198,700 research outputs found

    A First Step Towards Nuance-Oriented Interfaces for Virtual Environments

    Get PDF
    Designing usable interfaces for virtual environments (VEs) is not a trivial task. Much of the difficulty stems from the complexity and volume of the input data. Many VEs, in the creation of their interfaces, ignore much of the input data as a result of this. Using machine learning (ML), we introduce the notion of a nuance that can be used to increase the precision and power of a VE interface. An experiment verifying the existence of nuances using a neural network (NN) is discussed and a listing of guidelines to follow is given. We also review reasons why traditional ML techniques are difficult to apply to this problem

    TIR-based dynamic liquid-level and flow-rate sensing and its application on centrifugal microfluidic platforms

    Get PDF
    For the first time we present a technique for the spatio-temporally resolved localization of liquid-gas interfaces on centrifugal microfluidic platforms based on total internal reflection (TIR) at the channel wall. The simple setup consists of a line laser and a linear image sensor array mounted in a stationary instrument. Apart from identifying the presence of (usually unwanted) gas bubbles, the here described online meniscus detection allows to measure liquid volumes with a high precision of 1.9%. Additionally, flow rates and viscosities (range: 1-10.7 mPa s) can be sensed even during rotation at frequencies up to 30 Hz with a precision of 4.7% and 4.3%, respectively

    High precision dynamic multi-interface profilometry with optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) has mostly been used for high speed volume imaging but its profilometry potentials have not been fully exploited. This paper demonstrates high precision (as good as ~50nm) multi-interface profilometry using a Fourier domain OCT system without special anti-vibration devices. The precision is up to two orders of magnitudes better than the depth resolution of the OCT. Detailed analysis of the precision achieved for different surfaces is presented. The multi-interface profiles are obtained as a by-product of the tomography data. OCT has advantage in speed and sensitivity at detecting rough and internal interfaces compared to conventional optical profilometry. An application of the technique to the dynamic monitoring of varnish drying on paint-like substrates is demonstrated, which provides a better understanding of the formation of surface roughness. The technique has potential benefits in the field of art conservation, coatings technology and soft matter physics

    Printable microscale interfaces for long-term peripheral nerve mapping and precision control

    Get PDF
    The nascent field of bioelectronic medicine seeks to decode and modulate peripheral nervous system signals to obtain therapeutic control of targeted end organs and effectors. Current approaches rely heavily on electrode-based devices, but size scalability, material and microfabrication challenges, limited surgical accessibility, and the biomechanically dynamic implantation environment are significant impediments to developing and deploying advanced peripheral interfacing technologies. Here, we present a microscale implantable device – the nanoclip – for chronic interfacing with fine peripheral nerves in small animal models that begins to meet these constraints. We demonstrate the capability to make stable, high-resolution recordings of behaviorally-linked nerve activity over multi-week timescales. In addition, we show that multi-channel, current-steering-based stimulation can achieve a high degree of functionally-relevant modulatory specificity within the small scale of the device. These results highlight the potential of new microscale design and fabrication techniques for the realization of viable implantable devices for long-term peripheral interfacing.https://www.biorxiv.org/node/801468.fullFirst author draf

    Multiple man-machine interfaces

    Get PDF
    The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine

    Recent Results of Multimagnetical Simulations of the Ising Model

    Full text link
    To investigate order-order interfaces, we perform multimagnetical Monte Carlo simulations of the 2D2D and 3D3D Ising model. Stringent tests of the numerical methods are performed by reproducing with high precision exact 2D2D results. In the physically more interesting 3D3D case we estimate the amplitude F0sF^s_0 of the critical interfacial tension.Comment: talk presented at the workshop "Dynamics of First Order Phase Transitions", Juelich June 1-3; FSU-SCRI-92C-87 preprint; 7 pages; sorry no figures; needs vanilla.st

    Ideal Spin Filters: Theoretical Study of Electron Transmission Through Ordered and Disordered Interfaces Between Ferromagnetic Metals and Semiconductors

    Full text link
    It is predicted that certain atomically ordered interfaces between some ferromagnetic metals (F) and semiconductors (S) should act as ideal spin filters that transmit electrons only from the majority spin bands or only from the minority spin bands of the F to the S at the Fermi energy, even for F with both majority and minority bands at the Fermi level. Criteria for determining which combinations of F, S and interface should be ideal spin filters are formulated. The criteria depend only on the bulk band structures of the S and F and on the translational symmetries of the S, F and interface. Several examples of systems that meet these criteria to a high degree of precision are identified. Disordered interfaces between F and S are also studied and it is found that intermixing between the S and F can result in interfaces with spin anti-filtering properties, the transmitted electrons being much less spin polarized than those in the ferromagnetic metal at the Fermi energy. A patent application based on this work has been commenced by Simon Fraser University.Comment: RevTeX, 12 pages, 5 figure
    • 

    corecore