.999 2.234
Var tail size 570.999 4.197 21.069 0.553 0.515 0.539
Mean head size 1.000 3.717 4.331 2.274 2.270 2.502
Var head size 0.000 3.499 24.885 0.886 0.875 0.886
Mean edge size 14.222 7.610 8.397 4.301 4.268 4.735
Var edge size 570.999 8.200 48.080 2.446 2.358 2.315
Mean in-degree 4.100 3.224 4.448 2.811 2.807 2.454
Var in-degree 1328.369 1738.732 947.194 423.753 394.992 141.063
Mean out-degree 54.212 3.377 4.176 2.505 2.472 2.191
Var out-degree 23712.555 20.749 33.967 267.929 239.921 85.846
Mean degree 58.312 6.601 8.624 5.316 5.279 4.645
Var degree 24912.762 1859.408 1133.836 1021.327 899.925 333.891

As you can infer from Table 4.6, both the social graphs and the metabolic networks

have very similar statistics. Especially the metabolic networks have very similar

means, variances and measures. Only for some metrics iAF692 is a bit different com-

pared to iJO1366 and iAF1260b. The social graphs also are very similar, but the

variances vary a bit.

36

However, the statistics for the social graphs and metabolic networks do not compare

at all. So you can conclude that the two groups of graphs are really different. This

can also be confirmed by the violin plots in Figures C-1-C-6 in Appendix C.

Base is the graph representing the domain model. If you compare base to the other

graphs with respect to the first set of statistics, i.e. ratio SCC, ratio WCC, assorta-

tivity and density, then you cannot conclude that base is highly similar to another

graph. Assortativity is positive, where it is negative for all the other graphs. Besides,

density and ratio of SCC and WCC is higher.

For the sizes, we can conclude that the metabolic networks have relatively small edge

sizes. The sizes of the social graphs are larger. The edge sizes of the base are also

large, even larger than the social graphs, with an exception for the head since this is

always fixed to one.

A similar pattern is seen for the degrees. The metabolic networks have small degrees

and the degrees of the social graphs are larger. Again, the degrees of the base are the

largest.

If we compare the base network to the other graphs based on the distributions in

Appendix C, then we can conclude that the distributions, except for the in-degree,

for the base graph are very different. The in-degree distribution is most similar to

the ones of the metabolic networks.

Since the base graph has large degrees and sizes and the social graphs also has large

degrees and sizes, we conclude that the social graphs are the most similar to the do-

main graph. Furthermore, from the social graphs we can conclude that dblp is most

similar to base. Because the ratio WCC and assortativity is most closest to the dblp

dataset.

37

Chapter 5

Experiments

In this chapter, it is first described how the experiments are designed. Thereafter,

we will discuss which models are used as baseline models in the experiments. Finally,

the evaluation metrics used are explained.

5.1 Experiment design

We want to guarantee experimental reproducibility and replicability of the experi-

ments. Moreover, we want to make a fair comparison between the different models in

order to attribute, with high certainty, the differences in performance to the differ-

ences in model architectures. Hence, we need to have the same experimental set-up

for all models [40]. Therefore, the set-up as reported by Shchur et al. [53] is closely

followed. This set-up ensures that the tuning of the hyperparameters and training

and evaluation procedure are set up fairly for all models. Even though we operate

in a different setting (hyperlink instead of node classification), we follow the authors’

suggestions by evaluating models under a standardized framework.

First of all the hyperparameter search procedure, also called model selection, will

be explained. In Algorithm 1 in Appendix B an algorithmic overview can be found.

For each dataset, we randomly split the data in five different train/test splits. Each

train set will be further split using 5-fold cross-validation. For each configuration,

38

a model is trained and evaluated with AUC on the different splits and training and

validation folds. The configuration with the highest average will be used for training

and testing.

We take the average over five different splits since Shchur et al. [53] showed that us-

ing different splits of the data leads to different ranking of the architectures. Zügner

et al. [69] also confirmed that small data perturbations causes the performance of

graph neural networks to greatly change. Besides, by taking the average over multiple

splits it will allow us to more accurately find the model with the best generalization

properties [27] and not the model that performs well on one specific test set.

There is no common train/test ratio applied for graph learning. Most papers use

more train than test data. Some training percentages seen are: 80 [8, 65], 75 [33], 70

[50, 30], 60 [5, 38, 61] and 50 percent [11, 59]. The ratios seen if papers use more test

than train data are: 20 [58], 5 [17] and 0.3 percent [17]. Other papers let the per-

centage of train data depend on the dataset size [17, 63, 64]. For node classification

you also have the option to use 𝑥 nodes of each class for training [6, 57, 53, 39]. This

results in a training percentage in the range of 0.05 - 0.003 percent. Therefore, we

use a common split that is used in general machine learning. We use 80 percent for

training and 20 percent for testing.

The hyperparameter search space for each model is shown in Table ?? in Appendix D.

We use Bayesian optimization (BO) with the default setting of 20 trials for searching

the space. It would be better to use grid search to get a more fair comparison. How-

ever, all possible configurations grow exponentially in the number of hyperparameters

and the number of choices and thus it is too computationally expensive. Moreover,

grid search wastes time trying useless hyperparameter configurations.

In the next stage, we will perform the training. Adam [31] is used as the opti-

mizer with 𝐿2 regularization. The weights are initialized using Glorot initialization

[21] and the biases are initialized as zeros. All models get the same search space for

the learning rate, 𝐿2 regularization parameter and the number of epochs. Besides, all

39

data is used in one epoch, i.e. full-batch training.

After the model selection and training phase we need to get unbiased test evalua-

tion metrics, see Algorithm 2 in Appendix B for an overview.

For the model assessment phase it is crucial that it is being well separated from the

other phases to get an unbiased evaluation metric. Hence, the test data is only used

in this phase. Furthermore, we perform three separate runs for each split to minimize

the effect of unfavorable random weight initialization.

We followed more good experimental practices as reported by Errica et al. [14].

Firstly, we split the data by means of the stratification technique to preserve class

proportions across the different splits and folds. Secondly, we make sure that all

models are selected and evaluated on the same data splits. Lastly, we use the same

input representations for the nodes for all models. We use the feature matrix X as

described in the pre-processing steps. In this way, we are able to test if the model is

able to learn structural features.

Table 5.1: Technical specifications of the HPC cluster.

#nodes #cores/node total cores RAM [GB/core] CPU type
12 48 576 10.7 Xeon Platinum 8260

All models are implemented in PyTorch Geometric [18] and the experiments were

performed on an HPC cluster. The technical specifications of the HPC cluster have

been shown in Table 5.1. We did use CPUs, since then we could apply multiprocessing.

Running the models on CPUs was faster than using GPU/CUDA and running it

sequentially. Using multiprocessing was faster since the number of processes to run

is too large such that the gain of running it sequentially on a GPU does not speed up

the full computation.

40

5.2 Baseline models

As previously explained, most literature makes an unfair comparison between the

baseline models and the proposed model. Sometimes, not enough details are given

to conclude if the comparison is fair. Hence, for example, we cannot conclude if we

could eliminate HGNN from our baseline models because comparison of HyperGCN

is unfair since they do not optimize the hyperparameters [57]. Besides, most baseline

models are not directly compared in the literature. Therefore, there are a number of

models considered as the baseline models.

For the inductive models, i.e. models that use a pipeline to learn node embeddings

and make predictions for the hyperedges, we compare HGNN [17], Hypergcn [57],

HyperSAGNN [65] and NHP [58].

We excluded Hypergraph Convolution and Hypergraph Attention [6] and hyper-

edge2vec [50]. Hypergraph Convolution is the exact same model as HGNN and thus

would not add any new information. Hypergraph Attention cannot be used since

it is only feasible when the vertex and hyperedge set are from the same homoge-

neous domain. In the validation datasets, the vertex set either represents authors

or metabolites and the hyperedge set citations or metabolic reactions, respectively.

Therefore, the vertex set and the hyperedge set are from two heterogeneous domains.

hyperedge2vec proposes a Hasse denoising autoencoder which generates hyperedge

embeddings based on the full hypergraph. This approach can be used for hyperedge

classification, but is not suitable for (hyper)link prediction.

All models generate node embeddings. For each model, those embeddings are aggre-

gated in hyperedge embeddings by using Equation 3.1 or Equation 3.2. To get a final

score for each hyperedge, a small MLP is applied.

Both HyperGCN and HGNN use the fulll structure of the graph and the information

in the nodes to make predictions. Since NHP and HyperSAGNN only input a hyper-

edge to make a prediction, those models are structure-agnostic and thus can be used

41

to conclude if topological information is needed to make correct predictions.

However, all the inductive models are based on generating embeddings. Therefore,

we have also included a simple inductive model that is not based on embeddings. We

pre-process the data such that each row represents one hyperedges and each column

is a combination of a node feature and its corresponding value indicating how many

nodes in the hyperedge got that value for the feature. We did not use one-hot encoding

to represent the nodes since this would require 𝑛 ×
∑︀

𝑓∈𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠#possible values of f

columns. The pre-processed data is fed into a MLP.

We also want to use a transductive method that only use the graph structure and

ignore node features. Some transductive methods are: node2vec [23], hyper2vec [29],

Deep Hyperedges [44] and hyperedge2vec [50]. node2vec and hyper2vec work by gen-

erating node embeddings by performing random walks on each node and inputting

the random walks to the skip-gram model. Deep Hyperedges performs node2vec

with specialized random walks on the hypergraph and hypergraph dual to get re-

spectively node and hyperedge embeddings. hyperedge2vec’s Hypergraph Tensor De-

composition works by performing tensor decompositions over the hypergraph (dual)

to generate node and hyperedge embeddings. The only issue with these models is

that all nodes (and for Deep Hyperedges and hyperedge2vec also all hyperedges be-

cause you use the dual hypergraph) need to be present in the training set. Hence, the

full dataset−positive edges in validation fold−positive edges in test set must contain

all nodes. We tested if this is requirement holds for all five random data splits and

even with a 90/10 percent split this requirement does not hold. Therefore, we can

conclude that transductive methods that generate embeddings are sufficient for node

and hyperedge classification and regression, but not for hyperlink prediction.

Moreover, transductive methods that do not generate embeddings can also not be used

since those are all designed for undirected hypergraphs. For example, Coordinated

Matrix Minimization [63] and Clique-Closure based Coordinated Matrix Minimiza-

tion [52] are methods based on matrix completion on an undirected hypergraph.

Since we still want to test if the node features add any information, we decided to add

42

the best performing structure-based inductive model to which we input node feature

matrix X as the identity matrix. This model will be called structure.

5.3 Evaluation metrics

We use Area Under the ROC Curve (AUC) to get the overall performance of the

different models. An ROC (receiver operating characteristic) curve plots the True

Positive Rate (TPR) versus the False Positive Rate (FPR) at different classification

thresholds. The TPR is defined by True Positives
True Positives+False Positives and the FPR is defined

by False Positives
False Positives+True Positives . The AUC provides an aggregated measure by performing

integration over the ROC curve.

For ING’s use case we want to retrieve edges that are likely missing, i.e. it needs

to function as a recommender system. Hence, we want the top predictions to be

relevant. Therefore, we also evaluate the models based on precision@𝑘 and recall@𝑘

for a range of 𝑘 values. Precision@𝑘 and recall@𝑘 are precision and recall under the

assumption that the top 𝑘 predictions is the recommended set.

Precision@𝑘 is defined by

number of relevant hyperedges in top 𝑘

𝑘
,

where relevant hyperedges are (to-be) existing hyperedges. Thus it represents the

proportion of top 𝑘 hyperedges that are relevant.

Recall@𝑘 is defined by

number of relevant hyperedges in top 𝑘

number of relevant hyperedges
,

where relevant hyperedges are (to-be) existing hyperedges. Thus it represents the

proportion of relevant hyperedges that are in the top 𝑘.

43

Chapter 6

Results and discussion

The results of the experiments will be presented in this chapter. First, we discuss

specific experiment settings. In the next section, we discuss the performance results

on the different models and datasets. After that, we will compare the performance

of a directed and non-directed version of HGNN. Moreover, we will discuss the per-

formance of MDHNN in more detail. We will evaluate the three different modules

separately and determine the sensitivity of MDHHN with respect to embedding di-

mension and train/test ratio. Finally, we also discuss the threats to validity of the

experiments.

6.1 Specific experiment settings

Since some experiments were too computationally expensive, we needed to make some

changes to the experiment design. First, running the hyperparameter search on MAG

and dblp would be too expensive. For this reason, we run the hyperparameter search

on a subset of MAG. The subset is created the same way as the MAG dataset was

pre-processed, only we take the papers where the field of study is in deep cnn, residual

neural network, super resolution convolutional neural network or softmax function.

This subset of MAG is used because it contains different fields of study, i.e. connected

components, and hence is most similar to the MAG and dblp datasets. Since this

subset is from the same domain as the MAG and dblp dataset, we use the optimal

44

hyperparameter set to get the test performance for dblp and MAG.

Secondly, performing full batching for NHP and HyperSAGNN is infeasible. Since

the models are structure-agnostic, we can perform batching to speed up the training.

Hence, we applied batching with a batch size of 64. A batch size of 64 has been

chosen since this was also used by NHP.

6.2 Results

The mean AUC, precision@𝑘 and recall@𝑘 scores over the several runs have been

reported in Tables 6.1/6.4, 6.3/6.6 and 6.2/6.5, respectively. We also reported the

standard deviation over the multiple runs. It only should be noted that standard

deviations are not the best representation of the variance of the scores, since the

scores are not normally distributed. However, we still report the standard deviations

to give an indication of the variance of the results for each model. Figures F-1-F-5

in Appendix F give a full picture of the distributions. Moreover, HyperSAGE and

HyperSAGNN could not be evaluated on the MAG dataset since this would take more

than two weeks to run. Hence, the performance is reported as not available.

Table 6.1: AUC scores of the different models on the metabolic networks. Result
reported per model is the mean ± standard deviation over five different train/test
splits with three runs per split.

iAF692 iAF1260b iJO1366
HyperSAGE 0.932 ± 0.011 0.958 ± 0.004 0.963 ± 0.006
HyperGCN 0.685 ± 0.034 0.701 ± 0.018 0.712 ± 0.021
HGNN 0.796 ± 0.030 0.902 ± 0.007 0.894 ± 0.005
HyperSAGNN 0.784 ± 0.082 0.952 ± 0.013 0.958 ± 0.010
MDHNN 0.787 ± 0.011 0.905 ± 0.035 0.897 ± 0.036
NHP 0.916 ± 0.017 0.970 ± 0.005 0.976 ± 0.004
MLP 0.618 ± 0.169 0.890 ± 0.153 0.880 ± 0.153
Structure 0.593 ± 0.042 0.559 ± 0.043 0.553 ± 0.017

45

Table 6.2: Recall@10 scores of the different models on the metabolic networks. Result
reported per model is the mean ± standard deviation over five different train/test
splits with three runs per split.

iAF692 iAF1260b iJO1366
HyperSAGE 0.075 ± 0.006 0.023 ± 0.001 0.021 ± 0.001
HyperGCN 0.051 ± 0.009 0.014 ± 0.003 0.015 ± 0.004
HGNN 0.068 ± 0.009 0.024 ± 0.000 0.022 ± 0.001
HyperSAGNN 0.064 ± 0.011 0.023 ± 0.001 0.022 ± 0.001
MDHNN 0.067 ± 0.009 0.022 ± 0.002 0.022 ± 0.001
NHP 0.092 ± 0.009 0.029 ± 0.001 0.028 ± 0.000
MLP 0.047 ± 0.024 0.021 ± 0.005 0.020 ± 0.004
Structure 0.041 ± 0.016 0.010 ± 0.004 0.006 ± 0.004

Table 6.3: Precision@10 scores of the different models on the metabolic networks. Re-
sult reported per model is the mean ± standard deviation over five different train/test
splits with three runs per split.

iAF692 iAF1260b iJO1366
HyperSAGE 0.927 ± 0.077 0.960 ± 0.061 0.953 ± 0.062
HyperGCN 0.633 ± 0.114 0.567 ± 0.125 0.673 ± 0.157
HGNN 0.847 ± 0.109 1.000 ± 0.000 0.967 ± 0.047
HyperSAGNN 0.793 ± 0.139 0.960 ± 0.049 0.967 ± 0.060
MDHNN 0.840 ± 0.114 0.927 ± 0.085 0.973 ± 0.057
NHP 0.907 ± 0.085 0.973 ± 0.044 1.000 ± 0.000
MLP 0.580 ± 0.295 0.873 ± 0.198 0.873 ± 0.181
Structure 0.507 ± 0.202 0.407 ± 0.148 0.267 ± 0.174

Table 6.4: AUC scores of the different models on the co-citation networks. Result
reported per model is the mean ± standard deviation over five different train/test
splits with three runs per split.

dblp MAG
HyperSAGE N/A N/A
HyperGCN 0.504 ± 0.016 0.762 ± 0.115
HGNN 0.830 ± 0.027 0.906 ± 0.011
HyperSAGNN 0.932 ± 0.006 N/A
MDHNN 0.927 ± 0.003 0.933 ± 0.004
NHP 0.768 ± 0.009 0.969 ± 0.001
MLP 0.620 ± 0.036 0.522 ± 0.004
Structure 0.834 ± 0.007 0.841 ± 0.005

46

Table 6.5: Recall@10 scores of the different models on the co-citation networks. Result
reported per model is the mean ± standard deviation over five different train/test
splits with three runs per split.

dblp MAG
HyperSAGE N/A N/A
HyperGCN 0.002 ± 0.001 0.002 ± 0.0004
HGNN 0.004 ± 0.001 0.002 ± 0.0003
HyperSAGNN 0.004 ± 0.0005 N/A
MDHNN 0.004 ± 0.0004 0.002 ± 0.000
NHP 0.002 ± 0.001 0.002 ± 0.000
MLP 0.005 ± 0.000 0.001 ± 0.0002
Structure 0.003 ± 0.001 0.002 ± 0.0003

Table 6.6: Precision@10 scores of the different models on the co-citation networks. Re-
sult reported per model is the mean ± standard deviation over five different train/test
splits with three runs per split.

dblp MAG
HyperSAGE N/A N/A
HyperGCN 0.413 ± 0.171 0.767 ± 0.189
HGNN 0.907 ± 0.124 0.893 ± 0.153
HyperSAGNN 0.913 ± 0.109 N/A
MDHNN 0.940 ± 0.071 0.993 ± 0.025
NHP 0.360 ± 0.125 1.000 ± 0.000
MLP 1.000 ± 0.000 0.280 ± 0.117
Structure 0.767 ± 0.162 0.820 ± 0.168

From the results we can conclude that MLP is performing rather good considering

that it is such a simple model. A possible explanation for this is that only from the

node features it can be determined if the hyperedge should exist or not. This is also

confirmed by the fact that structure-agnostic models NHP and HyperSAGNN have

high performance.

In general, NHP and HyperSAGNN have the highest performance, where overall

NHP is the best performing model. However, the dblp dataset has very different

performance across models compared to the other datasets. For the dblp dataset,

HGNN and MDHNN have the best performance. The performance of the other mod-

els dropped. An explanation could be that the features are created differently for

47

the dblp dataset. The features could be less informative such that the models have

less information to base their predictions on. Another explanation could be that the

models could not generalize the hyperparameters learned on the MAG subset to the

dblp dataset since the node features are so different. Both explanations are motivated

by the fact that HGNN and MDHNN use the full graph structure and the fact that

the performance on the MAG dataset has higher scores.

MDHNN especially performs good on the larger datasets. MDHNN has good eval-

uation scores and MDHNN has acceptable training times, see Table 6.7. However,

on the small datasets it also has better performance than most of the baseline models.

The distribution in the figures in Appendix F show that NHP and HyperSAGE have

low standard deviations over the different splits and runs. Hence, both models have

good generalization power. MDHNN especially has low standard deviations for the

two co-citation networks. This motivates that MDHNN has good (generalization)

performance on larger datasets.

The good performance of NHP has also been confirmed in the tables in Appendix G

that show the precision@𝑘 and recall@𝑘 performance for various values of 𝑘. For

most datasets, NHP has the highest precision@𝑘 and recall@𝑘 scores. However, for

the dblp dataset, MDHNN again has the highest scores.

From the comparison of HGNN, HyperGCN and HyperSAGE on the datasets, we

can observe that sampling the nodes is a good regularization technique. Moreover,

we can conclude by comparing HGNN and HyperGCN that representing a hyperedge

with a linear number of edges really decreases performance.

The optimal hyperparameter sets have been reported in Appendix E. For most mod-

els, the hyperparameters are the same for the metabolic networks. This motivates

the application of the learned hyperparameters on the subset of MAG to the MAG

48

and dblp dataset.

Table 6.7: CPU training time in minutes. The training time for MLP is reported
in seconds. Training time is measured over five different train/test splits with three
runs per split.

iAF1260b dblp
HyperSAGE 85 N/A
HyperGCN 55 244
HGNN 15 283
HyperSAGNN 75 8,526
MDHNN 27 1,006
NHP 71 197
MLP 15 819

Table 6.7 shows the training time of the different models for one metabolic and one co-

citation dataset. The training time is measured over the model testing phase. It can

clearly be seen that the training time of MLP, HGNN and MDHNN have the largest

increase. The training time of HGNN and MDHNN grow relatively fast because

no batching/sampling is applied and each hyperedge is represented by a quadratic

number of edges. MLP has a large increase because the data is handled inefficiently.

The indices of the data points used in each split and fold are not stored, but the full

data is stored. Hence, the training time could be decreased by handling the data

more efficiently.

Directed vs undirected

To determine if including the directed information in the model has effect on the

performance, we also compared a directed version of HGNN to the undirected version

of HGNN. HGNN is made directed by considering a directed clique expansion as

follows:

X(𝑙+1) = 𝜎
(︀
D−1SX(𝑙)P𝑙

)︀
,

where

S = HheadWB−1Htail
𝑇 +HheadWB−1Hhead

𝑇 +HtailWB−1Htail
𝑇

49

D = (𝐷𝑖𝑖), where 𝐷𝑖𝑖 =
𝑚∑︁
𝑒=1

𝑊𝑒𝑒𝐻
𝑡𝑎𝑖𝑙
𝑖𝑒 +𝑊𝑒𝑒𝐻

ℎ𝑒𝑎𝑑
𝑖𝑒 , is a 𝑛× 𝑛 vertex degree matrix,

B = (𝐵𝑒𝑒), where 𝐵𝑒𝑒 =
𝑛∑︁

𝑖=1

𝐻 𝑡𝑎𝑖𝑙
𝑖𝑒 +𝐻ℎ𝑒𝑎𝑑

𝑖𝑒 , is a 𝑚×𝑚 hyperedge degree matrix,

W = (𝑊𝑒𝑒) is a 𝑚×𝑚 hyperedge weight matrix.

Htail and Hhead are the incidence matrices of the tail and head respectively.

Which is the vector form of

𝑥
(𝑙)
𝑖 = 𝜎

(︃
𝑛∑︁

𝑗=1

𝑚∑︁
𝑒=1

𝐻 𝑡𝑎𝑖𝑙
𝑖𝑒 𝐻ℎ𝑒𝑎𝑑

𝑗𝑒 𝑊𝑒𝑒

𝐵𝑒𝑒𝐷𝑖𝑖

+
𝐻 𝑡𝑎𝑖𝑙

𝑖𝑒 𝐻 𝑡𝑎𝑖𝑙
𝑗𝑒 𝑊𝑒𝑒

𝐵𝑒𝑒𝐷𝑖𝑖

+
𝐻ℎ𝑒𝑎𝑑

𝑖𝑒 𝐻ℎ𝑒𝑎𝑑
𝑗𝑒 𝑊𝑒𝑒

𝐵𝑒𝑒𝐷𝑖𝑖

𝑥
(𝑙)
𝑗 P

)︃
.

Table 6.8: AUC scores of directed and non-directed HGNN on the different networks.
Non-directed HGNN refers to the original HGNN architecture. Result reported per
model is the mean ± standard deviation over five different train/test splits with three
runs per split.

HGNN HGNN-d
iAF692 0.796 ± 0.030 0.787 ± 0.015
iAF1260b 0.902 ± 0.007 0.897 ± 0.005
iJO1366 0.894 ± 0.005 0.933 ± 0.079
dblp 0.830 ± 0.027 0.973 ± 0.057
MAG 0.906 ± 0.011 0.952 ± 0.011

Table 6.8 shows that for larger datasets adding the direction in the models adds a

gain in performance of about 5 percent. The smaller datasets do most likely not have

enough data such that it can learn the direction as well.

50

Modules of Modular Directed Hypergraph Neural Network

The performance of individual modules, as introduced in Chapter 3, in Table 6.9 is

higher than the modules combined together. This could be an effect of the size of the

dataset. There might not be enough data to learn all the relations. Another option

is that weight sharing between the different modules has a negative effect. Because

of this, individual optimal embeddings cannot be learned.

Parameter sensitivity

Moreover, we also show the sensitivity of MDHNN embedding dimension on the dblp

dataset in Figure 6-1. We can conclude that the performance of MDHNN is relatively

stable within a range of embedding dimensions and the performance drops when the

embedding dimension is too small. Besides, we also have shown in Figure 6-2 that

MDHNN still can learn meaningful embeddings if the training set is small. Naturally,

the performance drops, but it only decays linearly.

Table 6.9: AUC scores of different modules of MDHNN on the dblp dataset. Result
reported per model is the mean ± standard deviation over five different train/test
splits with three runs per split.

Module AUC Recall@10 Precision@10
Directed graph 0.938 ± 0.004 0.003 ± 0.001 0.633 ± 0.114
Induced tail hypergraph 0.923 ± 0.002 0.004 ± 0.0003 0.953 ± 0.062
Induced head hypergraph 0.950 ± 0.002 0.005 ± 0.0001 0.993 ± 0.025

51

0 100 200 300 400 500

Dimension

0.75

0.80

0.85

0.90

0.95

A
U

C

Figure 6-1: AUC scores of MDHNN over embedding dimension. The mean and
standard deviation bands over five different train/test splits with three runs per split
have been plotted.

20 40 60 80

Train/test ratio

0.86

0.88

0.90

0.92

A
U

C

Figure 6-2: AUC scores of MDHNN over train/test ratio. The mean and standard
deviation bands over five different train/test splits with three runs per split have been
plotted.

52

ING

Table 6.10: Performance on ING’s dataset from February 2021. The dataset has
4,551 edges of which 25 are not derived.

HGNN MDHNN
AUC 0.915 ± 0.006 0.904 ± 0.007
Probability test non-derived 0.395 ± 0.438 0.503 ± 0.465
Probability train non-derived 0.651 ± 0.461 0.980 ± 0.104
Probability random 0.319 ± 0.267 0.022 ± 0.138

Table 6.11: Performance on ING’s dataset from July 2021. The dataset has 3,845
edges of which 29 are not derived.

HGNN MDHNN
AUC 0.976 ± 0.002 0.961 ± 0.005
Probability test non-derived 0.311 ± 0.422 0.418 ± 0.365
Probability train non-derived 0.474 ± 0.486 0.950 ± 0.105
Probability random 0.113 ± 0.146 0.014 ± 0.092

We have also evaluated two hypergraph neural networks on ING’s dataset. As Ta-

bles 6.10 and 6.11 show, the performance is very similar to the performance in Sec-

tion 4.1. The probabilities for the non-derived edges are low. Combining this with

the fact that the AUC is high, we can conclude that the ranking of non-derived edges

is low and thus no relevant predictions can be made.

Table 6.11 shows the performance of a recent version of the dataset. For this hy-

pergraph, the number of edges has decreased from 4,551 to 3,845. Moreover, the

number of non-derived edges has increased from 25 to 29. A comparison between

Tables 6.10 and 6.11 show that the AUC has increased, but the probabilities have

decreased. Since the structure of the hypergraph has changed a lot, it is not clear

why the performance changes. It could be that the change in structure makes it

harder to make predictions for the non-derived edges. Another option is that the new

non-derived edges are hard instances.

53

6.3 Threats to validity

In this thesis, the alternative datasets chosen are not most favorable. The datasets

are from another domain than the original dataset. It would have been preferred to

have a dataset which has a higher similarity. However, measuring the similarity is

a hard task. Hypergraph similarity can be measured by many different approaches.

Moreover, we used a simple approach to determine the similarities of the graphs.

The usage of complex algorithms would not have been possible due to computational

limitations. In the end, the best alternative dataset would have similar features of

the graph for the features that are important for making predictions. However, these

features are unknown. Furthermore, the alternative datasets have different sizes than

the original dataset.

Another limitation is that we do not use grid search for the hyperparameter search.

If we would have used grid search, then the full hyperparameter search space would

have been explored and then we could conclude that the difference in performance is

due to the difference in architecture. However, it is too computationally expensive.

The one thing we do to make Bayesian optimization as similar as possible is to set

the random seed. In this case, models with the same hyperparameter search space

will start in the same point. But still this starting point could be more optimal for a

certain model.

Finally, the sizes of the alternative datasets are limited. Therefore, we cannot con-

clude how the models perform on larger datasets. If we would have faster machines or

more time to conduct the experiments, the last two limitations could be diminished.

54

Chapter 7

Conclusions and future work

7.1 Conclusions

Hyperlink prediction as a field of research is still emerging. The majority of the pro-

posed hyperlink prediction models are designed for undirected hypergraphs. Directed

hyperlink prediction is underexplored. The model that has been proposed for directed

hyperlink prediction, i.e. NHP, only uses the direction of the edges in the training pro-

cedure by leveraging a direction scoring layer. Moreover, NHP also does not use the

structure of the graph to make predictions. Hence, a model that uses the directions

and the structure of the hypergraph as information to make predictions has not been

proposed yet. To address those challenges, we proposed MDHNN, a model which

takes the direction of the edges and the structure of the hypergraph into account

when generating node embeddings. Therefore, this can generate more informative

node embeddings. Those node embeddings are useful for the problem of directed hy-

perlink prediction as emerged within ING. Furthermore, we have compared different

baseline models for directed hyperlink prediction under a similar setting. This gave

an overview of the performance of different hypergraph link prediction models since

they have not all been compared prior to this thesis.

The dataset provided by ING is too small to get reasonable results. Therefore, we

evaluated the different models on open source datasets. The five datasets used are:

55

three metabolic datasets and two co-citation datasets (dblp and MAG). By compar-

ing the different networks, we have concluded that the dblp dataset is most similar

to ING’s dataset.

The evaluation of the different models showed that MDHNN overall has good per-

formance. MDHNN is the best performing model for the dblp dataset. For the

other datasets, NHP has the best performance. Since NHP is a structure-agnostic

model, this shows that only with node information we can get optimal performance.

Therefore, we argue that models that use the structure of the graph to make pre-

dictions do not fully exploit this structure yet. If we compare the methods that use

the structure, we can conclude that both MDHNN and HyperSAGE have the highest

performance. However, HyperSAGE is too computationally expensive and thus not

feasible for most real world networks. Moreover, from the comparison of the directed

and non-directed HGNN we can conclude that incorporating the direction in a model

will help in performance for larger datasets.

7.2 Future work

Since the expectation is that ING’s hypergraph will grow over time, we recommend

to test MDHNN and NHP on the dataset once it is richer. We recommend to evalu-

ate both MDHNN and NHP because those are the best two models for the different

datasets. MDHNN has the best performance for the dblp dataset. However, it cannot

be concluded with certainty that this will also have the best performance on ING’s

dataset. Since the small dataset in this thesis has about 600 edges, it is recommended

to evaluate the performance once the dataset has hundreds of non-derived edges. Ac-

cording to the domain expert, it is expected that the graph will grow this big. Since

the derived edges are not relevant, it is recommended to discard those and encode the

information provided by those edges in the node features, e.g. indicating which nodes

are directly connected. Keeping the derived edges will make the problem unbalanced

since they are regarded as relevant, e.g. belong to the positive class.

56

In general, it is recommended to evaluate the performance of ING’s dataset by in-

cluding meaningful node features. Before doing this, it has to be determined which

features might be added to the nodes such that they improve the quality of the models.

Besides, once the directed hypergraph is turned into a weighted directed hypergraph,

it is recommended to re-train the model.

If a final model is trained, a search procedure needs to be developed which takes the

hyperlink prediction function as the objective function. This will enable ING to make

suggestions for hyperlinks to introduce into the domain model.

Since most real world networks are large and hypergraph neural networks can be

computationally expensive, it is of great interest to research batchable hypergraph

neural networks. Furthermore, HyperSAGE has good performance as well. Therefore,

it is valuable to research the possibility of an optimized sampling procedure such that

it is feasible for larger graphs.

Finally, to get better insights in MDHNN, the performance of the different models

on a large (> 100.000 edges) hypergraph can be compared. Moreover, MDHNN with

non-shared weights could be evaluated to determine if the performance would increase.

It should be noted that if MDHNN is trained with non-shared weights the model is

more prone to overfitting since the number of parameters to fit almost triple in size.

As a result, the training time will increase. Additionally, an attention mechanism

could be explored for aggregating the different embeddings of the different modules.

Besides, the models can be compared on a node classification task. The results of

this will confirm if the models also perform well in another setting.

57

Appendix A

ING’s experiment details

The model that was used for ING’s experiment has already been explained. In this

appendix, the preparation of the data and the hyperparameter search will be de-

scribed.

A.1 Data preparation

The two classes present in a hyperlink prediction problem , i.e. positive and negative

edges, are highly unbalanced since graphs are sparse. Hence sampling of negative

edges needs to be done. We have developed the following sampling methods with

domain knowledge:

• random: randomly pick a sample of vertices of size between the smallest and

largest hyperedge and of this random sample pick one vertex as the output.

• half random: randomly pick a positive edge and randomly change per per-

centage of the nodes in the edge.

• path: create edges from shortest paths in the directed or undirected clique

expansion. The output is the last node on the path.

• walk: create edges from random walks in the directed or undirected clique

expansion. The output is the last node on the walk.

58

• component: create edges for induced subgraph for a node in undirected clique

expansion of each node and its neighbors. The output is the considered node.

Since node2vec is transductive and we will split the data in a train and test set, we

need to make sure that all nodes are present among the positive edges in the train

set. The following two methods to split positive edges have been evaluated:

• normal: makes sure that all nodes are present in the train set, i.e. do not

introduce isolated nodes when removing the test set.

• connected: makes sure that the number of connected components remains

unchanged.

A.2 Hyperparameter search

Many hyperparameters in this model could be optimized. However, we kept some of

the hyperparameters fixed:

• number of random walks in node2vec: 10,

• length of random walks in node2vec: 80,

• number of hidden layers in NN: 1,

• number of nodes in hidden layer: 128.

The hyperparameter search space is:

• methods to generate negative edges: [random, random half, path, walk, component],

• per in random half: [0.3, 0.5, 0.7],

• directed clique expansions in path and walk: [True, False],

• ratio of negative edges: [1, 1.5, 2, 3],

• test set size: [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],

59

• dimension of node embeddings: [32, 64, 128, 256],

• aggregation function for node embeddings = [min, mean, max, maxmin].

The hyperparameters have been optimized using cross-validation over 5 folds. Besides,

we have also use sample weighting to give higher weights to the non-derived edges.

60

Appendix B

Model selection and testing

algorithms

Algorithm 1: Model Selection(𝑇𝐹,𝑀, 𝑡)
Input: Training folds 𝑇𝐹 , model 𝑀 that you want to evaluate over the

number of trials 𝑡.

Output: Optimal hyperparameter set 𝜃𝑜𝑝𝑡.

1 𝐴𝑈𝐶𝑠𝜃 := {} ;

2 for 𝑖 := 0 to 𝑡 do

3 𝐴𝑈𝐶𝑠 := {} ;

4 Pick next hyperparameter set 𝜃 ;

5 for 𝑡𝑓 in 𝑇𝐹 do

6 𝐴𝑈𝐶_𝑎𝑣𝑔 := Perform CV on 𝑡𝑓 for configuration 𝜃 and model 𝑀 ;

7 𝐴𝑈𝐶𝑠 := 𝐴𝑈𝐶𝑠 ∪ 𝐴𝑈𝐶_𝑎𝑣𝑔 ;

8 𝐴𝑈𝐶𝑠𝜃 := 𝐴𝑈𝐶𝑠𝜃∪ avg(𝐴𝑈𝐶𝑠) ;

9 𝜃𝑜𝑝𝑡 := argmax𝜃(𝐴𝑈𝐶𝑠𝜃) ;

10 return 𝜃𝑜𝑝𝑡

61

Algorithm 2: Model Testing(𝐷,𝑀, 𝜃)
Input: Dataset 𝐷 split into training 𝑡𝑟𝑓 and testing 𝑡𝑒𝑓 fold, model 𝑀 that

you want to test for hyperparameter set 𝜃 over 𝑘 different runs.

Output: Performance 𝑝.

1 𝑝𝑒𝑟𝑓𝑠 := {} ;

2 for (𝑡𝑟𝑓, 𝑡𝑒𝑓) in 𝐷 do

3 for 𝑖 := 0, . . . , 𝑘 do

4 set_seed(𝑖) ;

5 model := Train(𝑀 , 𝑡𝑟𝑓 , 𝜃) ;

6 𝑝𝑒𝑟𝑓 := Test(model, 𝑡𝑒𝑓) ;

7 𝑝𝑒𝑟𝑓𝑠 := 𝑝𝑒𝑟𝑓𝑠 ∪ 𝑝𝑒𝑟𝑓 ;

8 𝑝 := avg(𝑝𝑒𝑟𝑓𝑠) ;

9 return 𝑝

62

Appendix C

Violin plots hyperedge degrees and

sizes

Figure C-1: Hyperedge degree distribution of the different datasets.

63

Figure C-2: Hyperedge in-degree distribution of the different datasets.

Figure C-3: Hyperedge out-degree distribution of the different datasets.

64

Figure C-4: Tail size distribution of the different datasets.

Figure C-5: Head size distribution of the different datasets.

65

Figure C-6: Edge size distribution of the different datasets.

66

Appendix D

Hyperparameter search spaces

The table can be found on the next page.

67

H
yp

erp
aram

eter
H

yp
erG

C
N

H
G

N
N

H
yp

erS
A

G
N

N
N

H
P

H
yp

erS
A

G
E

M
D

H
N

N
N

um
ber

ofepochs
=

{1,300}
x

x
x

x
x

x
Learning

rate
=

{1e-6,0.4}
x

x
x

x
x

x
𝐿
2

regularization
param

eter
=

{0,5e-4}
x

x
x

x
x

x
E

m
bedding

size
a

=
{16,32,64,128,256,512

}
x

x
x

x
x

x
N

um
ber

oflayers
=

{1,2,3}
x

x
x

x
A

ggregation
=

{m
ean,m

axm
in}

x
x

x
x

x
x

D
ropout

=
{0.2,0.3,0.4,0.5,0.6,0.7,0.8}

x
x

x
x

x
H

idden
aggregation

=
{m

ean,m
ax,m

in,concat}
x

P
ow

er
=

{-1,0.01,1,2,3,5}
x

Sam
ple

=
{2,3,5,10,15}

x
D

iagonalm
ask

=
{True,False}

x
N

um
ber

ofheads
=

{1,2,4,6,8,10,12,14,16
}

x
M

ediators
=

{True,False}
x

M
L
P

N
um

ber
ofepochs

=
{1,300}

x
Learning

rate
=

{1e-6,0.4}
x

𝐿
2

regularization
param

eter
=

{0,5e-4}
x

N
um

ber
oflayers

=
{1,2,3}

x
B

atch
norm

alization
=

{True,False}
x

D
ropout

=
{0.2,0.3,0.4,0.5,0.6,0.7,0.8}

x

aFor
H

yperSA
G

N
N

,em
bedding

size
space

is
used

for
both

𝑑
𝑘

and
𝑑
𝑣 .

Appendix E

Optimal hyperparameters

Table E.1: Optimal hyperparameters for HyperGCN for the different datasets. MAG
represents the subset generated from the MAG dataset.

iAF692 iAF1260b iJO1366 MAG
Number of epochs 107 213 213 92
Learning rate 2.428e-02 2.977e-03 2.977e-03 0.0251
𝐿2 regularization 1.705e-04 1.225e-05 1.225e-05 4.359e-04
Embedding size 256 64 64 256
Number of layers 3 3 3 1
Aggregation mean mean mean maxmin
Dropout 0.7 0.2 0.2 0.6
Mediators True True True True

Table E.2: Optimal hyperparameters for HGNN for the different datasets. MAG
represents the subset generated from the MAG dataset.

iAF692 iAF1260b iJO1366 MAG
Number of epochs 202 202 202 140
Learning rate 3.721e-04 3.721e-04 3.721e-04 2.721e-02
𝐿2 regularization 1.302e-04 1.302e-04 1.302e-04 3.783e-04
Embedding size 512 512 512 256
Number of layers 1 1 1 1
Aggregation mean mean mean maxmin
Dropout 0.4 0.4 0.4 0.8

69

Table E.3: Optimal hyperparameters for HyperSAGE for the different datasets. MAG
represents the subset generated from the MAG dataset.

iAF692 iAF1260b iJO1366 MAG
Number of epochs 209 209 209 N/A
Learning rate 1.932e-03 1.932e-03 1.932e-03 N/A
𝐿2 regularization 3.979e-05 3.979e-05 3.979e-05 N/A
Embedding size 64 64 64 N/A
Number of layers 2 2 2 N/A
Aggregation mean mean mean N/A
Dropout 0.2 0.2 0.2 N/A
Power 0.01 0.01 0.01 N/A
Sample 2 2 2 N/A

Table E.4: Optimal hyperparameters for HyperSAGNN for the different datasets.
MAG represents the subset generated from the MAG dataset.

iAF692 iAF1260b iJO1366 MAG
Number of epochs 272 205 205 29
Learning rate 1.641e-03 0.0117 0.0117 1.189e-04
𝐿2 regularization 2.737e-05 4.953e-04 4.953e-04 2.841e-04
d_k 64 64 64 512
d_v 32 128 128 128
Aggregation maxmin mean mean maxmin
Number of heads 8 6 6 10
Diag False False False True

Table E.5: Optimal hyperparameters for NHP for the different datasets. MAG rep-
resents the subset generated from the MAG dataset.

iAF692 iAF1260b iJO1366 MAG
Number of epochs 250 250 250 267
Learning rate 0.0186 0.0186 0.0186 2.854e-03
𝐿2 regularization 1.578e-04 1.578e-04 1.578e-04 5.769e-05
Embedding size 256 256 256 128
Aggregation mean mean mean maxmin
Dropout 0.2 0.2 0.2 -

70

Table E.6: Optimal hyperparameters for MDHNN for the different datasets. MAG
represents the subset generated from the MAG dataset.

iAF692 iAF1260b iJO1366 MAG
Number of epochs 261 261 261 242
Learning rate 0.161 0.161 0.161 3.079e-04
𝐿2 regularization 1.522e-04 1.522e-04 1.522e-04 2.844e-04
Embedding size 256 256 256 128
Number of layers 1 1 1 2
Aggregation mean mean mean maxmin
Dropout 0.2 0.2 0.2 0.2
Hidden aggregation mean mean mean max

Table E.7: Optimal hyperparameters for MLP for the different datasets. MAG rep-
resents the subset generated from the MAG dataset.

iAF692 iAF1260b iJO1366 MAG
Number of epochs 78 78 78 103
Learning rate 0.0714 0.0714 0.0714 5.762e-05
𝐿2 regularization 4.740e-04 4.740e-04 4.740e-04 2.975e-04
Number of layers 3 3 3 2
Batch normalization True True True True
Dropout - - - 0.7

71

Appendix F

Violin plots AUC scores

Violin plots start from the next page.

72

Figure F-1: AUC scores distribution of the different models on the iAF692 metabolic
network. AUC scores are calculated over five different train/test splits with three
runs per split.

73

Figure F-2: AUC scores distribution of the different models on the iAF1260b
metabolic network. AUC scores are calculated over five different train/test splits
with three runs per split.

74

Figure F-3: AUC scores distribution of the different models on the iJO1366 metabolic
network. AUC scores are calculated over five different train/test splits with three runs
per split.

75

Figure F-4: AUC scores distribution of the different models on the dblp dataset. AUC
scores are calculated over five different train/test splits with three runs per split.

76

Figure F-5: AUC scores distribution of the different models on the MAG dataset.
AUC scores are calculated over five different train/test splits with three runs per
split.

77

Appendix G

Full recall and precision scores

Table G.1: Full recall@𝑘 results of the different models on the iAF692 metabolic
network. Result reported per model is the mean ± standard deviation over five
different train/test splits with three runs per split. Half has a size of 62 edges.

Recall@half Recall@100 Recall@50 Recall@10
HyperSAGE 0.456 ± 0.012 0.710 ± 0.016 0.374 ± 0.008 0.075 ± 0.006
HyperGCN 0.298 ± 0.026 0.468 ± 0.039 0.243 ± 0.024 0.051 ± 0.009
HGNN 0.380 ± 0.019 0.559 ± 0.030 0.313 ± 0.016 0.068 ± 0.009
HyperSAGNN 0.344 ± 0.062 0.535 ± 0.088 0.281 ± 0.048 0.064 ± 0.011
MDHNN 0.369 ± 0.020 0.567 ± 0.024 0.308 ± 0.021 0.067 ± 0.009
NHP 0.432 ± 0.020 0.813 ± 0.029 0.440 ± 0.021 0.092 ± 0.009
MLP 0.286 ± 0.118 0.454 ± 0.161 0.234 ± 0.096 0.047 ± 0.024
Structure 0.252 ± 0.030 0.383 ± 0.034 0.205 ± 0.027 0.041 ± 0.016

Table G.2: Full precision@𝑘 results of the different models on the iAF692 metabolic
network. Result reported per model is the mean ± standard deviation over five
different train/test splits with three runs per split. Half has a size of 62 edges.

Precision@half Precision@100 Precision@50 Precision@10
HyperSAGE 0.912 ± 0.023 0.880 ± 0.019 0.927 ± 0.019 0.927 ± 0.077
HyperGCN 0.597 ± 0.052 0.580 ± 0.048 0.603 ± 0.060 0.633 ± 0.114
HGNN 0.760 ± 0.038 0.693 ± 0.037 0.777 ± 0.040 0.847 ± 0.109
HyperSAGNN 0.687 ± 0.124 0.663 ± 0.109 0.696 ± 0.120 0.793 ± 0.139
MDHNN 0.738 ± 0.041 0.704 ± 0.030 0.763 ± 0.054 0.840 ± 0.114
NHP 0.867 ± 0.041 0.800 ± 0.029 0.865 ± 0.042 0.907 ± 0.085
MLP 0.572 ± 0.236 0.563 ± 0.200 0.581 ± 0.238 0.580 ± 0.295
Structure 0.503 ± 0.060 0.475 ± 0.043 0.508 ± 0.068 0.507 ± 0.202

78

Table G.3: Full recall@𝑘 results of the different models on the iAF1260b metabolic
network. Result reported per model is the mean ± standard deviation over five
different train/test splits with three runs per split. Half has a size of 206 edges.

Recall@half Recall@100 Recall@50 Recall@10
HyperSAGE 0.471 ± 0.006 0.231 ± 0.005 0.117 ± 0.003 0.023 ± 0.001
HyperGCN 0.309 ± 0.015 0.156 ± 0.005 0.076 ± 0.006 0.014 ± 0.003
HGNN 0.458 ± 0.005 0.232 ± 0.003 0.118 ± 0.003 0.024 ± 0.000
HyperSAGNN 0.472 ± 0.010 0.233 ± 0.005 0.117 ± 0.003 0.023 ± 0.001
MDHNN 0.444 ± 0.031 0.220 ± 0.016 0.112 ± 0.006 0.022 ± 0.002
NHP 0.482 ± 0.009 0.292 ± 0.006 0.146 ± 0.004 0.029 ± 0.001
MLP 0.445 ± 0.010 0.218 ± 0.045 0.109 ± 0.024 0.021 ± 0.005
Structure 0.222 ± 0.016 0.103 ± 0.010 0.051 ± 0.009 0.010 ± 0.004

Table G.4: Full precision@𝑘 results of the different models on the iAF1260b metabolic
network. Result reported per model is the mean ± standard deviation over five
different train/test splits with three runs per split. Half has a size of 206 edges.

Precision@half Precision@100 Precision@50 Precision@10
HyperSAGE 0.943 ± 0.013 0.952 ± 0.020 0.964 ± 0.023 0.960 ± 0.061
HyperGCN 0.620 ± 0.030 0.644 ± 0.019 0.625 ± 0.050 0.567 ± 0.125
HGNN 0.919 ± 0.010 0.960 ± 0.013 0.972 ± 0.023 1.000 ± 0.000
HyperSAGNN 0.947 ± 0.021 0.964 ± 0.021 0.965 ± 0.027 0.960 ± 0.049
MDHNN 0.890 ± 0.062 0.907 ± 0.067 0.924 ± 0.052 0.927 ± 0.085
NHP 0.964 ± 0.018 0.964 ± 0.019 0.965 ± 0.027 0.973 ± 0.044
MLP 0.891 ± 0.198 0.901 ± 0.186 0.900 ± 0.197 0.873 ± 0.198
Structure 0.445 ± 0.033 0.424 ± 0.043 0.417 ± 0.073 0.407 ± 0.148

Table G.5: Full recall@𝑘 results of the different models on the iJO1366 metabolic
network. Result reported per model is the mean ± standard deviation over five
different train/test splits with three runs per split. Half has a size of 223 edges.

Recall@half Recall@100 Recall@50 Recall@10
HyperSAGE 0.475 ± 0.011 0.215 ± 0.006 0.108 ± 0.002 0.021 ± 0.001
HyperGCN 0.321 ± 0.023 0.150 ± 0.012 0.076 ± 0.010 0.015 ± 0.004
HGNN 0.451 ± 0.012 0.212 ± 0.007 0.108 ± 0.002 0.022 ± 0.001
HyperSAGNN 0.476 ± 0.008 0.216 ± 0.004 0.107 ± 0.003 0.022 ± 0.001
MDHNN 0.439 ± 0.029 0.205 ± 0.013 0.104 ± 0.005 0.022 ± 0.001
NHP 0.486 ± 0.005 0.272 ± 0.004 0.138 ± 0.003 0.028 ± 0.000
MLP 0.448 ± 0.097 0.202 ± 0.045 0.101 ± 0.022 0.020 ± 0.004
Structure 0.209 ± 0.012 0.085 ± 0.009 0.039 ± 0.008 0.006 ± 0.004

79

Table G.6: Full precision@𝑘 results of the different models on the iJO1366 metabolic
network. Result reported per model is the mean ± standard deviation over five
different train/test splits with three runs per split. Half has a size of 223 edges.

Precision@half Precision@100 Precision@50 Precision@10
HyperSAGE 0.953 ± 0.021 0.963 ± 0.025 0.968 ± 0.022 0.953 ± 0.062
HyperGCN 0.643 ± 0.046 0.671 ± 0.053 0.679 ± 0.088 0.673 ± 0.157
HGNN 0.904 ± 0.023 0.948 ± 0.033 0.968 ± 0.022 0.967 ± 0.047
HyperSAGNN 0.954 ± 0.016 0.965 ± 0.017 0.957 ± 0.029 0.967 ± 0.060
MDHNN 0.880 ± 0.059 0.918 ± 0.060 0.925 ± 0.044 0.973 ± 0.057
NHP 0.973 ± 0.011 0.972 ± 0.016 0.981 ± 0.020 1.000 ± 0.000
MLP 0.898 ± 0.193 0.903 ± 0.200 0.899 ± 0.201 0.873 ± 0.181
Structure 0.418 ± 0.025 0.381 ± 0.039 0.351 ± 0.072 0.267 ± 0.174

Table G.7: Full recall@𝑘 results of the different models on the dblp dataset. Result
reported per model is the mean ± standard deviation over five different train/test
splits with three runs per split. Half has a size of 1110 edges.

Recall@half Recall@100 Recall@50 Recall@10
HyperSAGE N/A N/A N/A N/A
HyperGCN 0.202 ± 0.018 0.018 ± 0.003 0.009 ± 0.002 0.002 ± 0.001
HGNN 0.400 ± 0.016 0.039 ± 0.004 0.020 ± 0.002 0.004 ± 0.001
HyperSAGNN 0.448 ± 0.007 0.041 ± 0.001 0.021 ± 0.001 0.004 ± 0.0005
MDHNN 0.460 ± 0.003 0.044 ± 0.001 0.022 ± 0.001 0.004 ± 0.0003
NHP 0.375 ± 0.009 0.033 ± 0.003 0.013 ± 0.003 0.002 ± 0.001
MLP 0.320 ± 0.034 0.042 ± 0.002 0.021 ± 0.001 0.005 ± 0.000
Structure 0.410 ± 0.005 0.035 ± 0.003 0.018 ± 0.002 0.003 ± 0.001

Table G.8: Full precision@𝑘 results of the different models on the dblp dataset. Result
reported per model is the mean ± standard deviation over five different train/test
splits with three runs per split. Half has a size of 1110 edges.

Precision@half Precision@100 Precision@50 Precision@10
HyperSAGE N/A N/A N/A N/A
HyperGCN 0.404 ± 0.035 0.405 ± 0.062 0.393 ± 0.069 0.413 ± 0.171
HGNN 0.799 ± 0.032 0.875 ± 0.084 0.880 ± 0.102 0.907 ± 0.124
HyperSAGNN 0.895 ± 0.015 0.921 ± 0.028 0.928 ± 0.038 0.913 ± 0.109
MDHNN 0.921 ± 0.007 0.968 ± 0.014 0.967 ± 0.027 0.940 ± 0.071
NHP 0.750 ± 0.018 0.589 ± 0.059 0.453 ± 0.094 0.360 ± 0.125
MLP 0.639 ± 0.068 0.943 ± 0.041 0.948 ± 0.051 1.000 ± 0.000
Structure 0.821 ± 0.009 0.787 ± 0.070 0.787 ± 0.099 0.767 ± 0.162

80

Table G.9: Full recall@𝑘 results of the different models on the MAG dataset. Result
reported per model is the mean ± standard deviation over five different train/test
splits with three runs per split. Half has a size of 2513 edges.

MAG Recall@half Recall@100 Recall@50 Recall@10
HyperSAGE N/A N/A N/A N/A
HyperGCN 0.374 ± 0.061 0.015 ± 0.003 0.008 ± 0.002 0.002 ± 0.0003
HGNN 0.433 ± 0.008 0.018 ± 0.003 0.009 ± 0.001 0.002 ± 0.0003
HyperSAGNN N/A N/A N/A N/A
MDHNN 0.478 ± 0.003 0.020 ± 0.0002 0.010 ± 0.0002 0.002 ± 0.000
NHP 0.491 ± 0.001 0.025 ± 0.0001 0.012 ± 0.000 0.002 ± 0.000
MLP 0.199 ± 0.009 0.005 ± 0.001 0.003 ± 0.001 0.001 ± 0.0002
Structure 0.404 ± 0.008 0.016 ± 0.001 0.008 ± 0.001 0.002 ± 0.0003

Table G.10: Full precision@𝑘 results of the different models on the MAG dataset. Re-
sult reported per model is the mean ± standard deviation over five different train/test
splits with three runs per split. Half has a size of 2513 edges.

Precision@half Precision@100 Precision@50 Precision@10
HyperSAGE N/A N/A N/A N/A
HyperGCN 0.747 ± 0.122 0.775 ± 0.158 0.785 ± 0.164 0.767 ± 0.189
HGNN 0.866 ± 0.016 0.888 ± 0.136 0.892 ± 0.113 0.893 ± 0.153
HyperSAGNN N/A N/A N/A N/A
MDHNN 0.956 ± 0.006 0.983 ± 0.012 0.984 ± 0.018 0.993 ± 0.025
NHP 0.982 ± 0.002 0.997 ± 0.006 0.999 ± 0.005 1.000 ± 0.000
MLP 0.397 ± 0.019 0.260 ± 0.050 0.259 ± 0.060 0.280 ± 0.117
Structure 0.807 ± 0.017 0.815 ± 0.074 0.808 ± 0.076 0.820 ± 0.168

81

Bibliography

[1] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Ger-
ald Penn, and Dong Yu. Convolutional neural networks for speech recogni-
tion. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
22(10):1533–1545, 2014.

[2] Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning
with graphs. ICML ’06, page 17–24, New York, NY, USA, 2006. Association for
Computing Machinery.

[3] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a
convolutional neural network. In 2017 International Conference on Engineering
and Technology (ICET), pages 1–6, 2017.

[4] Devanshu Arya, Deepak K. Gupta, Stevan Rudinac, and Marcel Worring. Hy-
persage: Generalizing inductive representation learning on hypergraphs, 2020.

[5] Devanshu Arya and Marcel Worring. Exploiting relational information in social
networks using geometric deep learning on hypergraphs. In Proceedings of the
2018 ACM on International Conference on Multimedia Retrieval, ICMR ’18,
page 117–125, New York, NY, USA, 2018. Association for Computing Machinery.

[6] Song Bai, Feihu Zhang, and Philip H. S. Torr. Hypergraph convolution and
hypergraph attention. CoRR, abs/1901.08150, 2019.

[7] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised fea-
ture learning and deep learning: A review and new perspectives. CoRR,
abs/1206.5538, 2012.

[8] Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon
Kleinberg. Simplicial closure and higher-order link prediction. Proceedings of the
National Academy of Sciences, 115(48):E11221–E11230, Nov 2018.

[9] Claude Berge. Graphs and hypergraphs, volume 6 of North-Holland Mathematical
Library. Elsevier, 1976.

[10] Claude Berge. Hypergraphs, volume 45 of North-Holland Mathematical Library.
Elsevier, 1984.

82

[11] Lidong Bing, Sneha Chaudhari, Richard Wang, and William Cohen. Improving
distant supervision for information extraction using label propagation through
lists. pages 524–529, 01 2015.

[12] A. Bordbar, Jonathan M. Monk, Zachary A. King, and B. Palsson. Constraint-
based models predict metabolic and associated cellular functions. Nature Reviews
Genetics, 15:107–120, 2014.

[13] Hugo Caselles-Dupré, Florian Lesaint, and Jimena Royo-Letelier. Word2vec ap-
plied to recommendation: Hyperparameters matter. In Proceedings of the 12th
ACM Conference on Recommender Systems, RecSys ’18, page 352–356, New
York, NY, USA, 2018. Association for Computing Machinery.

[14] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair com-
parison of graph neural networks for graph classification. CoRR, abs/1912.09893,
2019.

[15] Ernesto Estrada and Juan A. Rodríguez-Velázquez. Subgraph centrality and
clustering in complex hyper-networks. Physica A: Statistical Mechanics and its
Applications, 364:581–594, May 2006.

[16] Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database
schemes. J. ACM, 30(3):514–550, July 1983.

[17] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hyper-
graph neural networks, 2019.

[18] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with Py-
Torch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019.

[19] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed
hypergraphs and applications. Discrete Applied Mathematics, 42(2):177–201,
1993.

[20] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural message passing for quantum chemistry. In Proceed-
ings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, page 1263–1272. JMLR.org, 2017.

[21] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Yee Whye Teh and Mike Titterington, editors,
Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine Learning Research, pages
249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

[22] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph
domains. In Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., volume 2, pages 729–734 vol. 2, 2005.

83

[23] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-
works, 2016.

[24] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page 1025–1035, Red Hook,
NY, USA, 2017. Curran Associates Inc.

[25] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation
learning on large graphs, 2018.

[26] Jason Hartford, Devon R Graham, Kevin Leyton-Brown, and Siamak Ravan-
bakhsh. Deep models of interactions across sets, 2018.

[27] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The
elements of statistical learning: Data mining, inference, and prediction. Math.
Intell., 27:83–85, 11 2004.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016.

[29] Jie Huang, C. Chen, F. Ye, J. Wu, Zibin Zheng, and Guohui Ling. Hyper2vec:
Biased random walk for hyper-network embedding. In DASFAA, 2019.

[30] Kishan KC, Rui Li, Feng Cui, and Anne R. Haake. Predicting biomedical inter-
actions with higher-order graph convolutional networks. CoRR, abs/2010.08516,
2020.

[31] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 12 2014.

[32] Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016.

[33] Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016.

[34] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks, 2017.

[35] Steffen Klamt, Utz-Uwe Haus, and Fabian Theis. Hypergraphs and cellular
networks. PLoS computational biology, 5:e1000385, 06 2009.

[36] V. Kumar, Madhukar S. Dasika, and C. Maranas. Optimization based automated
curation of metabolic reconstructions. BMC Bioinformatics, 8:212 – 212, 2006.

[37] Dong Li, Zhiming Xu, Sheng Li, and Xin Sun. Link prediction in social networks
based on hypergraph. In Proceedings of the 22nd International Conference on
World Wide Web, WWW ’13 Companion, page 41–42, New York, NY, USA,
2013. Association for Computing Machinery.

84

[38] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph
sequence neural networks. 11 2015.

[39] Renjie Liao, Marc Brockschmidt, Daniel Tarlow, Alexander L. Gaunt, Raquel Ur-
tasun, and Richard Zemel. Graph partition neural networks for semi-supervised
classification, 2018.

[40] Zachary C. Lipton and Jacob Steinhardt. Troubling trends in machine learning
scholarship: Some ml papers suffer from flaws that could mislead the public and
stymie future research. Queue, 17(1):45–77, February 2019.

[41] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space, 2013.

[42] James Raymond Munkres. Elements of algebraic topology, volume 2. Addison-
Wesley Menlo Park, 1984.

[43] Prasanna Patil, Govind Sharma, and M. Narasimha Murty. Negative sampling
for hyperlink prediction in networks. In Hady W. Lauw, Raymond Chi-Wing
Wong, Alexandros Ntoulas, Ee-Peng Lim, See-Kiong Ng, and Sinno Jialin Pan,
editors, Advances in Knowledge Discovery and Data Mining, pages 607–619,
Cham, 2020. Springer International Publishing.

[44] Josh Payne. Deep hyperedges: a framework for transductive and inductive learn-
ing on hypergraphs, 2019.

[45] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, 2014.

[46] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of
social representations. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, page 701–710,
New York, NY, USA, 2014. Association for Computing Machinery.

[47] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang.
Deepinf: Social influence prediction with deep learning. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’18, page 2110–2119, New York, NY, USA, 2018. Association for
Computing Machinery.

[48] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Deep learning with
sets and point clouds, 2017.

[49] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009.

85

[50] A. Sharma, Shafiq R. Joty, H. Kharkwal, and J. Srivastava. Hyperedge2vec:
Distributed representations for hyperedges. 2018.

[51] Ankit Sharma, Jaideep Srivastava, and Abhishek Chandra. Predicting multi-
actor collaborations using hypergraphs, 2014.

[52] Govind Sharma, Prasanna Patil, and M. Murty. C3mm: Clique-closure based
hyperlink prediction. pages 3336–3342, 07 2020.

[53] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. Pitfalls of graph neural network evaluation. CoRR, abs/1811.05868,
2018.

[54] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph attention networks, 2018.

[55] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot recognition via seman-
tic embeddings and knowledge graphs, 2018.

[56] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan
Liu. Graph learning: A survey. IEEE Transactions on Artificial Intelligence,
pages 1–1, 2021.

[57] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand
Louis, and Partha Talukdar. HyperGCN: A new method of training graph con-
volutional networks on hypergraphs, 2019.

[58] Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav, Anand
Louis, and Partha Talukdar. NHP: Neural Hypergraph Link Prediction, page
1705–1714. Association for Computing Machinery, New York, NY, USA, 2020.

[59] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-
supervised learning with graph embeddings. CoRR, abs/1603.08861, 2016.

[60] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. Graph convolutional neural networks for web-scale recom-
mender systems. In Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, KDD ’18, page 974–983, New
York, NY, USA, 2018. Association for Computing Machinery.

[61] Se-eun Yoon, Hyungseok Song, Kijung Shin, and Yung Yi. How much and when
do we need higher-order information in hypergraphs? a case study on hyperedge
prediction. Proceedings of The Web Conference 2020, Apr 2020.

[62] Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabás Póczos, Ruslan
Salakhutdinov, and Alexander J Smola. Deep sets. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17,
page 3394–3404, Red Hook, NY, USA, 2017. Curran Associates Inc.

86

[63] Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. Beyond link predic-
tion: Predicting hyperlinks in adjacency space, 2018.

[64] Muhan Zhang, Zhicheng Cui, Tolutola Oyetunde, Yinjie Tang, and Yixin Chen.
Recovering metabolic networks using a novel hyperlink prediction method, 2016.

[65] Ruochi Zhang, Yuesong Zou, and Jian Ma. Hyper-SAGNN: a self-attention based
graph neural network for hypergraphs, 2019.

[66] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey,
2020.

[67] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hy-
pergraphs: Clustering, classification, and embedding. In Proceedings of the 19th
International Conference on Neural Information Processing Systems, NIPS’06,
page 1601–1608, Cambridge, MA, USA, 2006. MIT Press.

[68] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. Graph neural networks: A review of methods and applications. AI Open,
1:57–81, 2020.

[69] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks
on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, KDD ’18, page
2847–2856, New York, NY, USA, 2018. Association for Computing Machinery.

87

	Introduction
	Related work
	Graph learning
	Graph neural networks
	Hypergraph learning
	Hypergraph neural networks

	Methodology
	Definitions
	Modular Directed Hypergraph Neural Network
	Research methodology

	Dataset selection
	ING's challenge
	Alternative datasets
	Metabolic datasets
	Co-citation datasets
	Final pre-processing

	Hypergraph similarity

	Experiments
	Experiment design
	Baseline models
	Evaluation metrics

	Results and discussion
	Specific experiment settings
	Results
	Threats to validity

	Conclusions and future work
	Conclusions
	Future work

	ING's experiment details
	Data preparation
	Hyperparameter search

	Model selection and testing algorithms
	Violin plots hyperedge degrees and sizes
	Hyperparameter search spaces
	Optimal hyperparameters
	Violin plots AUC scores
	Full recall and precision scores

