14,698 research outputs found

    SqORAM: Read-Optimized Sequential Write-Only Oblivious RAM

    Full text link
    Oblivious RAM protocols (ORAMs) allow a client to access data from an untrusted storage device without revealing the access patterns. Typically, the ORAM adversary can observe both read and write accesses. Write-only ORAMs target a more practical, {\em multi-snapshot adversary} only monitoring client writes -- typical for plausible deniability and censorship-resilient systems. This allows write-only ORAMs to achieve significantly-better asymptotic performance. However, these apparent gains do not materialize in real deployments primarily due to the random data placement strategies used to break correlations between logical and physical namespaces, a required property for write access privacy. Random access performs poorly on both rotational disks and SSDs (often increasing wear significantly, and interfering with wear-leveling mechanisms). In this work, we introduce SqORAM, a new locality-preserving write-only ORAM that preserves write access privacy without requiring random data access. Data blocks close to each other in the logical domain land in close proximity on the physical media. Importantly, SqORAM maintains this data locality property over time, significantly increasing read throughput. A full Linux kernel-level implementation of SqORAM is 100x faster than non locality-preserving solutions for standard workloads and is 60-100% faster than the state-of-the-art for typical file system workloads

    Graph-Sparse LDA: A Topic Model with Structured Sparsity

    Full text link
    Originally designed to model text, topic modeling has become a powerful tool for uncovering latent structure in domains including medicine, finance, and vision. The goals for the model vary depending on the application: in some cases, the discovered topics may be used for prediction or some other downstream task. In other cases, the content of the topic itself may be of intrinsic scientific interest. Unfortunately, even using modern sparse techniques, the discovered topics are often difficult to interpret due to the high dimensionality of the underlying space. To improve topic interpretability, we introduce Graph-Sparse LDA, a hierarchical topic model that leverages knowledge of relationships between words (e.g., as encoded by an ontology). In our model, topics are summarized by a few latent concept-words from the underlying graph that explain the observed words. Graph-Sparse LDA recovers sparse, interpretable summaries on two real-world biomedical datasets while matching state-of-the-art prediction performance

    Tolerating Correlated Failures in Massively Parallel Stream Processing Engines

    Full text link
    Fault-tolerance techniques for stream processing engines can be categorized into passive and active approaches. A typical passive approach periodically checkpoints a processing task's runtime states and can recover a failed task by restoring its runtime state using its latest checkpoint. On the other hand, an active approach usually employs backup nodes to run replicated tasks. Upon failure, the active replica can take over the processing of the failed task with minimal latency. However, both approaches have their own inadequacies in Massively Parallel Stream Processing Engines (MPSPE). The passive approach incurs a long recovery latency especially when a number of correlated nodes fail simultaneously, while the active approach requires extra replication resources. In this paper, we propose a new fault-tolerance framework, which is Passive and Partially Active (PPA). In a PPA scheme, the passive approach is applied to all tasks while only a selected set of tasks will be actively replicated. The number of actively replicated tasks depends on the available resources. If tasks without active replicas fail, tentative outputs will be generated before the completion of the recovery process. We also propose effective and efficient algorithms to optimize a partially active replication plan to maximize the quality of tentative outputs. We implemented PPA on top of Storm, an open-source MPSPE and conducted extensive experiments using both real and synthetic datasets to verify the effectiveness of our approach

    Modeling Big Medical Survival Data Using Decision Tree Analysis with Apache Spark

    Get PDF
    In many medical studies, an outcome of interest is not only whether an event occurred, but when an event occurred; and an example of this is Alzheimer’s disease (AD). Identifying patients with Mild Cognitive Impairment (MCI) who are likely to develop Alzheimer’s disease (AD) is highly important for AD treatment. Previous studies suggest that not all MCI patients will convert to AD. Massive amounts of data from longitudinal and extensive studies on thousands of Alzheimer’s patients have been generated. Building a computational model that can predict conversion form MCI to AD can be highly beneficial for early intervention and treatment planning for AD. This work presents a big data model that contains machine-learning techniques to determine the level of AD in a participant and predict the time of conversion to AD. The proposed framework considers one of the widely used screening assessment for detecting cognitive impairment called Montreal Cognitive Assessment (MoCA). MoCA data set was collected from different centers and integrated into our large data framework storage using a Hadoop Data File System (HDFS); the data was then analyzed using an Apache Spark framework. The accuracy of the proposed framework was compared with a semi-parametric Cox survival analysis model
    • …
    corecore