890 research outputs found

    A Multigrid Optimization Algorithm for the Numerical Solution of Quasilinear Variational Inequalities Involving the pp-Laplacian

    Full text link
    In this paper we propose a multigrid optimization algorithm (MG/OPT) for the numerical solution of a class of quasilinear variational inequalities of the second kind. This approach is enabled by the fact that the solution of the variational inequality is given by the minimizer of a nonsmooth energy functional, involving the pp-Laplace operator. We propose a Huber regularization of the functional and a finite element discretization for the problem. Further, we analyze the regularity of the discretized energy functional, and we are able to prove that its Jacobian is slantly differentiable. This regularity property is useful to analyze the convergence of the MG/OPT algorithm. In fact, we demostrate that the algorithm is globally convergent by using a mean value theorem for semismooth functions. Finally, we apply the MG/OPT algorithm to the numerical simulation of the viscoplastic flow of Bingham, Casson and Herschel-Bulkley fluids in a pipe. Several experiments are carried out to show the efficiency of the proposed algorithm when solving this kind of fluid mechanics problems

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    Accelerated graph-based spectral polynomial filters

    Full text link
    Graph-based spectral denoising is a low-pass filtering using the eigendecomposition of the graph Laplacian matrix of a noisy signal. Polynomial filtering avoids costly computation of the eigendecomposition by projections onto suitable Krylov subspaces. Polynomial filters can be based, e.g., on the bilateral and guided filters. We propose constructing accelerated polynomial filters by running flexible Krylov subspace based linear and eigenvalue solvers such as the Block Locally Optimal Preconditioned Conjugate Gradient (LOBPCG) method.Comment: 6 pages, 6 figures. Accepted to the 2015 IEEE International Workshop on Machine Learning for Signal Processin
    • …
    corecore