14 research outputs found

    Component-based Segmentation of words from handwritten Arabic text

    Get PDF
    Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words segmentation. Meanwhile, an improved projection based method is also employed for baseline detection. The proposed method has been successfully tested on IFN/ENIT database consisting of 26459 Arabic words handwritten by 411 different writers, and the results were promising and very encouraging in more accurate detection of the baseline and segmentation of words for further recognition

    Recognition of off-line printed Arabic text using Hidden Markov Models.

    Get PDF
    yesThis paper describes a technique for automatic recognition of off-line printed Arabic text using Hidden Markov Models. In this work different sizes of overlapping and non-overlapping hierarchical windows are used to generate 16 features from each vertical sliding strip. Eight different Arabic fonts were used for testing (viz. Arial, Tahoma, Akhbar, Thuluth, Naskh, Simplified Arabic, Andalus, and Traditional Arabic). It was experimentally proven that different fonts have their highest recognition rates at different numbers of states (5 or 7) and codebook sizes (128 or 256). Arabic text is cursive, and each character may have up to four different shapes based on its location in a word. This research work considered each shape as a different class, resulting in a total of 126 classes (compared to 28 Arabic letters). The achieved average recognition rates were between 98.08% and 99.89% for the eight experimental fonts. The main contributions of this work are the novel hierarchical sliding window technique using only 16 features for each sliding window, considering each shape of Arabic characters as a separate class, bypassing the need for segmenting Arabic text, and its applicability to other languages

    Framework Of Page Segmentation For Mushaf Al-Quran Based On Multiphase Level Segmentation

    Get PDF
    This paper presents the framework of page segmentation for Mushaf Al-Quran based on Multiphase Level Segmentation (MLS).This study focuses to (a) extract multiform frame shape by using a novel technique Neighbouring Pixel Behaviors (NPB) and (b) segment text line by using a novel technique which is Hybrid Projection Based Neighbouring Properties (HPBNP).Since Mushaf Al-Quran pages are decorated with a different type of pattern and design of a decorative frame.Thus,the decoration frame must be properly to extract out from a page of Mushaf Al-Quran first before properly get only the text of Mushaf Al-Quran regardless of its decoration heterogeneity.Therefore,NPB technique was proposed to remove multiform frame shape from the page of Mushaf Al-Quran.While the text of Mushaf Al-Quran has a several of diacritical marks,hence it will block the process of segmenting text line.Therefore,HPBNP technique was proposed for segment overlapping text line that interfered by diacritical marks or the stroke of the Arabic word. Experimental results of the proposed technique is shown in this paper

    Recognition of Arabic handwritten words

    Get PDF
    Recognizing Arabic handwritten words is a difficult problem due to the deformations of different writing styles. Moreover, the cursive nature of the Arabic writing makes correct segmentation of characters an almost impossible task. While there are many sub systems in an Arabic words recognition system, in this work we develop a sub system to recognize Part of Arabic Words (PAW). We try to solve this problem using three different approaches, implicit segmentation and two variants of holistic approach. While Rothacker found similar conclusions while this work is being prepared, we report the difficulty in locating characters in PAW using Scale Invariant Feature Transforms under the first approach. In the second and third approaches, we use holistic approach to recognize PAW using Support Vector Machine (SVM) and Active Shape Models (ASM). While there are few works that use SVM to recognize PAW, they use a small dataset; we use a large dataset and a different set of features. We also explain the errors SVM and ASM make and propose some remedies to these errors as future work

    Novel word recognition and word spotting systems for offline Urdu handwriting

    Get PDF
    Word recognition for offline Arabic, Farsi and Urdu handwriting is a subject which has attained much attention in the OCR field. This thesis presents the implementations of offline Urdu Handwritten Word Recognition (HWR) and an Urdu word spotting technique. This thesis first introduces the creation of several offline CENPARMI Urdu databases. These databases were necessary for offline Urdu HWR experiments. The holistic-based recognition approach was followed for the Urdu HWR system. In this system, the basic pre-processing of images was performed. In the feature extraction phase, the gradient and structural features were extracted from greyscale and binary word images, respectively. This recognition system extracted 592 feature sets and these features helped in improving the recognition results. The system was trained and tested on 57 words. Overall, we achieved a 97 % accuracy rate for handwritten word recognition by using the SVM classifier. Our word spotting technique used the holistic HWR system for recognition purposes. This word spotting system consisted of two processes: the segmentation of handwritten connected components and diacritics from Urdu text lines and the word spotting algorithm. A small database of handwritten text pages was created for testing the word spotting system. This database consisted of texts from ten Urdu native speakers. The rule-based segmentation system was applied for segmentation (or extracting) for handwritten Urdu subwords or connected components from text lines. We achieved a 92% correct segmentation rate for 372 text lines. In the word spotting algorithm, the candidate words were generated from the segmented connected components. These candidate words were sent to the holistic HWR system, which extracted the features and tried to recognize each image as one of the 57 words. After classification, each image was sent to the verification/rejection phase, which helped in rejecting the maximum number of unseen (raw data) images. Overall, we achieved a 50% word spotting precision at a 70% recall rat
    corecore