1,212 research outputs found

    Gender-From-Iris or Gender-From-Mascara?

    Full text link
    Predicting a person's gender based on the iris texture has been explored by several researchers. This paper considers several dimensions of experimental work on this problem, including person-disjoint train and test, and the effect of cosmetics on eyelash occlusion and imperfect segmentation. We also consider the use of multi-layer perceptron and convolutional neural networks as classifiers, comparing the use of data-driven and hand-crafted features. Our results suggest that the gender-from-iris problem is more difficult than has so far been appreciated. Estimating accuracy using a mean of N person-disjoint train and test partitions, and considering the effect of makeup - a combination of experimental conditions not present in any previous work - we find a much weaker ability to predict gender-from-iris texture than has been suggested in previous work

    Gender and Ethnicity Classification Using Partial Face in Biometric Applications

    Get PDF
    As the number of biometric applications increases, the use of non-ideal information such as images which are not strictly controlled, images taken covertly, or images where the main interest is partially occluded, also increases. Face images are a specific example of this. In these non-ideal instances, other information, such as gender and ethnicity, can be determined to narrow the search space and/or improve the recognition results. Some research exists for gender classification using partial-face images, but there is little research involving ethnic classifications on such images. Few datasets have had the ethnic diversity needed and sufficient subjects for each ethnicity to perform this evaluation. Research is also lacking on how gender and ethnicity classifications on partial face are impacted by age. If the extracted gender and ethnicity information is to be integrated into a larger system, some measure of the reliability of the extracted information is needed. This study will provide an analysis of gender and ethnicity classification on large datasets captured by non-researchers under day-to-day operations using texture, color, and shape features extracted from partial-face regions. This analysis will allow for a greater understanding of the limitations of various facial regions for gender and ethnicity classifications. These limitations will guide the integration of automatically extracted partial-face gender and ethnicity information with a biometric face application in order to improve recognition under non-ideal circumstances. Overall, the results from this work showed that reliable gender and ethnic classification can be achieved from partial face images. Different regions of the face hold varying amount of gender and ethnicity information. For machine classification, the upper face regions hold more ethnicity information while the lower face regions hold more gender information. All regions were impacted by age, but the eyes were impacted the most in texture and color. The shape of the nose changed more with respect to age than any of the other regions

    Privacy Attacks Against Biometric Models with Fewer Samples: Incorporating the Output of Multiple Models

    Full text link
    Authentication systems are vulnerable to model inversion attacks where an adversary is able to approximate the inverse of a target machine learning model. Biometric models are a prime candidate for this type of attack. This is because inverting a biometric model allows the attacker to produce a realistic biometric input to spoof biometric authentication systems. One of the main constraints in conducting a successful model inversion attack is the amount of training data required. In this work, we focus on iris and facial biometric systems and propose a new technique that drastically reduces the amount of training data necessary. By leveraging the output of multiple models, we are able to conduct model inversion attacks with 1/10th the training set size of Ahmad and Fuller (IJCB 2020) for iris data and 1/1000th the training set size of Mai et al. (Pattern Analysis and Machine Intelligence 2019) for facial data. We denote our new attack technique as structured random with alignment loss. Our attacks are black-box, requiring no knowledge of the weights of the target neural network, only the dimension, and values of the output vector. To show the versatility of the alignment loss, we apply our attack framework to the task of membership inference (Shokri et al., IEEE S&P 2017) on biometric data. For the iris, membership inference attack against classification networks improves from 52% to 62% accuracy.Comment: This is a major revision of a paper titled "Inverting Biometric Models with Fewer Samples: Incorporating the Output of Multiple Models" by the same authors that appears at IJCB 202

    Facial Analysis: Looking at Biometric Recognition and Genome-Wide Association

    Get PDF

    Evaluating the Performance of a Large-Scale Facial Image Dataset Using Agglomerated Match Score Statistics

    Get PDF
    Biometrics systems are experiencing wide-spread usage in identification and access control applications. To estimate the performance of any biometric systems, their characteristics need to be analyzed to make concrete conclusions for real time usage. Performance testing of hardware or software components of either custom or state-of-the-art commercial biometric systems is typically carried out on large datasets. Several public and private datasets are used in current biometric research. West Virginia University has completed several large scale multimodal biometric data collection with an aim to create research datasets that can be used by disciplines concerning secured biometric applications. However, the demographic and image quality properties of these datasets can potentially lead to bias when they are used in performance testing of new systems. To overcome this, the characteristics of datasets used for performance testing must be well understood prior to usage.;This thesis will answer three main questions associated with this issue:;• For a single matcher, do the genuine and impostor match score distributions within specific demographics groups vary from those of the entire dataset? • What are the possible ways to compare the subset of demographic match score distributions against those of the entire dataset? • Based on these comparisons, what conclusions can be made about the characteristics of dataset?;In this work, 13,976 frontal face images from WVU\u27s 2012 Biometric collection project funded by the FBI involving 1200 individuals were used as a \u27test\u27 dataset. The goal was to evaluate performance of this dataset by generating genuine and impostor match scores distributions using a commercial matching software Further, the dataset was categorized demographically, and match score distributions were generated for these subsets in order to explore whether or not this breakdown impacted match score distributions. The match score distributions of the overall dataset were compared against each demographic cohorts.;Using statistical measures, Area under Curve (AUC) and Equal Error Rate (EER) were observed by plotting Receiver Operating Characteristics (ROC) curves to measure the performance of each demographic group with respect to overall data and also within the cohorts of demographic group. Also, Kull-back Leibler Divergence and Jensen Shannon Divergence values were calculated for each demographic cohort (age, gender and ethnicity) within the overall data. These statistical approaches provide a numerical value representing the amount of variation between two match score distributions In addition, FAR and FRR was observed to estimate the error rates. These statistical measures effectively enabled the determination of the impact of different demographic breakdown on match score distributions, and thus, helped in understanding the characteristics of dataset and how they may impact its usage in performance testing biometrics

    Applying blended conceptual spaces to variable choice and aesthetics in data visualisation

    Get PDF
    Computational creativity is an active area of research within the artificial intelligence domain that investigates what aspects of computing can be considered as an analogue to the human creative process. Computers can be programmed to emulate the type of things that the human mind can. Artificial creativity is worthy of study for two reasons. Firstly, it can help in understanding human creativity and secondly it can help with the design of computer programs that appear to be creative. Although the implementation of creativity in computer algorithms is an active field, much of the research fails to specify which of the known theories of creativity it is aligning with. The combination of computational creativity with computer generated visualisations has the potential to produce visualisations that are context sensitive with respect to the data and could solve some of the current automation problems that computers experience. In addition theories of creativity could theoretically compute unusual data combinations, or introducing graphical elements that draw attention to the patterns in the data. More could be learned about the creativity involved as humans go about the task of generating a visualisation. The purpose of this dissertation was to develop a computer program that can automate the generation of a visualisation, for a suitably chosen visualisation type over a small domain of knowledge, using a subset of the computational creativity criteria, in order to try and explore the effects of the introduction of conceptual blending techniques. The problem is that existing computer programs that generate visualisations are lacking the creativity, intuition, background information, and visual perception that enable a human to decide what aspects of the visualisation will expose patterns that are useful to the consumer of the visualisation. The main research question that guided this dissertation was, “How can criteria derived from theories of creativity be used in the generation of visualisations?”. In order to answer this question an analysis was done to determine which creativity theories and artificial intelligence techniques could potentially be used to implement the theories in the context of those relevant to computer generated visualisations. Measurable attributes and criteria that were sufficient for an algorithm that claims to model creativity were explored. The parts of the visualisation pipeline were identified and the aspects of visualisation generation that humans are better at than computers was explored. Themes that emerged in both the computational creativity and the visualisation literature were highlighted. Finally a prototype was built that started to investigate the use of computational creativity methods in the ‘variable choice’, and ‘aesthetics’ stages of the data visualisation pipeline.School of ComputingM. Sc. (Computing

    Selected Computing Research Papers Volume 1 June 2012

    Get PDF
    An Evaluation of Anti-phishing Solutions (Arinze Bona Umeaku) ..................................... 1 A Detailed Analysis of Current Biometric Research Aimed at Improving Online Authentication Systems (Daniel Brown) .............................................................................. 7 An Evaluation of Current Intrusion Detection Systems Research (Gavin Alexander Burns) .................................................................................................... 13 An Analysis of Current Research on Quantum Key Distribution (Mark Lorraine) ............ 19 A Critical Review of Current Distributed Denial of Service Prevention Methodologies (Paul Mains) ............................................................................................... 29 An Evaluation of Current Computing Methodologies Aimed at Improving the Prevention of SQL Injection Attacks in Web Based Applications (Niall Marsh) .............. 39 An Evaluation of Proposals to Detect Cheating in Multiplayer Online Games (Bradley Peacock) ............................................................................................................... 45 An Empirical Study of Security Techniques Used In Online Banking (Rajinder D G Singh) .......................................................................................................... 51 A Critical Study on Proposed Firewall Implementation Methods in Modern Networks (Loghin Tivig) .................................................................................................... 5
    • …
    corecore