
The Specialization Problem

and the Completeness of Unfolding

Shan-Hwei Nienhuys-Cheng Ronald de Wolf

cheng@cs.few.eur.nl bidewolf@cs.few.eur.nl

Department of Computer Science, H4-19

Erasmus University of Rotterdam

P.O. Box 1738, 3000 DR Rotterdam, the Netherlands

January 11, 1996

Abstract

We discuss the problem of specializing a de�nite program with respect to
sets of positive and negative examples, following [BI94]. This problem is
very relevant in the �eld of inductive learning. First we show that there
exist sets of examples that have no correct program, i.e., no programwhich
implies all positive and no negative examples. Hence it only makes sense to
talk about specialization problems for which a solution (a correct program)
exists.

To solve such problems, we �rst introduce UD1-specialization, based
upon the transformation rule unfolding. We show UD1-specialization is
incomplete|some solvable specialization problems do not have a UD1-
specialization as solution|and generalize it to the stronger UD2-specia-
lization. UD2 also turns out to be incomplete. An analysis of program
specialization, using the subsumption theorem for SLD-resolution, shows
the reason for this incompleteness. Based on that analysis, we then de-
�ne UDS-specialization (a generalization of UD2-specialization), and prove
that any specialization problem has a UDS-specialization as a solution. We
also discuss the relationship between this specialization technique, and the
generalization technique based on inverse resolution. Finally, we go into
several more implementational matters, which outline an interesting topic
for future research.

Keywords: logic, resolution, SLD-resolution, Horn clauses, unfolding, pro-
gram specialization, logic programming and inductive logic programming.

1 Introduction

This article discusses the specialization problem, which concerns the specializa-
tion of a de�nite program with respect to sets of positive and negative examples.
These examples are usually expressed as ground atoms. Suppose E+ is a set of
positive examples, and E� a set of negative examples. These sets may be in-
�nite. One of the problems researchers in Inductive Logic Programming (ILP)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/19184941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

are interested in, is to �nd a de�nite program which is correct with respect to
the examples. That is, we want to �nd a program that implies all members of
E+, and none of the members of E�. Our hope is that such a program will
have captured some of the structure and relationships among the examples. If
so, the program can be used for predicting truth-values of ground atoms outside
the set of examples. Thus �nding a correct program can be seen as a form of
inductive learning.

Often, it is the case that we initially have a program T that is su�ciently
strong with respect to the examples (i.e., T j= E+ and possibly T j= A for some
A 2 E�). The problem is then to construct a new program T 0 from T , such that
T 0 is correct w.r.t. the examples. T 0 will be called a specialization of T . Finding
a correct specialization corresponds to \shrinking" the least Herbrand model of
the program, such that it no longer contains any of the negative examples.

A natural way to specialize T is, �rst, to replace a clause in T by all its
resolvents upon some body-atom in this clause. Constructing these resolvents is
called unfolding. Currently, there seems to be an increasing interest in unfold-
ing as a specialization method, see for instance [BI94, TS84, Bos95b, Bos95a,
AGB95]. The new program obtained after unfolding a clause in T , is clearly
implied by T . The function of the replaced clause is taken over by the set
of resolvents produced by unfolding. We can then, secondly, delete some new
clauses from the program that have to do with the negative examples, thus
specializing the program. These two steps probably have to be repeated many
times to get rid of all negative examples. This method derives from [BI94], and
is the basis of the �rst specialization technique|UD1-specialization|that we
will de�ne here.

For simplicity, let all examples be ground instances of the atom P (x1; : : : ; xn),
for some predicate P . The motivation for the method described above, is the
fact that it can be used to prune negative examples from the SLD-tree for
T [f P (x1; : : : ; xn)g.

1 We will illustrate this by an example. Consider the
program T , consisting of the following clauses:

C1 = P (x; y) Q(x; y)
C2 = Q(b; b) Q(a; a)
C3 = Q(a; a)

and E+ = fP (b; b)g, E� = fP (a; a)g. The SLD-tree for T [f P (x; y)g is
shown on the left of �gure 1. The labels on the branches correspond to the
input clauses used, the computed answer of each success branch is shown below
that branch. For instance, in the rightmost branch, �rst C1 and then C3 are
used as input clause, which leads to the computed answer fx=a; y=ag, meaning
that T j= P (a; a). We have indicated the computed answer corresponding to
the positive example with a `+', for the negative example with a `�'.

P (a; a) is a negative example, so we would like to remove this by weakening
the program. This could be done by deleting C1 or C3 from T . However, this

1In this paper, we use the letter T to denote de�nite programs (rather than the usual P), to
avoid confusion between the predicate P and a de�nite program. See [Llo87] for the de�nition
of an SLD-tree.

2

 P (x; y)

?

1

 Q(x; y)

�
�
�
�	

2

@
@
@
@R

3

2

fx=a; y=ag;�

 Q(a;a)

?

3

2

fx=b; y=bg;+

 P (x; y)

�
�
�
�	

1,2
@
@
@
@R

1,3

2

fx=a;y=ag;�

 Q(a;a)

?

3

2

fx=b; y=bg;+

 P (x; y)

?

1,2

 Q(a;a)

?

3

2

fx=b; y=bg;+

Figure 1: From left to right: the SLD-trees for T , T 0, and T 00

would also make the positive example P (b; b) no longer derivable. Another way
to specialize is, �rst, to unfold C1 upon Q(x; y). The following C1;2 and C1;3

are the two clauses produced by unfolding C1.

C1;2 = P (b; b) Q(a; a) (resolvent of C1 and C2)
C1;3 = P (a; a) (resolvent of C1 and C3)

Now we replace the unfolded clause C1 by its resolvents C1;2 and C1;3. This
results in T 0 = fC2; C3; C1;2; C1;3g. The SLD-tree for T 0[f P (x; y)g is shown
in the middle of �gure 1. In this tree, the negative example is directly connected
to the root, via the branch that uses C1;3. Now the negative example can be
pruned from the tree by deleting C1;3 from T 0, which does not a�ect the positive
example. Then we obtain T 00 = fC2; C3; C1;2g, which is correct w.r.t. E+ and
E�. See the right of �gure 1 for the SLD-tree for T 00 [f P (x; y)g. The idea
behind this method is the following:

1. Unfolding removes some internal nodes from the SLD-tree, for instance,
the internal node Q(x; y) in the tree on the left of �gure 1. This tends
to seperate the positive from the negative examples, and also brings them
closer to the root of the tree.

2. If a negative example hangs directly from the root, and its input clause C
is not used elsewhere in the tree for a positive examples, then the program
can be specialized by deleting C.

In [BI94], the algorithm spectre is presented, which implements this specializa-
tion technique, using an information-based heuristic to guide the search. They
also present some experimental results that are very encouraging. spectre

generally outperforms an alternative algorithm, which is based on covering the
examples rather than on seperating the positive from the negative examples. In
their experiments, the examples are taken from real-world domains such as data
on when to allow the Space Shuttle to land automatically, and Congressional
voting records. The programs produced by spectre give a higher accuracy on
the test-set, and contain much less clauses than the programs produced by the
covering algorithm. Similar and equally encouraging experiments are described

3

in [Bos95b]. In [Bos95a], the algorithm spectre ii is presented, which over-
comes some di�culties of spectre concerning recursive clauses, and which can
be applied to multiple-predicate learning (i.e., then the members of E+ and E�

need no longer be ground instances of the same atom P (x1; : : : ; xn)). [Bos95a]
describes a special case in which spectre ii is complete, and again contains
some experimental results.

However, not all specialization problems are as simple as the example we
have presented above. Some essential questions are left unanswered in [BI94].
Let T 0 be the program resulting from unfolding some clause in T . Then the
following points arise:

� In [TS84], it is shown that unfolding does not a�ect the least Herbrand
model of the program: MT = MT 0. As [Bos95a] states, unfolding is
\meaning preserving". However, despite the fact that unfolding leaves
the least Herbrand model invariant, it may still weaken the program in
the sense that the new program may not be logically equivalent to the
old program. That is, sometimes T j= T 0, but T 0 6j= T . As we will explain
later on, this is one of the reasons for the incompleteness of the approach
towards specialization in [BI94].

� What if after some applications of unfolding, we have a negative example
hanging directly from the root of the tree, via input clause C, but C is
also used elsewhere for the refutation of a positive example? Deleting C

may then specialize the program too much. For instance, on the left of the
following �gure we cannot delete clause 3. Perhaps some further unfolding

�
�
�	
1

@
@
@R
3

�
�

�
�	
3

@
@
@R
2

+ +

+ + �

������� ?

HHHHHHj
1,3 1,2 3

�
�
�	
1

@
@
@R
3

��
�
�	
1

@
@
@R
3

+�
�
�	
1

@
@
@R
3

.

..
+

may solve this. For instance, if we unfold clause 1 upon some body atom,
we get the tree on the right (here 1,2 denotes a resolvent of clauses 1 and
2, and 1,3 denotes a resolvent of clauses 1 and 3). In this tree, we can
safely delete clause 3|it is no longer needed for the refutation of a positive
example. This approach may get into trouble in case of in�nite E+ and
E�, or in case there is an in�nite number of SLD-refutations of positive
or negative examples. The completeness-result proved in [Bos95a] only
concerns �nite E+ and E�, and presupposes that the number of SLD-
refutations of positive and negative examples is �nite.

Nevertheless, an in�nite number of examples might be given. For example,
when we want to be sure that our system learns the predicate Odd cor-
rectly, we could use fOdd(s(0)); Odd(s3(0)); Odd(s5(0)); : : :g � E+ and
fOdd(0); Odd(s2(0)); Odd(s4(0)); : : :g � E�. That is, we could include a

4

complete description of the predicate in the sets of examples. Similarly,
an in�nite number of refutations of examples may occur in practice, for
instance in the tree shown on the right of the previous picture. Will a
specialization technique based on unfolding work in this case?

To try to solve these problems, we make our own de�nition of unfolding, and
use this for a second specialization technique, UD2-specialization, which gener-
alizes UD1-specialization. However, UD2-specialization is still not complete|it
cannot solve all specialization problems.

For completeness, we need to add the possibility of taking a subsump-
tion step. This gives UDS-specialization (short for Unfolding, clause Deletion,
Subsumption). To analyse and prove the completeness of UDS-specialization,
we use the subsumption theorem for unconstrained resolution and for SLD-
resolution (see [NW95a, NW95c]). The subsumption theorem allows us to look
at unfolding from a higher level, without considering the messy details of SLD-
trees. Unfolding turns out to be intimately related to the subsumption theorem.
We have divided the article in the following parts:

1. First we consider the specialization problem as stated in [BI94]. We show
that there exist sets of examples that have no correct program. Hence
it only makes sense to talk about specialization problems for which a
solution (a correct program) exists. This leads to a reformulation of the
specialization problem in Section 4.

2. Then we formally introduce unfolding in Section 5.
3. In Section 6, we de�ne UD1-specialization, which is the specialization

technique used in [BI94], and show that it is not complete.
4. In Section 7, we de�ne the stronger UD2-specialization, which also turns

out to be incomplete.
5. Then in Section 8, we relate unfolding to the subsumption theorem for

resolution. This induces UDS-specialization (a generalization of UD2-
specialization), which we prove to be complete

6. In Section 9, we discuss the relation between program specialization by
unfolding, and program generalization by inverse resolution. These two
approaches turn out to be more or less duals.

7. This paper discusses specialization and unfolding from a fairly high level.
However, in the �nal section we will devote some attention to more im-
plementational matters, by connecting the previous work with certain
properties of SLD-trees. The relations between specialization, unfolding,
the subsumption theorem and SLD-trees are very interesting, and suggest
some directions for future research.

2 SLD-resolution

In this section, we will briey describe the de�nitions we use regarding SLD-
resolution. Here a Horn clause is either a de�nite program clause (a clause
with one positive, and zero or more negative literals), or a de�nite goal (a
clause containing only negative literals). Our de�nitions mainly coincide with
those of [Llo87], but we use SLD-resolution not only to construct refutations,

5

but also to derive de�nite program clauses or de�nite goals from a set of Horn
clauses. Here we follow an idea of [MP94]. Thus our de�nition of an SLD-
derivation generalizes that of [Llo87]. However, with respect to refutations, our
de�nitions are equivalent to those of [Llo87], which allows us to use several
results proved in [Llo87].

De�nition 1 Let C = L L1; : : : ; Li; : : : ; Ln and D = M M1; : : : ;Mm

be two de�nite program clauses which are standardized apart (i.e., which have
no variables in common). Let � be an mgu (most general uni�er) of Li and
M . Then the clause (L L1; : : : ; Li�1;M1; : : : ;Mm; Li+1; : : : ; Ln)� is called
a binary resolvent of C and D. C and D are called the parent clauses of the
binary resolvent, Li and M are said to be the literals resolved upon. 3

We can similarly de�ne a binary resolvent of C and D in case C is a de�nite
goal (i.e., in case the head L of C is omitted). We might want to obtain a
binary resolvent of clauses C and D which are not standardized apart. In this
case, we rename D to D0, such that C and D0 are standardized apart, and then
obtain a binary resolvent of C and D0. For simplicity, this is then also called a
binary resolvent of C and D itself.

De�nition 2 Let � be a set of Horn clauses, and C be a Horn-clause. An
SLD-derivation of length n of C from � is a �nite sequence of Horn clauses
H0; H1; : : : ; Hn = C, such that H0 2 � and each Hi with 1 � i � n is a binary
resolvent of Hi�1 and a de�nite program clause Ci 2 �, using the head of Ci

and a selected atom in the body of Hi�1 as the literals resolved upon.
H0 is called the top clause, and the Ci are called the input clauses of this

SLD-derivation. If an SLD-derivation of C from � exists, we write � `rs C.
An SLD-derivation of 2 from � is called an SLD-refutation of �. 3

We allow the �rst clause H0 to be either a de�nite goal (as in [Llo87]), or a
de�nite program clause. In this way, SLD-resolution can be used to derive not
only de�nite goals, but also de�nite clauses from the program. Note that either
each Hi is a de�nite goal, or each Hi is a de�nite program clause.

De�nition 3 Let C and D be Horn clauses. We say D subsumes (or �-
subsumes) C, if there exists a substitution � such that D� � C. 3

De�nition 4 Let � be a set of Horn clauses and C a Horn clause. There exists
an SLD-deduction of C from �, written as � `ds C, if C is a tautology, or if
there exists a Horn clause D, such that � `rs D and D subsumes C. 3

For example, suppose � = f(P (x; y) Q(y; x)); (Q(a; z) R(z)); R(f(y))g
and C = P (f(b); a) R(x). Figure 2 shows an SLD-deduction of C from �.
The sequence H0; H1; H2 forms an SLD-derivation of H2 from � (with input
clauses C1 and C2), so � `rs H2. H2 subsumes C, so � `ds C.

6

H0 = P (x; y) Q(y; x)

?

C1 = Q(a; z) R(z)
�������

H1 = P (x;a) R(x)

?

C2 = R(f(y))
�������

H2 = P (f(y); a)

?

subsumes

C = P (f(b); a) R(x)

Figure 2: An SLD-deduction of C from �

3 Some specialization problems are unsolvable

The following is the statement of the specialization problem in terms of least
Herbrand models, as given in [BI94].

Given: a de�nite program T and two disjoint sets of ground atoms
E+ and E� (positive and negative examples).
Find: a de�nite program T 0, called a specialization of T w.r.t. E+

and E�, such that MT 0 �MT , E+ �MT 0 and MT 0 \E
� = ;.

Here MT denotes the least Herbrand model of T . Note that any background
knowledge can be included in T , so we do not need to discuss the use of back-
ground knowledge separately. It is assumed that E+ and E� contain only
ground instances of atoms. These examples may be instances of di�erent pred-
icates (we could for example have E+ = fP (a); Q(a; b);R(f(b)); : : :g), so our
approach is well-suited for multiple-predicate learning. It is also assumed that
T is su�ciently strong w.r.t. the examples. That is, E+ � MT and possibly
MT \ E� 6= ;. Notice that for ground atoms, A 2 MT i� T j= A. First we
introduce some terminology:

De�nition 5 Let T be a de�nite program, and E+ and E� sets of ground
atoms. We say T is su�ciently strong w.r.t. E+ and E� if T j= A for all
A 2 E+. We say T is correct w.r.t. E+ and E� if T j= A for all A 2 E+, and
T 6j= A for all A 2 E�. 3

Note that a correct program is a special case of a su�ciently strong program.
The specialization problem starts with a su�ciently strong T , and aims at
�nding a specialization T 0 that is correct w.r.t. E+ and E�.

A �rst problem that is raised by this approach, is the following: does such
a program T 0 always exist? In other words, suppose we have arbitrary, possi-
bly in�nite, sets E+ and E� of ground instances of P (x1; : : : ; xn)|does there
always exist a T 0 that is correct w.r.t. E+ and E�? Usually, �nding a program
for sets of examples is handled in an incremental way, without considering �rst
whether such a program actually exists. However, it is obvious that this ques-
tion is crucial. If we have a specialization problem that starts with E+, E� for

7

which no correct specialization exists, then we have an unsolvable specialization
problem.

In this section we will prove that indeed there exist unsolvable specialization
problems. We will show that there are sets of examples for which a correct
de�nite program does not exist.

De�nition 6 Let L be a clausal language containing an n-ary predicate symbol
P , and I be an Herbrand interpretation of L. Then BL, the Herbrand base of L,
denotes the set of ground atoms in L, BL;P denotes the set of ground instances of
P (x1; : : : ; xn) in L, and IP denotes the set of ground instances of P (x1; : : : ; xn)
that are true under I (so IP = BL;P \ I). 3

Consider a language L containing (possibly among others) an n-ary predicate
P , an m-ary function f (n;m � 1), and a constant a. The Herbrand base
BL|the set of all ground atoms in L|is countably in�nite. Every subset of
BL represents an Herbrand interpretation of L. Since the set of all subsets of a
countably in�nite set is uncountable, the set of all Herbrand interpretations is
uncountable.

On the other hand, the set of de�nite clauses in L is countably in�nite, so
the set of all de�nite programs (i.e., the set of all �nite sets of de�nite clauses)
is also only countably in�nite. A program has only one least Herbrand model,
so the set of all programs can only induce a countably in�nite number of least
Herbrand models. An uncountable set is much larger than a countably in�nite
sets, hence there is still an uncountable number of Herbrand interpretations I
that have no program T with MT = I .

Now consider IP = fIP jI � BLg. By the same argument as before, this is
also an uncountable set. Therefore there exists an Herbrand interpretation I

for which there is no program T with MT;P = IP . Thus we have the following
result:

Theorem 1 Let L be a clausal language containing (among others) an n-ary
predicate symbol P , an m-ary function symbol f (n;m � 1), and a constant
a. Then there exists an Herbrand interpretation I of L, such that there is no
de�nite program T � L with MT;P = IP

From the previous theorem we can infer that any technique that tries to induce
a de�nite program from arbitrary, possibly in�nite2 sets E+ and E� of positive
and negative examples is necessarily incomplete, even when only a single pred-
icate P is to be learned. Suppose I is one of those Herbrand interpretations for
which there is no T with MT;P = IP . Let E

+ = IP and E� = BL;P nIP . Then
E+ contains all true ground instances of P (x1; : : : ; xn), E� all false ground
instances. There is no program T that is correct w.r.t. these E+ and E�, for
otherwise we would have MT;P = IP , which is impossible. Thus we have the
following corollary:

Corollary 1 Let L be a clausal language containing (among others) an n-ary
predicate symbol P , an m-ary function symbol f (n;m � 1), and a constant a.

2If E+ is �nite, setting T 0 = E+ trivially solves any specialization problem.

8

Then there exist sets E+ and E� of ground instances of P (x1; : : : ; xn), such
that there is no de�nite program that is correct w.r.t. E+ and E�.

In short: some specialization problems are unsolvable, because the specializa-
tion T 0 that we want to �nd simply does not exist. This shows that any approach
towards program-specialization is incomplete if we allow arbitrary in�nite sets
E+ and E�. Hence we should restrict attention to methods that can �nd a
correct specialization if indeed one exists.

4 A restatement of the specialization problem

For a solution T 0 of the earlier formulation of the specialization problem, we
mentioned two conditions: MT 0 �MT , and T 0 should be correct w.r.t. E+ and
E�. From the previous section, it is clear that we should add the existence of
such a correct T 0 as a precondition to the specialization problem.

However, there is a second problem with respect to that formulation of the
specialization problem, namely the condition that MT 0 � MT . This condition
may hold for T 0 that we would not want to call a specialization of T . For
example, suppose we have T = fP (a); (P (x) P (f(x)))g and T 0 = fP (x)
P (g(x))g. Then MT 0 = ; � fP (a)g = MT . However, T and T 0 have not very
much to do with each other, since neither T j= T 0 nor T 0 j= T . It is not very
likely that a specialization technique can always construct T 0 from T as above.
Thus the condition thatMT 0 �MT is not a very good basis for a specialization
method.

Usually, specialization methods|such as Shapiro's re�nement operators
[Sha81], and also the methods based on unfolding that we will de�ne in the
next sections|construct programs T 0 from T for which T j= T 0 holds. But
inconsistently, many researchers in this �eld at the same time use MT 0 � MT

to formulate their specialization problem. Hence we will replace the condition
MT 0 � MT by the stronger, and more natural, requirement T j= T 0. These
arguments suggest a restatement of the specialization problem, as follows:

Given: two disjoint sets E+ and E� of ground instances of the atom
P (x1; : : : ; xn), a de�nite program T that is su�ciently strong w.r.t.
E+ and E�, and there exists a program T 0 such that T j= T 0 and
T 0 is correct w.r.t. E+ and E�.
Find: one such a T 0.

5 Unfolding

In this section, we introduce the de�nition of unfolding given in [BI94, TS84].
We use `u1' in this de�nition to indicate that this is the �rst type of program
that may result from unfolding. We will de�ne a second type in one of the next
sections.

De�nition 7 Let T be a de�nite program, C = A B1; : : : ; Bn a de�nite
program clause in T , and Bi the i-th atom in the body of C. Let fC1; : : : ; Cmg
be the set of clauses in T whose head can be uni�ed with Bi.

9

Then unfolding C upon Bi in T means constructing the set UC;i = fD1; : : : ;

Dmg, where eachDj is the resolvent of Cj and C, using Bi and the head of Cj as
the literals resolved upon. We say the type 1 program resulting from unfolding
C upon Bi in T is the program Tu1;C;i = fTnfCgg [UC;i. 3

Thus the type 1 program is obtained by replacing C by all resolvents upon Bi

of C and clauses in T . Now we give an example of unfolding, and the resulting
type 1 program. Let the program T consist of the following clauses:

C1 = P (f(x)) P (x); Q(x)
C2 = Q(x) R(x; a)
C3 = P (f(a))
C4 = Q(b)

Suppose we want to unfold C1 upon Q(x) in the program T . Then we have:

� fC2; C4g is the set of clauses whose head can be uni�ed with Q(x).
� UC1;2 = f(P (f(x)) P (x); R(x; a)); (P (f(b)) P (b))g
� Tu1;C1;2 = fC2; C3; C4g [UC1;2

Note that UC;i may be the empty set (this is the case if there is no program
clause whose head uni�es with the i-th atom in the body of C). In this case,
Tu1;C;i = TnfCg. Note also that a unit clause cannot be unfolded, since it has
no body-atoms.

The authors of [BI94] call unfolding a \transformation rule", but do not
mention any properties of the relation between T and Tu1;C;i. Here we will
investigate this relation. A �rst result concerning unfolding is the following
proposition, which shows that an SLD-refutation using T can be turned into an
SLD-refutation using Tu1;C;i, and vice versa. For the rather technical details of
the proof of this proposition, we refer to Appendix A.

Here we only give the idea behind the proof, which shows how a refutation-
tree using T can be transformed into a refutation-tree using Tu1;C;i. If there is
a refutation of T [fGg which doesn't use C, then this is also a refutation of
Tu1;C;i [fGg. If, on the other hand, C is used somewhere as input clause in a
refutation-tree for T , we can replace the usage of this C by using a clause in
UC;i instead.

Consider �gure 3, the left of which shows part of the refutation-tree for T .
Suppose C1 = A B1; : : : ; Bn is the unfolded clause, and C1 is used as input
clause in an SLD-refutation of T [fGg, in the step leading from the (j � 1)-th
goal Gj�1 to the j-th goal Gj . The selected atom is Ak and � is the mgu of Ak

and the head of C1. We can assume due to the independence of the computation
rule (Theorem 9.4 of [Llo87]) that Bi� is the selected atom in the next step.
Suppose C2 is the input clause in this next step. Now the two steps using C1

and C2 can be replaced by a single step using C1;2 (the resolvent upon Bi of C1

and C2), which is a member of UC1;i. Furthermore, we can show that Gj+1 and
G0j+1 are variants. Thus we can transform an SLD-refutation of T [fGg into
an SLD-refutation of Tu1;C1;i [fGg, each time replacing two derivation steps
by a single derivation step to eliminate all usages of C1 as input clause.

10

...
Gj�1 = A1; : : : ;Ak

?

C1

�������
Gj = (A1; : : : ; Ak�1;B1; : : : ; Bi; : : : ; Bn)�

?

C2

�������
Gj+1

.

..

.

..

Gj�1 = A1 ; : : : ; Ak

?

C1;2

�������
G0j+1

.

..

Figure 3: After unfolding, two steps can be replaced by a single step

As illustration, compare �gure 3 with the trees on the left and in the middle
of �gure 1. The leftmost branch of the left tree in �gure 1 shows an SLD-
refutation of length 3 with computed answer fx=b; y=bg, which uses C1 once.
In the tree in the middle, for the program T 0 which is the type 1 program
resulting from unfolding C1, we see that the leftmost branch has the same
computed answer, but has length 3 � 1 = 2. The two steps using C1 and C2

(left tree of �gure 1) are replaced by a single step (middle tree) using C1;2 as
input clause instead of C1 and C2.

Proposition 1 Let T be a de�nite program, G a de�nite goal, and Tu1;C;i the
type 1 program resulting from unfolding C upon Bi in T . Then T [fGg `rs 2
i� Tu1;C;i [fGg `rs 2.

A direct consequence of our proof of the previous proposition in Appendix A is
the following:

Corollary 2 Let T be a de�nite program, G a de�nite goal, and Tu1;C;i the
type 1 program resulting from unfolding C upon Bi in T . Suppose there exists
an SLD-refutation of length n of T [fGg, which uses C r times as input clause.
Then there exists an SLD-refutation of length n � r of Tu1;C;i [fGg.

Intuitively, this corollary shows that unfolding makes refutations shorter. So
unfolding has the potential of improving the e�ciency of an SLD-based theorem
prover. Especially unfolding often-used clauses is worthwhile, because then the
value r mentioned in the corollary is highest. On the other hand, unfolding
usually increases the number of clauses. So what we see here is an interesting
trade-o� between the number of clauses and the average length of a refutation:
unfolding usually decreases the average length of a refutation, but also usually
increases the number of clauses in the program.

We now proceed to prove that unfolding preserves the least Herbrand model
MT of the program. This is also proved in [TS84], though di�erently from
our proof (they do not consider SLD-resolution, and hence do not have our
Corollary 2). In a way, this shows that unfolding does not make the program
\weaker" or \stronger".

11

Theorem 2 Let T be a de�nite program, C 2 T , and Tu1;C;i the type 1 program
resulting from unfolding C upon Bi in T . Then MT =MTu1;C;i .

Proof Let A be some ground atom. Then:
A 2MT i� (by Theorem 6.2 of [Llo87])
T j= A i� (by Proposition 3.1 of [Llo87])
T [f Ag is unsatis�able i� (by Corollary 7.2 and Theorem 8.4 of [Llo87])
T [f Ag `rs 2 i� (by our Proposition 1)
Tu1;C;i [f Ag `rs 2 i� (by Corollary 7.2 and Theorem 8.4 of [Llo87])
Tu1;C;i [f Ag is unsatis�able i� (by Proposition 3.1 of [Llo87])
Tu1;C;i j= A i� (by Theorem 6.2 of [Llo87])
A 2MTu1;C;i .
Hence MT =MTu1;C;i . 2

6 UD1-specialization

Unfolding together with clause deletion can be used to solve some specialization
problems. In this section we de�ne UD1-specialization. We introduce this
name as an acronym for Unfolding and clause Deletion. The `1' indicates that
we use the type 1 program resulting from unfolding here. UD1-specialization
corresponds to the approach taken in [BI94].

De�nition 8 Let T and T 0 be de�nite programs. We say T 0 is a UD1-speciali-
zation of T , if there exists a sequence T1 = T; T2; : : : ; Tn = T 0 (n � 1) of de�nite
programs, such that for each j = 1; : : : ; n� 1, Tj+1 = Tju1;C;i or Tj+1 = TjnfCg
for some C 2 Tj . 3

If Tj+1 = Tju1;C;i , then each clause in Tj+1 is either in Tj , or a resolvent of two
clauses in Tj . Hence Tj j= Tj+1 in this case. If Tj+1 = TjnfCg, then clearly
Tj j= Tj+1. Thus we have the following:

Proposition 2 Let T be a de�nite program, and T 0 a UD1-specialization of T .
Then T j= T 0.

For a solution T 0 of our restated version of the specialization problem, we men-
tioned two conditions: T j= T 0, and T 0 should be correct w.r.t. E+ and E�.
The previous proposition shows that a UD1-specialization of T always satis�es
the �rst condition.

However, the second condition cannot always be satis�ed by UD1-specializa-
tion. Two kinds of steps can be taken here: Tj+1 can be the result of un-
folding a clause in Tj , or by deleting a clause from Tj . The �rst kind of
step preserves the least Herbrand model, the second kind possibly reduces it.
In fact, not only deleting a clause, but also the unfolding-step may weaken
the program. For instance, suppose T = fP (a); (P (x) P (f(x)))g. Then
T 0 = fP (a); (P (x) P (f2(x)))g is the result of unfolding P (x) P (f(x)) in

12

T . Whereas this unfolding-step has not a�ected the least Herbrand model|
MT = MT 0 = fP (a)g|it has indeed made the program weaker: T j= T 0, but
T 0 6j= T .

In fact, even if a correct program T 0 is implied by the original program
T , this T 0 need no longer be implied by a program T 00 obtained from T by
UD1-specialization. Since further UD1-specializations of T

00 can only yield pro-
grams which are implied by T 00 (and hence do not imply the solution T 0), UD1-
specialization will not reach a solution of the specialization problem in this case.
Consider T = f(P (f(x)) P (x)); P (a)g. Let MT = fP (a); P (f(a)); P (f2(a));
P (f3(a)) : : :g, and let E+ = MT nfP (f2(a))g and E� = fP (f2(a))g. See �g-
ure 4.

 P (x)

�
�
�	
1

@
@
@R
2

2

fx=ag;+
 P (x)

�
�
�	
1

@
@
@R
2

2

fx=f(a)g;+
 P (x)

�
�
�	
1

@
@
@R
2

2

fx=f2(a)g;�
 P (x)

�
�
�	
1

@
@
@R
2

...

2

fx=f3(a)g;+

Figure 4: The SLD-tree of T [f P (x)g

Let T1 = T . The only clause that can be unfolded is P (f(x)) P (x).
Unfolding this clause results in

T2 = f(P (f
2(x)) P (x)); P (f(a)); P (a)g:

Then unfolding P (f2(x)) P (x) gives

T3 = f(P (f
4(x)) P (x)); P (f3(a)); P (f2(a)); P (f(a)); P (a)g:

Notice that MT1 = MT2 = MT3 , but unfolding has nevertheless weakened the
program: T1 j= T2 j= T3, but T2 6j= T1 and T3 6j= T2. In T3, P (f4(x)) P (x) can
be unfolded, etc. It is not di�cult to see that in general, any UD1-specialization
of T is a subset of

fP (f2
n

(x)) P (x)); P (f2
n�1(a)); P (f2

n�2(a)); : : : ; P (f2(a)); P (f(a)); P (a)g;

for some n. To specialize this program such that P (f2(a)) is no longer derivable,
we must in any case remove P (f2(a)). However, this would also prune some of
the positive examples (such as P (f2

n+2(a))) from the program via the clause
P (f2

n
(x)) P (x)). Hence there is no UD1-specialization that solves this

particular specialization problem. Note that

T 00 = f(P (f4(x)) P (x)); (P (f3(x)) P (x)); P (f(a)); P (a)g

13

is a solution for this particular specialization problem. T j= T 00, but the spe-
cializations T2; T3; : : : no longer imply this correct program T 00. So in this case,
UD1-specialization has \skipped" over the right solution. In the next section,
we will show how this can be solved by UD2-specialization.

7 UD2-specialization

The previous example showed the incompleteness of UD1-specialization. But
suppose we change the de�nition of unfolding such that the unfolded clause
is not removed immediately from the program. This increases the number of
clauses that can later on be used in unfolding. In this case, we can �nd a
correct specialization w.r.t. the examples given above in Section 6, as follows.
We start with T 01 = T , and unfold P (f(x)) P (x) without removing the
unfolded clause. This gives T 02:

T 02 = f(P (f
2(x)) P (x)); (P (f(x)) P (x)); P (f(a)); P (a)g:

Now we unfold P (f2(x)) P (x), again without removing the unfolded clause.
This gives T 03:

T 03 = f(P (f4(x)) P (x)); (P (f3(x)) P (x)); (P (f2(x)) P (x));
(P (f(x)) P (x)); P (f3(a)); P (f2(a)); P (f(a)); P (a)g:

If we remove (P (f2(x)) P (x)), (P (f(x)) P (x)), P (f3(a)) and P (f2(a))
from T 03, we obtain T 00:

T 00 = f(P (f4(x)) P (x)); (P (f3(x)) P (x)); P (f(a)); P (a)g:

This is a correct specialization of T w.r.t. E+ and E�: T 00 j= E+, and T 00 6j=
P (f2(a)).

The previous example induces a second type of program resulting from
unfolding, which di�ers from the �rst only in the fact that the unfolded clause
C is not immediately removed from the program, so Tu2;C;i = T [UC;i =
Tu1;C;i[fCg. Unfolding itself does not change, but the programs resulting from
unfolding in the �rst or second type di�er, since in the latter case the unfolded
clause is not deleted from the program.

De�nition 9 Let T be a de�nite program, C 2 T , and Bi the i-th atom in the
body of C. Then we say the type 2 program resulting from unfolding C upon
Bi in T is the program Tu2;C;i = Tu1;C;i [fCg. 3

Any clause in Tu2;C;i is either in T , or a resolvent of two clauses in T . Hence
T j= Tu2;C;i. Also T � Tu2;C;i, so Tu2;C;i j= T . So while type 1 only preserved
the least Herbrand model, type 2 preserves equivalence, which is stronger:

Proposition 3 Let T be a de�nite program, C 2 T , and Bi the i-th atom in
the body of C. Then T , Tu2;C;i.

From the previous proposition and Theorem 2, we immediately have the fol-
lowing:

14

Corollary 3 MT =MTu1;C;i =MTu2;C;i .

We now de�ne the concept of UD2-specialization. The only di�erence with
UD1-specialization is that we now use the type 2 program resulting from un-
folding, instead of the type 1 program.3 Thus of the two possible steps in
UD2-specialization|obtaining the type 2 program resulting from unfolding,
and clause deletion|only clause deletion really weakens the program.

De�nition 10 Let T and T 0 be de�nite programs. We say T 0 is an UD2-
specialization of T , if there exists a sequence T1 = T; T2; : : : ; Tn = T 0 (n � 1)
of de�nite programs, such that for each j = 1; : : : ; n � 1, Tj+1 = Tju2;C;i or
Tj+1 = TjnfCg for some C 2 Tj . 3

Note that any UD1-specialization is also a UD2-specialization, since obtaining
the type 2 program and then removing the unfolded clause in the next step,
is equivalent to obtaining the type 1 program. The following proposition is
obvious:

Proposition 4 Let T be a de�nite program, and T 0 a UD2-specialization of T .
Then T j= T 0.

For a solution T 0 of our restatement of the specialization problem, we mentioned
two conditions: T j= T 0, and T 0 should be correct w.r.t. E+ and E�. The
previous proposition shows that a UD2-specialization of T always satis�es the
�rst condition. Since any UD1-specialization is a UD2-specialization, while some
UD2-specializations cannot be found with UD1-specialization (see the example
above), UD2-specialization is \more complete" than UD1-specialization.

Unfortunately, UD2-specialization is still not su�ciently strong to provide
a solution for all specialization problems. Consider the following: T = fP (x)g,
E+ = fP (f(a)); P (f2(a)); P (f3(a)); : : :g, and E� = fP (a)g. T 0 = fP (f(x))g
is a solution for this specialization problem. However, no solution can be found
by UD2-specialization. Since T contains only a single unit clause, no unfolding
can take place here. Hence the only UD2-specializations of T are T itself and
the empty set, neither of which is correct. So some specialization problems do
not have a UD2-specialization as a solution.

8 UDS-specialization

In this section, we will analyse why UD2-specialization is not complete. Based
on that analysis we de�ne UDS-specialization, and prove that any specialization
problem has a UDS-specialization as a solution.

3Henrik Bostr�om (personal communication) made us aware of the fact that the covering
algorithm of [Bos95b], with which his unfolding-algorithm spectre is compared, is in fact
equivalent to our UD2-specialization. He also gave an example of a solution of a specialization
problem which could be found by the covering algorithm, though not by spectre, because
the hypothesis-space of spectre is a proper subset of the hypothesis-space of the covering-
algorithm.

15

In our restatement of the specialization problem, one of the preconditions
is that a program T 0 exists, such that T j= T 0 and T 0 is correct w.r.t. E+ and
E�. So, why can't UD2-specialization always �nd at least one such a T 0? To
�nd such a T 0, we need to produce each member of T 0 that is not already in
T . Let C be an arbitrary clause in T 0 that is not in T . If UD2-specialization
were complete, then we should be able to construct C from the clauses in T ,
using only applications of unfolding (with type 2 program, so without deleting
the unfolded clauses) and clause deletion. Of these two kinds of operations,
only unfolding produces new clauses. Hence if we want to produce C from the
clauses in T by UD2-specialization, C should be a result of a �nite number of
applications of unfolding.

Now any clause D that can be produced from T using unfolding, is related
to T by a binary tree of derivation-steps by resolution, where D is the root of
the tree, the leaves of the tree are de�nite program clauses from T , and each
node in the tree is a binary resolvent of its two parents. See the left of �gure 5
for an example. Here R1; R2 2 T , R3 can be produced by unfolding R1 or
R2, depending on whether the negative literal resolved upon is in R1 or R2.
R4; R5; R6 can also be produced by repeatedly applying unfolding. R7 can be
produced by unfolding R4 or R5, and �nally D can be produced by unfolding
R6 or R7. Such a tree is called a derivation of D from T .

R1 R2

@
@
@@R

�
�

��	
R3

. . .

R6

...
...

R4 R5

@
@
@@R

�
�
��	

R7

@
@
@@R

�
�
��	
D

H0

?

C1
�������

H1

?

C2

�������
H2

...

Hn�1

?

Cn
�������

Hn = D

Figure 5: Using unfolding to produce a clause, which corresponds to a derivation
with unconstrained resolution (on the left), or an SLD-derivation (on the right)

In [NW95a], we have given a reproof of the subsumption theorem of [Lee67]
for unconstrained resolution, which says that for a set of clauses � and a clause
C, � j= C i� C is a tautology, or there is a D which subsumes C, and which can
be derived from � using a derivation of unconstrained resolution. See Section 2
for the de�nition of subsumption.

Now the only thing we know about the de�nite clause C that we want to
produce, is that C 2 T 0, and hence T j= C. Assuming C is not a tautology,
the subsumption theorem tells us we can always derive by resolution from T
a clause D which subsumes C. We cannot always derive C itself, using only
resolution-steps. For example, if T = fP (x)g and C = P (f(x)), then T j= C,
but there is no derivation of C from T using only resolution. That is, there is

16

no binary tree of resolution-steps where all leaves of the tree are clauses in T ,
and the root of the tree is C (in fact, no resolution-steps at all are possible from
this particular T).

If we cannot derive C by resolution, we cannot produce C from T using only
unfolding, because unfolding can produce only clauses that can be derived as
pictured on the left of �gure 5. This analysis shows why it is not always possible
to get from T to T 0 using only UD2-specialization: we lack the possibility of
taking a subsumption step. For instance, we cannot get from T = fP (x)g to
T 0 = fP (f(x))g if we cannot take a subsumption step.

Clearly, the same problem obtains also for UD1-specialization. Moreover,
the clauses Ri on the left of �gure 5 may be needed more than once to �nd D.
Hence deleting these clauses (especially clauses from the original T , as we will
show later on) after they have been unfolded once, is not advisable. That in
the type 1 program resulting from unfolding the unfolded clause is no longer
present, is one of the reasons for the fact that UD1-specialization is less complete
than UD2-specialization.

The previous analysis also suggests a way of patching up UD2-specialization:
add the possibility of a subsumption step. If we allow this, we get UDS-
specialization (Unfolding, clause Deletion, Subsumption):

De�nition 11 Let T and T 0 be de�nite programs. We say T 0 is a UDS-speciali-
zation of T , if there exists a sequence T1 = T; T2; : : : ; Tn = T 0 (n � 1) of de�nite
programs, such that for each j = 1; : : : ; n�1, Tj+1 = Tju2;C;i , or Tj+1 = TjnfCg
for some C 2 Tj , or Tj+1 = Tj [fCg for some C that is subsumed by a clause
in Tj . 3

UDS-specialization strictly generalizes UD2-specialization. To prove the com-
pleteness of UDS-specialization, we will use the subsumption theorem. It should
be noted that the subsumption theorem for unconstrained resolution only guar-
antees completeness in case so-called factors can be used (see [NW95a]). That
is, the resolvents used in an unconstrained derivation are not always binary
resolvents. However, the resolution steps that are implicit in an unfolding-step
only use binary resolvents, which means that we cannot use the subsumption
theorem for unconstrained resolution here. Fortunately, since we are only con-
cerned with Horn clauses here, we can use an easier version of the subsumption
theorem, which does not require factors. The following is the subsumption
theorem for SLD-resolution, which we have proved in [NW95c]:

Theorem 3 (Subsumption theorem for SLD-resolution) Let T be a set
of Horn clauses, and C be a Horn clause. Then T j= C i� T `ds C.

Using the subsumption theorem for SLD-resolution, we can prove the following
powerful result:

Theorem 4 Let T and T 0 be de�nite programs, such that T 0 contains no tau-
tologies. Then T j= T 0 i� T 0 is a UDS-specialization of T .

17

Proof

): Given T and non-tautologous T 0, such that T j= T 0. Let C be an
arbitrary clause in T 0 that is not a member of T . We will show how several
applications of unfolding, and a single subsumption step, can add C to the
program. Doing this for all such C, we obtain a UDS-specialization T 00 of T ,
which contains all clauses of T 0. Then by deleting some clauses we get T 0.

T j= C (because T j= T 0) and C is not a tautology, so by the subsumption
theorem for SLD-resolution, there exists an SLD-derivation H0; : : : ; Hn = D

from T , such that D subsumes C. Let Bi0 ; Bi1 ; : : : ; Bin�1 be the selected atoms
in H0; H1; : : : ; Hn�1, respectively. (Note that these atoms appear in the bodies
of their respective clauses, so they are actually negative literals.) See �gure 6.

(:Bi0 2)H0 2 T

?

C1 2 T
�������

(:Bi1 2)H1

...

(:Bin�1 2)Hn�1

?

Cn 2 T
�������

Hn = D

?
subsumes

C 2 T 0

Figure 6: An SLD-derivation of D from T , such that D subsumes C 2 T 0

Since H0; C1 2 T , unfolding H0 upon Bi0 results in the addition of H1 to
the program (i.e., H1 is a member of Tu2;H0;i0). Then unfolding H1 upon Bi1

adds (among others) H2 to the program. Unfolding H2 upon Bi2 yields H3, etc.
Finally, after unfolding Hn�1 upon Bin�1 , Hn = D is a member of the program.
Since C is subsumed by D, we can now add C to the program. In this way we
can apply unfolding and the addition of a subsumed clause to add C (and a lot
of other clauses) to the program.

Do this for any C 2 T 0 which is not in T . Call the program obtained after
doing this, T 00. Because any C 2 T 0 is now in T 00, we have T 0 � T 00. Since T 00 is
obtained from T by a �nite number of applications of unfolding and the addition
of subsumed clauses, T 00 is a UDS-specialization of T (note that T � T 00, but
T and T 00 are still logically equivalent). Now delete all members of T 00 that are
not in T 0. This way we obtain T 0 from T 00 as a UDS-specialization of T .
(: If Tj+1 = Tju2;C;i , then Tj j= Tj+1. If Tj+1 is obtained from Tj by adding

a clause that is subsumed by a clause in Tj , or if Tj+1 = TjnfCg for some
C 2 Tj , then we also have Tj j= Tj+1. Hence T j= T 0.

2

Suppose we are given T , T 0, E+ and E�, such that T j= T 0 and T 0 is correct
w.r.t. E+ and E�. We can assume T 0 contains no tautologies. Then it follows

18

from the previous theorem that T 0 is a UDS-specialization of T . This shows
that UDS-specialization is complete:

Corollary 4 (Completeness of UDS-specialization) Any specialization
problem has a UDS-specialization as solution.

Now we can also see more clearly the di�erent reasons for the incompleteness of
UD1- and UD2-specialization. Suppose we start with T , and there is a correct
program (a \target program") T 0 such that T j= T 0. Type 1 unfolding preserves
the least Herbrand model of the program, but need not preserve equivalence.
So even if no clauses are deleted explicitly in a deletion step, UD1-specialization
may still produce a Ti which no longer implies T 0. Then T 0 becomes unreachable
for UD1-specialization.

On the other hand, as long as no clauses are deleted from the program,
UD2-specialization preserves equivalence. Thus any program Ti produced by
type 2 unfolding, still implies the target program T 0. But due to the lack of
a subsumption step, this target program cannot always be reached from the
original T by UD2-specialization.

The subsumption theorem explains not only why UD1 and UD2 are not
complete, but also shows that the type 1 and type 2 programs are ine�cient.
Namely, if we want to unfold some clause C, we only need to consider the
resolvents of C and clauses from the original T . This is clear from �gure 6,
because to produce Hi+1, we only need to resolve Hi against Ci+1, and Ci+1

is a member of the original T . In other words, we only need to add a subset
of UC;i to the program. We might de�ne U 0C;i as the set of resolvents upon Bi

of C and clauses from the original T , and then use Tj+1 = Tj [U 0C;i instead
of Tj [UC;i. This reduces the number of clauses that unfolding produces, and
hence improves e�ciency.

9 Relation with inverse resolution

In ILP, there are basically two possible approaches: the top-down approach
(of which UDS-specialization is an example) which starts with a too-general
program and specializes this, and the bottom-up approach which starts with
a too-speci�c program and generalizes this. There is an interesting relation
between our previous analysis of program specialization on the one hand, and
program generalization by inverse resolution (see, for instance [MB92, Mug92])
on the other hand. In the case of specialization, we have some negative examples
implied by T , and we want to �nd a T 0 such that T j= T 0, and T 0 no longer
implies those negative examples. Now program generalization tries to do the
exact opposite: we have a T which does not imply certain positive examples, and
we want to generalize this to some T 0, which implies T , and which also implies
those positive examples. Thus the specialization problem and an analogous
generalization problem can be viewed as dual problems.

In ILP, a well-known approach approach towards generalization is the inver-
sion of resolution. Here the inversion of a resolution-step can be viewed as the
dual of unfolding. However, in the same way as specialization is not complete

19

without subsumption, its dual also needs (the inversion of) subsumption. It can
be seen from �gure 6 that for completeness4, the process of program generaliza-
tion needs two operators: the ability to invert some resolution steps, but also
the ability to invert a subsumption step. Most research in inverse resolution
has focused on inverting resolution steps, ignoring the inversion of the �nal sub-
sumption step of the deduction.5 However, by the previous analysis, inverting
a subsumption step will be necessary for completeness. For example, we cannot
generalize T = fP (f(x))g to T 0 = fP (x)g only by inverting resolution steps.

So while program specialization by UDS-specialization corresponds to a top-
down approach towards �gure 6, program generalization by inverse resolution
(which should include inverse subsumption for completeness) corresponds to
a bottom-up approach. In a way, �gure 6 shows a \ladder" which is climbed
downward in case of program specialization, and upward in case of generaliza-
tion.

10 Future work concerning implementation

Theorem 4 tells us that for given T and T 0, T 0 can be reached from T by a
�nite number of applications of unfolding, clause deletion, and subsumption.
However, the usual practice is that we are given only T , E+, and E�, and our
task is then to �nd an unknown specialization T 0 that is correct w.r.t. E+ and
E�. Given that such a T 0 exists, how can we �nd it in a �nite number of steps?

A natural way is the following. De�ne R0 = T , and let Ri be the union
all i-step resolvents from T (i.e., all clauses such as Hi in �gure 6), and Ri�1.
Then Ri contains all clauses that can be derived from T by SLD-derivations
of length � i. This means Ri contains all clauses that can be produced by at
most i applications of unfolding. Now let Si be the set of all clauses subsumed
by a clause in Ri. Note that Ri � Si, since any clause subsumes itself. Clearly
S0 � S1 � S2 � : : :. It follows from our proof of Theorem 4 that there exists an
i such that T 0 � Si. However, there is a problem here. Whereas each Ri is �nite
(up to alphabetical variants), each Si is in�nite, since a clause may subsume
an in�nite number of other clauses. For instance, P (x) subsumes P (f(x)),
P (f2(x)), P (f3(x)), etc. Hence you cannot construct Si+1 by �rst constructing
the complete set Si.

To avoid this, we might use some appropriate complexity-measure on clauses
(such as newsize, which consists of a pair of natural numbers and is de�ned
in [LN93]). For a �xed size m, the set of all clauses bounded by (i.e., \smaller"
than or equal to)m will be �nite up to alphabetical variants. Letm0; m1; m2; : : :
be a monotonically increasing sequence of bounds of the complexity measure.
De�ne Fi as the set of all clauses in Si bounded by mi. Then each Fi is a �nite

4By the completeness of a generalization technique, we mean the ability to �nd (given T)
all T 0, such that T 0 j= T and T 0 is correct w.r.t. the examples.

5The only papers we are aware of that try to include full inverse subsumption into inverse
resolution, are [Rou92, SA93]. However, the approach to inverse subsumption taken in [Rou92]
appears to be incomplete. For instance, it cannot generate D = P (x) Q(x; y);Q(y; x) from
C = P (x) Q(x; x), even though D subsumes C. Thus Theorem 2 of that paper (which
states the completeness of its inverse subsumption operator) is not correct.

20

set (up to alphabetical variants), which can be constructed by an algorithm.
Moreover, Fi � Fi+1, for each i � 0. Since T 0 is bounded by some complexity
measure, if we enumerate the �nite sets F0; F1; F2; : : :, we are guaranteed to
have, after a �nite number of steps, a set Fi containing T

0. Fi is something like
the intermediate program T 00 we used in the proof of Theorem 4.

However, since T 0 is unknown in advance, we do not know in advance for
which i the set Fi will contain T 0. Neither is it immediately obvious which
subset of Fi is T 0|or, equivalently, which clauses should be deleted from Fi
to get T 0. For this we have to take the positive and negative examples into
account. That is, we should search for a correct UDS-specialization guided by
the examples. For instance, all clauses in Fi which are not needed to derive any
of the positive examples may be deleted.

Recall that the Introduction of this paper started with an example of how
unfolding operates on SLD-trees (�gure 1). For our proof of the completeness|
the existence of a correct specialization|in the previous section, we did not
need SLD-trees, but only the subsumption theorem. In fact, exclusive focus on
SLD-trees might be misleading. An SLD-tree for T [fGg contains all possible
SLD-refutations of T[fGg (for some computation rule). But an SLD-refutation
of T [fGg consists solely of resolution steps, and does not involve subsump-
tion. Therefore, concentrating on the SLD-tree (such as in [BI94]) or on SLD-
refutations in general (as in [Bos95a]) can lead one to ignore the subsumption
step, which is necessary for completeness.

On the other hand, the SLD-tree of T [f P (x1; : : : ; xn)g may be very
useful in the search for a correct specialization, since it contains all examples of
the predicate P that are derivable from the program. Note that every predicate
that has to be learned, has its own SLD-tree. That is, if the examples are
instances of P (x) and of Q(x; y), then we should consider both the SLD-tree of
T [f P (x)g, and the SLD-tree of T [f Q(x; y)g. By examining these SLD-
trees, we might obtain information from the examples about which clauses to
unfold. For instance, consider the tree on the left of �gure 1 in the Introduction.
Here we only need to unfold C1 upon Q(x; y), because this is su�cient to
seperate the positive example in the tree from the negative example.

In fact, the SLD-tree also shows us where we should apply a subsump-
tion step. Consider the following specialization problem: T = fP (x)g, E+ =
fP (f(a)); P (f2(a)); P (f3(a)); : : :g, and E� = fP (a)g. The SLD-tree for T[f
P (x)g is shown in �gure 7. The only leaf in this tree corresponds to the com-
puted answer " (the empty substitution), which shows that P (x) is implied by
the program. Thus this leaf corresponds to the negative example P (a), but also
to all positive examples. Such leaves, which correspond to positive and negative
examples at the same time, are called ambivalent leaves.

 P (x)

?
1

2; ";�

Figure 7: An SLD-tree with an ambivalent leaf

21

Ambivalent leaves pose a problem for UD2-specialization, because the only
way for UD2-specialization to get rid of the negative example P (a), is by prun-
ing the whole leaf from the tree, i.e. by deleting P (x) from T . However, since
this leaf also corresponds to all atoms in E+, these positive atoms are irre-
trievably lost also. This provides another motivation for the introduction of a
subsumption step in UDS-specialization: the subsumption step is needed to get
rid of ambivalent leaves. For instance, since P (x) subsumes P (f(x)), the cor-
rect specialization T 0 = fP (f(x))g can be obtained if we allow a subsumption
step.

These examples show how an implementation of UDS-specialization can
make use of the properties of the SLD-trees for T and the predicates that have
to be learned. As we have seen, ambivalent leaves in the tree induce subsump-
tion steps. Similarly, negative leaves indicate which clauses could be deleted
(after all, our whole object is to prune negative leaves by clause deletion). The
positive leaves should be used for control, they may not be pruned from the
tree. Constructing an e�cient strategy for �nding UDS-specializations, along
the lines of the positive and negative examples in the SLD-tree, is an important
topic for future research.

Another extension of the research of this paper would be to consider general
clauses, rather than only de�nite clauses as we have done here. In this case,
we should allow the use of factors in the unfolding step. Then the complete-
ness of this extended UDS-specialization can be proved using the subsumption
theorem for unconstrained resolution, in the same way as we have shown the
completeness of UDS-specialization for de�nite clauses here. Here we should
take into account that derivations of unconstrained resolution may be arbitrary
binary trees. The dual case of inverse resolution can also be extended to general
clauses, by including the inversion of factors and by inverting arbitrary binary
resolution-trees.

11 Conclusion

In this paper, we have discussed the problem of specializing a de�nite program
with respect to sets of positive and negative examples, following [BI94]. We have
shown that there exist sets of examples that have no correct program. Hence
it only makes sense to talk about specialization problems for which a solution
exists. This led to a reformulation of the specialization problem. To solve this
problem, we �rst introduced UD1-specialization, based upon the transformation
rule unfolding. Since UD1-specialization is incomplete, we generalized it to the
stronger UD2-specialization, which also turned out to be incomplete. We related
unfolding to the subsumption theorem for SLD-resolution. We then de�ned
UDS-specialization (a generalization of UD2-specialization), and showed it to
be complete. We also described the relation between program specialization
by unfolding and generalization by inverse resolution. E�cient methods for
the implementation of this specialization-technique will be a topic for future
research.

22

References

[AGB95] Alexin, Z., Gyim�othy T., and Bostr�om, H., `Integrating Algorithmic
Debugging and Unfolding Transformation in an Interactive Learner',
in: Proc. of the Fifth Int. Workshop on Inductive Logic Programming
(ILP-95), Leuven, September 1995, pp. 437{453.

[BI94] Bostr�om, H., and Idestam-Almquist, P., `Specialization of Logic Pro-
grams by Pruning SLD-Trees', in: Proc. of the Fourth Int. Workshop
on Inductive Logic Programming (ILP-94), 1994, pp. 31{48.

[Bos95a] Bostr�om, H., `Specialization of Recursive Predicates', in: Proc. of the
European Conference on Machine Learning (ECML-95), Springer-
Verlag, Berlin, 1995, pp. 92{106.

[Bos95b] Bostr�om, H., `Covering vs. Divide-and-Conquer for Top-Down Induc-
tion of Logic Programs', in: Proc. of the International Joint Confer-
ence on Arti�cial Intelligence (IJCAI-95), Morgan Kaufmann, 1995,
pp. 1194{1200.

[LN93] van der Laag, P., and Nienhuys-Cheng, S.-H., `Subsumption and Re-
�nement in Model Inference', in: Proc. of the European Conference on
Machine Learning (ECML-93), Springer-Verlag, Berlin, 1993, pp. 95{
114.

[Lee67] Lee, R. C. T., A Completeness Theorem and a Computer Program
for Finding Theorems Derivable from Given Axioms, PhD Thesis,
University of California, Berkeley, 1967.

[Llo87] Lloyd, J., Foundations of Logic Programming, 2nd edition, Springer-
Verlag, Berlin, 1987.

[MB92] Muggleton, S., and Buntine, W., `Machine Invention of First-Order
Predicates', in: Muggleton, S. (ed.), Inductive Logic Programming,
Academic Press, 1992, pp. 261{278.

[Mug92] Muggleton, S., `Inductive Logic Programming', in: Muggleton, S.
(ed.), Inductive Logic Programming, Academic Press, 1992, pp. 3{27.

[MP94] Muggleton, S., and Page, C. D., `Self-Saturation of De�nite Clauses',
in: Proc. of the Fourth Int. Workshop on Inductive Logic Program-
ming (ILP-94), 1994, pp. 161{174.

[NW95a] Nienhuys-Cheng, S.-H., and de Wolf, R., `The Subsumption Theorem
in Inductive Logic Programming: Facts and Fallacies', in: Proc. of
the Fifth Int. Workshop on Inductive Logic Programming (ILP-95),
Leuven, September 1995, pp. 147{160.

[NW95b] Nienhuys-Cheng, S.-H., and de Wolf, R., `Specializing De�nite Pro-
grams by Unfolding', in: Proc. of Benelearn'95, Workreport of the
Universit�e Libre de Bruxelles, September 1995.

23

[NW95c] Nienhuys-Cheng, S.-H., and de Wolf, R., `The Subsumption Theo-
rem Revisited: Restricted to SLD-resolution', to appear in: Proc. of
Computing Science in the Netherlands (CSN-95), Utrecht, November
1995.

[Rou92] Rouveirol, C., Extensions of Inversion of Resolution Applied to The-
ory Completion, in: Muggleton, S. (ed.), Inductive Logic Program-
ming, Academic Press, 1992, pp. 63{92.

[SA93] Sato, T., and Akiba, S., `Inductive Resolution', in: Lecture Notes in
Arti�cial Intelligence, no. 744, Springer Verlag, 1993, pp. 101{110.

[Sha81] Shapiro, E., Inductive Inference of Theories from Facts, Research
report 192, Yale University, 1981.

[TS84] Tamaki, H., and Sato, T., `Unfold/Fold Transformation of Logic Pro-
grams', in: Proc. Second Int. Logic Programming Conference, Upp-
sala, 1984, pp. 127{138.

A A proof of Proposition 1

In this appendix, we give the proof of Proposition 1. This proof uses several
results from [Llo87].

Proposition 1 Let T be a de�nite program, G a de�nite goal, and Tu1;C;i the
type 1 program resulting from unfolding C upon Bi in T . Then T [fGg `rs 2
i� Tu1;C;i [fGg `rs 2.

Proof

): Suppose T [fGg `rs 2, and suppose C (the unfolded clause), is A
B1; : : : ; Bi; : : : ; Bn, which we abbreviate to A B1; Bi; B2 (where B1 = B1;

: : : ; Bi�1 and B2 = Bi+1; : : : ; Bn). Bi is the atom unfolded upon. If there is an
SLD-refutation of T [fGg in which C isn't used as an input clause, then this is
also an SLD-refutation of Tu1;C;i [fGg. But suppose C is used as input clause
in all SLD-refutations of T [fGg. We will prove that from such a refutation, a
refutation of Tu1;C;i [fGg can be constructed.

Suppose we have a refutation of T [fGg of length n, with goals G0; : : : ; Gn

and input clauses C1; : : : ; Cn, which uses C at least once as input clause. By the
independence of the computation rule (Theorem 9.2 of [Llo87]), we can assume
that for any k, if C is the input clause in the step leading from Gk�1 to Gk,
then the instance of Bi that is inserted in Gk by C, is the selected atom in Gk.

Suppose the j-th input clause is C. We picture this part of the refutation
on the left of �gure 8. For this picture, we make the following notational
conventions:

� Gj�1, the j � 1-th goal, is the goal A1; : : : ; Ak; : : : ; Am, which we
abbreviate to A1; Ak; A2.

� The input clause used in the (j+1)-th step is Cj+1 = A0 B0, where B0

is an abbreviation of B01; : : : ; B
0
r.

24

� �j is an mgu of Ak and A (used in the j-th resolution step).
� �j+1 is an mgu of Bi�j and A0 (used in the (j + 1)-th resolution step).

.

.

.

Gj�1 = A1; Ak; A2

?

Cj = C = A B1; Bi; B2; �j

�������
Gj = (A1 ; B1 ; Bi ; B2 ; A2)�j

?

Cj+1 = A0 B0; �j+1

�������
Gj+1 = (A1 ; B1 ; B0 ; B2; A2)�j�j+1

.

.

.

.

.

.

Gj�1 = A1 ; Ak ; A2

?

C0 = (A B1; B
0 ; B2)�; �

0

�������
G0

j+1
= (A1; (B1; B0 ; B2)�; A2)�

0

.

.

.

Figure 8: From the tree on the left, we can construct the tree on the right,
using C0 instead of C.

Since the (j + 1)-th step of the tree on the left of �gure 8 shows that Bi

and A0 can be uni�ed (say, with mgu �), the clause C0 = (A B1; B0; B2)�
(the result of resolving C with Cj+1 = A0 B0) must be in UC;i. We assume
without loss of generality that Gj�1, Cj = C, Cj+1, and C0 are standardized
apart (i.e., they have no variables in common).

What we want is to construct a tree which, instead of using C in the j-th
step, uses C0. For this, we will show that Gj+1 is a variant of the goal G0j+1,
which can be derived from Gj�1 and C0. Then we can replace the j-th step
(which uses C) and the (j+1)-th step by one single step which doesn't need C
anymore, but instead uses C0.

Now �j+1 is an mgu ofA0 andBi�j and A0�j = A0 (because of the standardiz-
ing apart), so �j�j+1 is a uni�er of A

0 and Bi. � is an mgu of A0 and Bi, so there
exists a substitution such that � = �j�j+1. A� = A�j�j+1 = Ak�j�j+1 =
Ak� = Ak, so is a uni�er of A� and Ak. This shows that A� and Ak can be
uni�ed. Let �0 be an mgu of A� and Ak. Let G0j+1 = (A1; (B1; B0; B2)�;A2)�0

be the goal derived from Gj�1 and C0. We will show that Gj+1 and G0j+1 are
variants.

1. We have already shown that is a uni�er of A� and Ak. Furthermore,
�0 is an mgu of A� and Ak , so there exists a substitution � such that
�0� = .

Now Gj+1 = (A1; B1; B0; B2; A2)�j�j+1 = (A1; B1; B0; B2; A2)� =
(A1; B1; B0; B2; A2)��0� = (A1; (B1; B0; B2)�;A2)�0� = G0j+1�

2. �0 is an mgu of Ak and A�, and Ak� = Ak (because of the standardizing
apart), so ��0 is a uni�er of Ak and A. Furthermore, �j is an mgu of Ak

and A, so there exists a substitution 0 such that �j0 = ��0.

A00 = A0�j
0 = A0��0 = Bi��

0 = Bi�j
0, so 0 is a uni�er of A0 and Bi�j .

�j+1 is an mgu of A0 and Bi�j , so there exists a substitution �0 such that
�j+1�

0 = 0.

25

Now G0j+1 = (A1; (B1; B0; B2)�;A2)�
0 = (A1; B1; B0; B2; A2)��

0 =

(A1; B1; B0; B2; A2)�j
0 = (A1; (B1; B0; B2)�;A2)�j�j+1�

0 = Gj+1�
0

We have shown that Gj+1 = G0j+1� and G0j+1 = Gj+1�
0, so Gj+1 and G0j+1 are

variants.
Since Gj+1 and G0j+1 are variants, we have shown that the two resolution

steps leading from Gj�1 to Gj+1 can be replaced by a single resolution step,
which uses C 0 as input clause. In the same way, we can eliminate all other
uses of C as input clause in the rest of the tree, by constructing a refutation
which uses some clause in UC;i to replace a usage of C, each time replacing two
resolution steps by one single resolution step. Finally we get an SLD-refutation
of T [UC;i [fGg which doesn't use C at all. This means that we have in fact
found an SLD-refutation of Tu1;C;i [fGg.

(: Suppose Tu1;C;i [fGg `rs 2. Then by the soundness of resolution,
Tu1;C;i [fGg is unsatis�able. It is easy to see that T j= Tu1;C;i. Hence T [fGg
is unsatis�able, and by Theorem 8.4 of [Llo87], we have T [fGg `rs 2.

2

26

