405 research outputs found

    Precision improvement of MEMS gyros for indoor mobile robots with horizontal motion inspired by methods of TRIZ

    Full text link
    In the paper, the problem of precision improvement for the MEMS gyrosensors on indoor robots with horizontal motion is solved by methods of TRIZ ("the theory of inventive problem solving").Comment: 6 pages, the paper is accepted to 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Hawaii, USA (IEEE-NEMS 2014) as an oral presentatio

    3D measurement systems for robot manipulators

    Get PDF

    Navigational Context Recognition for an Autonomous Robot in a Simulated Tree Plantation

    Get PDF
    A sensor fusion technique was developed for estimating the navigational posture of a skid-steered mobile robot in a simulated tree plantation nursery. Real-time kinematic GPS (RTK-GPS) and dynamic measurement unit (DMU) sensors were used to determine the position and orientation of the robot, while a laser range finder was used to locate the tree positions within a selected range. The RTK-GPS error was modeled by a second-order autoregressive model, and error states were incorporated into extended Kalman filter (EKF) design. Through EKF filtering, the mean and standard deviation of error in the easting direction decreased from 4.05 to 2.21 cm and from 8.27 to 1.89 cm, respectively, while in the northing direction, they decreased from 4.64 to 1.81 cm and from 11 to 2.16 cm, respectively. The geo-referenced tree positions along the navigational paths were also recovered by using a K-means clustering algorithm, achieving an average error of tree position estimates of 4.4 cm. The developed sensor fusion algorithm was proven to be capable of recognizing and reconstructing the navigational environment of a simulated tree plantation, which offers a great potential in improving the applicability of an autonomous robot to operate in nursery tree plantations for operations such as intra-row mechanical weeding

    Use of Unmanned Aerial Systems in Civil Applications

    Get PDF
    Interest in drones has been exponentially growing in the last ten years and these machines are often presented as the optimal solution in a huge number of civil applications (monitoring, agriculture, emergency management etc). However the promises still do not match the data coming from the consumer market, suggesting that the only big field in which the use of small unmanned aerial vehicles is actually profitable is the video-makers’ one. This may be explained partly with the strong limits imposed by existing (and often "obsolete") national regulations, but also - and pheraps mainly - with the lack of real autonomy. The vast majority of vehicles on the market nowadays are infact autonomous only in the sense that they are able to follow a pre-determined list of latitude-longitude-altitude coordinates. The aim of this thesis is to demonstrate that complete autonomy for UAVs can be achieved only with a performing control, reliable and flexible planning platforms and strong perception capabilities; these topics are introduced and discussed by presenting the results of the main research activities performed by the candidate in the last three years which have resulted in 1) the design, integration and control of a test bed for validating and benchmarking visual-based algorithm for space applications; 2) the implementation of a cloud-based platform for multi-agent mission planning; 3) the on-board use of a multi-sensor fusion framework based on an Extended Kalman Filter architecture

    Multi-environment Georeferencing of RGB-D Panoramic Images from Portable Mobile Mapping – a Perspective for Infrastructure Management

    Get PDF
    Hochaufgelöste, genau georeferenzierte RGB-D-Bilder sind die Grundlage fĂŒr 3D-BildrĂ€ume bzw. 3D Street-View-Webdienste, welche bereits kommerziell fĂŒr das Infrastrukturmanagement eingesetzt werden. MMS ermöglichen eine schnelle und effiziente Datenerfassung von Infrastrukturen. Die meisten im Aussenraum eingesetzten MMS beruhen auf direkter Georeferenzierung. Diese ermöglicht in offenen Bereichen absolute Genauigkeiten im Zentimeterbereich. Bei GNSS-Abschattung fĂ€llt die Genauigkeit der direkten Georeferenzierung jedoch schnell in den Dezimeter- oder sogar in den Meterbereich. In InnenrĂ€umen eingesetzte MMS basieren hingegen meist auf SLAM. Die meisten SLAM-Algorithmen wurden jedoch fĂŒr niedrige Latenzzeiten und fĂŒr Echtzeitleistung optimiert und nehmen daher Abstriche bei der Genauigkeit, der KartenqualitĂ€t und der maximalen Ausdehnung in Kauf. Das Ziel dieser Arbeit ist, hochaufgelöste RGB-D-Bilder in verschiedenen Umgebungen zu erfassen und diese genau und zuverlĂ€ssig zu georeferenzieren. FĂŒr die Datenerfassung wurde ein leistungsstarkes, bildfokussiertes und rucksackgetragenes MMS entwickelt. Dieses besteht aus einer Mehrkopf-Panoramakamera, zwei Multi-Beam LiDAR-Scannern und einer GNSS- und IMU-kombinierten Navigationseinheit der taktischen Leistungsklasse. Alle Sensoren sind prĂ€zise synchronisiert und ermöglichen Zugriff auf die Rohdaten. Das Gesamtsystem wurde in Testfeldern mit bĂŒndelblockbasierten sowie merkmalsbasierten Methoden kalibriert, was eine Voraussetzung fĂŒr die Integration kinematischer Sensordaten darstellt. FĂŒr eine genaue und zuverlĂ€ssige Georeferenzierung in verschiedenen Umgebungen wurde ein mehrstufiger Georeferenzierungsansatz entwickelt, welcher verschiedene Sensordaten und Georeferenzierungsmethoden vereint. Direkte und LiDAR SLAM-basierte Georeferenzierung liefern Initialposen fĂŒr die nachtrĂ€gliche bildbasierte Georeferenzierung mittels erweiterter SfM-Pipeline. Die bildbasierte Georeferenzierung fĂŒhrt zu einer prĂ€zisen aber spĂ€rlichen Trajektorie, welche sich fĂŒr die Georeferenzierung von Bildern eignet. Um eine dichte Trajektorie zu erhalten, die sich auch fĂŒr die Georeferenzierung von LiDAR-Daten eignet, wurde die direkte Georeferenzierung mit Posen der bildbasierten Georeferenzierung gestĂŒtzt. Umfassende Leistungsuntersuchungen in drei weitrĂ€umigen anspruchsvollen Testgebieten zeigen die Möglichkeiten und Grenzen unseres Georeferenzierungsansatzes. Die drei Testgebiete im Stadtzentrum, im Wald und im GebĂ€ude reprĂ€sentieren reale Bedingungen mit eingeschrĂ€nktem GNSS-Empfang, schlechter Beleuchtung, sich bewegenden Objekten und sich wiederholenden geometrischen Mustern. Die bildbasierte Georeferenzierung erzielte die besten Genauigkeiten, wobei die mittlere PrĂ€zision im Bereich von 5 mm bis 7 mm lag. Die absolute Genauigkeit betrug 85 mm bis 131 mm, was einer Verbesserung um Faktor 2 bis 7 gegenĂŒber der direkten und LiDAR SLAM-basierten Georeferenzierung entspricht. Die direkte Georeferenzierung mit CUPT-StĂŒtzung von Bildposen der bildbasierten Georeferenzierung, fĂŒhrte zu einer leicht verschlechterten mittleren PrĂ€zision im Bereich von 13 mm bis 16 mm, wobei sich die mittlere absolute Genauigkeit nicht signifikant von der bildbasierten Georeferenzierung unterschied. Die in herausfordernden Umgebungen erzielten Genauigkeiten bestĂ€tigen frĂŒhere Untersuchungen unter optimalen Bedingungen und liegen in derselben Grössenordnung wie die Resultate anderer Forschungsgruppen. Sie können fĂŒr die Erstellung von Street-View-Services in herausfordernden Umgebungen fĂŒr das Infrastrukturmanagement verwendet werden. Genau und zuverlĂ€ssig georeferenzierte RGB-D-Bilder haben ein grosses Potenzial fĂŒr zukĂŒnftige visuelle Lokalisierungs- und AR-Anwendungen

    Experimental validation of FastSLAM algorithm integrated with a linear features based map

    Get PDF
    International audienceIn this paper the Simultaneous Localization And Mapping (SLAM) problem in unknown indoor environments is addressed. A probabilistic approach integrating FastSLAM algorithm and a line feature map is developed and validated. Experi- mental validation is performed by a smart wheelchair equipped with proprioceptive and exteroceptive sensors in an office like environment where loop closing is achieved without any dedicated algorithm. Geometric hypothesis of orthogonal line features are considered to enhance the performance of the algorithm in the considered en- vironment. The proposed approach results in a computationally efficient solution to the SLAM problem and the high quality sensor measurements allow to main- tain a good localization of the mobile base and a compact representation of the environment

    Sensor fusion and noise modeling for improved vehicle localization

    Get PDF
    This thesis examines the application of sensor fusion technique for the real-time vehicle localization improvement. The Kalman filtering technique has been used for the fusion process in this research. Previous researchers found Kalman filtering creditable in removing the white noises in sensor measurements but very few of them explained the fine tuning of the system and measurement noise matrices which are the foremost performance decisive parameters in the recursive Kalman filter algorithm. In the first application, the Kalman filtering was used to improve the navigational context recognization ability of an autonomous robot when the robot is navigating in simulated tree plantation nursery. An Extended Kalman Filtering (EKF) algorithm was developed and implemented to improve the accuracy of posture estimation of a skid-steered autonomous robot. A kinematic system model consisting of seven states was developed for implementing an EKF algorithm. The GPS error along with external vibration noise and Dynamic Measurement Unit\u27s static bias drift was found to be the main sources of error affecting the position and heading of the robot vehicle. In addition to the EKF, a second order autoregression error model was developed to model the real-time kinematic-GPS (RTK-GPS) errors. The EKF with Autoregressive error model enhanced robot\u27s localization accuracy over the EKF without incorporating an error model. Furthermore, the developed filtering and K-means clustering algorithms were successful in recognizing and reconstructing the navigational context of an autonomous weeding robot in a simulated tree plantation nursery. The second application of EKF was for improving the attitude angle estimates of the self-propelled sprayer by fusing the roll and pitch estimates from a digital elevation model (DEM) with the roll measurements from terrain compensation module sensor (TCM) and pitch estimates from a single GPS sensor. The EKF algorithm was capable of estimating the sprayer attitude angles even when the DEMs attitude estimates were not available for a certain period due to the out of bound circumstance of the DEM. The EKF and AR error model algorithms were also capable of removing the high frequency noise associated with the TCM and GPS sensor measurements

    Adaptive Localization and Mapping for Planetary Rovers

    Get PDF
    Future rovers will be equipped with substantial onboard autonomy as space agencies and industry proceed with missions studies and technology development in preparation for the next planetary exploration missions. Simultaneous Localization and Mapping (SLAM) is a fundamental part of autonomous capabilities and has close connections to robot perception, planning and control. SLAM positively affects rover operations and mission success. The SLAM community has made great progress in the last decade by enabling real world solutions in terrestrial applications and is nowadays addressing important challenges in robust performance, scalability, high-level understanding, resources awareness and domain adaptation. In this thesis, an adaptive SLAM system is proposed in order to improve rover navigation performance and demand. This research presents a novel localization and mapping solution following a bottom-up approach. It starts with an Attitude and Heading Reference System (AHRS), continues with a 3D odometry dead reckoning solution and builds up to a full graph optimization scheme which uses visual odometry and takes into account rover traction performance, bringing scalability to modern SLAM solutions. A design procedure is presented in order to incorporate inertial sensors into the AHRS. The procedure follows three steps: error characterization, model derivation and filter design. A complete kinematics model of the rover locomotion subsystem is developed in order to improve the wheel odometry solution. Consequently, the parametric model predicts delta poses by solving a system of equations with weighed least squares. In addition, an odometry error model is learned using Gaussian processes (GPs) in order to predict non-systematic errors induced by poor traction of the rover with the terrain. The odometry error model complements the parametric solution by adding an estimation of the error. The gained information serves to adapt the localization and mapping solution to the current navigation demands (domain adaptation). The adaptivity strategy is designed to adjust the visual odometry computational load (active perception) and to influence the optimization back-end by including highly informative keyframes in the graph (adaptive information gain). Following this strategy, the solution is adapted to the navigation demands, providing an adaptive SLAM system driven by the navigation performance and conditions of the interaction with the terrain. The proposed methodology is experimentally verified on a representative planetary rover under realistic field test scenarios. This thesis introduces a modern SLAM system which adapts the estimated pose and map to the predicted error. The system maintains accuracy with fewer nodes, taking the best of both wheel and visual methods in a consistent graph-based smoothing approach
    • 

    corecore