1,109 research outputs found

    Constraints on predicate invention

    Get PDF
    This chapter describes an inductive learning method that derives logic programs and invents predicates when needed. The basic idea is to form the least common anti-instance (LCA) of selected seed examples. If the LCA is too general it forms the starting poínt of a gneral-to-specific search which is guided by various constraints on argument dependencies and critical terms. A distinguishing feature of the method is its ability to introduce new predicates. Predicate invention involves three steps. First, the need for a new predicate is discovered and the arguments of the new predicate are determíned using the same constraints that guide the search. In the second step, instances of the new predicate are abductively inferred. These instances form the input for the last step where the definition of the new predicate is induced by recursively applying the method again. We also outline how such a system could be more tightly integrated with an abductive learning system

    Induction of First-Order Decision Lists: Results on Learning the Past Tense of English Verbs

    Full text link
    This paper presents a method for inducing logic programs from examples that learns a new class of concepts called first-order decision lists, defined as ordered lists of clauses each ending in a cut. The method, called FOIDL, is based on FOIL (Quinlan, 1990) but employs intensional background knowledge and avoids the need for explicit negative examples. It is particularly useful for problems that involve rules with specific exceptions, such as learning the past-tense of English verbs, a task widely studied in the context of the symbolic/connectionist debate. FOIDL is able to learn concise, accurate programs for this problem from significantly fewer examples than previous methods (both connectionist and symbolic).Comment: See http://www.jair.org/ for any accompanying file

    Inductive Logic Programming in Databases: from Datalog to DL+log

    Full text link
    In this paper we address an issue that has been brought to the attention of the database community with the advent of the Semantic Web, i.e. the issue of how ontologies (and semantics conveyed by them) can help solving typical database problems, through a better understanding of KR aspects related to databases. In particular, we investigate this issue from the ILP perspective by considering two database problems, (i) the definition of views and (ii) the definition of constraints, for a database whose schema is represented also by means of an ontology. Both can be reformulated as ILP problems and can benefit from the expressive and deductive power of the KR framework DL+log. We illustrate the application scenarios by means of examples. Keywords: Inductive Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid Knowledge Representation and Reasoning Systems. Note: To appear in Theory and Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables

    The specialization problem and the completeness of unfolding

    Get PDF
    We discuss the problem of specializing a definite program with respect to sets of positive and negative examples, following Bostrom and Idestam-Almquist. This problem is very relevant in the field of inductive learning. First we show that there exist sets of examples that have no correct program, i.e., no program which implies all positive and no negative examples. Hence it only makes sense to talk about specialization problems for which a solution (a correct program) exists. To solve such problems, we first introduce UD1-specialization, based upon the transformation rule unfolding. We show UD1-specialization is incomplete - some solvable specialization problems do not have a UD1-specialization as solution - and generalize it to the stronger UD2-specialization. UD2 also turns out to be incomplete. An analysis of program specialization, using the subsumption theorem for SLD-resolution, shows the reason for this incompleteness. Based on that analysis, we then define UDS-specialization (a generalization of UD2-specialization), and prove that any specialization problem has a UDS-specialization as a solution. We also discuss the relationship between this specialization technique, and the generalization technique based on inverse resolution. Finally, we go into several more implementational matters, which outline an interesting topic for future research

    Generalisation Through Negation and Predicate Invention

    Full text link
    The ability to generalise from a small number of examples is a fundamental challenge in machine learning. To tackle this challenge, we introduce an inductive logic programming (ILP) approach that combines negation and predicate invention. Combining these two features allows an ILP system to generalise better by learning rules with universally quantified body-only variables. We implement our idea in NOPI, which can learn normal logic programs with predicate invention, including Datalog programs with stratified negation. Our experimental results on multiple domains show that our approach can improve predictive accuracies and learning times.Comment: Under peer-revie
    corecore