22,204 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Distributed data mining in grid computing environments

    Get PDF
    The official published version of this article can be found at the link below.The computing-intensive data mining for inherently Internet-wide distributed data, referred to as Distributed Data Mining (DDM), calls for the support of a powerful Grid with an effective scheduling framework. DDM often shares the computing paradigm of local processing and global synthesizing. It involves every phase of Data Mining (DM) processes, which makes the workflow of DDM very complex and can be modelled only by a Directed Acyclic Graph (DAG) with multiple data entries. Motivated by the need for a practical solution of the Grid scheduling problem for the DDM workflow, this paper proposes a novel two-phase scheduling framework, including External Scheduling and Internal Scheduling, on a two-level Grid architecture (InterGrid, IntraGrid). Currently a DM IntraGrid, named DMGCE (Data Mining Grid Computing Environment), has been developed with a dynamic scheduling framework for competitive DAGs in a heterogeneous computing environment. This system is implemented in an established Multi-Agent System (MAS) environment, in which the reuse of existing DM algorithms is achieved by encapsulating them into agents. Practical classification problems from oil well logging analysis are used to measure the system performance. The detailed experiment procedure and result analysis are also discussed in this paper

    Sparse Allreduce: Efficient Scalable Communication for Power-Law Data

    Full text link
    Many large datasets exhibit power-law statistics: The web graph, social networks, text data, click through data etc. Their adjacency graphs are termed natural graphs, and are known to be difficult to partition. As a consequence most distributed algorithms on these graphs are communication intensive. Many algorithms on natural graphs involve an Allreduce: a sum or average of partitioned data which is then shared back to the cluster nodes. Examples include PageRank, spectral partitioning, and many machine learning algorithms including regression, factor (topic) models, and clustering. In this paper we describe an efficient and scalable Allreduce primitive for power-law data. We point out scaling problems with existing butterfly and round-robin networks for Sparse Allreduce, and show that a hybrid approach improves on both. Furthermore, we show that Sparse Allreduce stages should be nested instead of cascaded (as in the dense case). And that the optimum throughput Allreduce network should be a butterfly of heterogeneous degree where degree decreases with depth into the network. Finally, a simple replication scheme is introduced to deal with node failures. We present experiments showing significant improvements over existing systems such as PowerGraph and Hadoop

    Applications of next-generation sequencing technologies and computational tools in molecular evolution and aquatic animals conservation studies : a short review

    Get PDF
    Aquatic ecosystems that form major biodiversity hotspots are critically threatened due to environmental and anthropogenic stressors. We believe that, in this genomic era, computational methods can be applied to promote aquatic biodiversity conservation by addressing questions related to the evolutionary history of aquatic organisms at the molecular level. However, huge amounts of genomics data generated can only be discerned through the use of bioinformatics. Here, we examine the applications of next-generation sequencing technologies and bioinformatics tools to study the molecular evolution of aquatic animals and discuss the current challenges and future perspectives of using bioinformatics toward aquatic animal conservation efforts
    • …
    corecore