
Distributed Data Mining in Grid Computing Environments

Ping Luoab, Kevin Lüc∗, Zhongzhi Shia and Qing Hea

aKey Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese
Academy of Sciences, 100080, Beijing, China

bGraduate School of the Chinese Academy of Sciences, 100080, Beijing, China

cBrunel University, Uxbridge, U. K. UB8 3PH

The computing-intensive data mining for inherently Internet-wide distributed data, referred as Distributed Data
Mining (DDM), calls for the support of a powerful Grid with an effective scheduling framework. DDM often shares
the computing paradigm of local processing and global synthesizing. It involves every phase of Data Mining (DM)
processes, which makes the workflow of DDM very complex and can be modelled only by a Directed Acyclic Graph
(DAG) with multiple data entries. Motivated by the need of a practical solution of the Grid scheduling problem for
the DDM workflow, this paper proposes a novel two-phase scheduling framework, including External Scheduling
and Internal Scheduling, on a two-level Grid architecture (InterGrid, IntraGrid). Currently a DM IntraGrid,
named DMGCE (Data Mining Grid Computing Environment), has been developed with a dynamic scheduling
framework for competitive DAGs in a heterogeneous computing environment. This system is implemented in an
established Multi-Agent System (MAS) environment, in which the reuse of existing DM algorithms is achieved
by encapsulating them into agents. Practical classification problems from oil well logging analysis are used to
measure the system performance. The detailed experiment procedure and result analysis are also discussed in
this paper.

1. Introduction

With the vast improvements in wide-area net-
work performance and powerful yet low-cost com-
puters, Grid computing has emerged as a promis-
ing attractive computing paradigm. The underly-
ing principle of computational Grid is the notion
of providing computing power transparently in an
analogy with electrical power. It aims to aggre-
gate distributed computing resources, hide their
specifications and present a homogeneous inter-
face to end users for high performance or high
throughput computation. Thus, instead of com-
puting locally, users dispatch their tasks to the
Grid and use the remote computing resourses. To
achieve the promising potentials of computational
Grids, an effective and efficient scheduling frame-
work within Grids is fundamentally important.
Recently, DDM has attracted lots of attention
among the data mining community [1]. DDM
∗Corresponding author. Tel:+44-1895203122; Fax:+44
1895 203 149; E-mail addresses: kevin.lu@brunel.ac.uk,
luop@ics.ict.ac.cn

refers to the mining of inherently distributed
datasets, aiming to generate global patterns from
the union set of locally distributed data. How-
ever, the security issue among different local
datasets and the huge communication cost in data
migration prevent moving all the datasets to a
public site. Thus, the algorithms of DDM of-
ten adopt a computing paradigm of local process-
ing and global synthesizing, which means that
the mining process takes place at a local level
and then at a global level where local data min-
ing results are combined to gain global findings.
Furthermore, the local processing often concerns
multiple phases of data mining, including prepro-
cessing, training and evaluation. The diversity of
algorithms in each mining phase makes the DDM
workflow so complex that it requires a DAG to
model it.

This paper concerns the development of a
scheduling framework on a two-level Grid archi-
tecture illustrated in Figure 1 for complex DDM
workflows. In the two-level Grid the low level is

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/337112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Ping Luo

Figure 1. Two-Level Architecture of InterGrid [2]

IntraGrids while the high level is an InterGrid.

IntraGrid A typical IntraGrid topology exists
within a single organization. This organiza-
tion could be made up of many computers,
which are connected by a private high-speed
local network. The primary characteristic
of an IntraGrid is the bandwidth guarantee
on the private network.

InterGrid An InterGrid is an Internet-wide
Grid, consisting of multiple IntraGrids con-
nected by WAN. Due to WAN connectiv-
ity the communication speed between In-
traGrids could be comparably slow.

Our approach for scheduling complex DDM DAG
is performed in two phases: external schedul-
ing and internal scheduling. They are involved
with InterGrids and IntraGrids, respectively. Is-
sues such as scalability, flexibility, adaptability
are critical for a practical wide-area deployment
of Grid systems, which require an efficient and
effective scheduling framework. That is the mo-
tivation of this study.
The arrangement of the rest of this paper is
as follows. Section 2 describes the workflow
of distributed classification and formalizes the
scheduling problem. Section 3 presents the two-
phase scheduling framework, including the exter-
nal scheduling at the InterGrid level and the in-
ternal scheduling within an IntraGrid. Section 4
evaluates the performance of the developed DM
IntraGrid by real-world datasets for classification.

The related work and conclusions will be given in
Section 5. The implementation issues of this DM
IntraGrid in the multi-agent system environment
is omitted due to the space limitation.

2. Workflow of DDM: a Computing
Paradigm of Local Processing and
Global Synthesizing

DDM is the process of performing data mining
in distributed computing environments, where
users, data, hardware and data mining software
are geographically distributed. It emerges as
an area of research interests to deal with nat-
urally distributed and heterogeneous databases
and then to address the scalability bottlenecks
of mining very large datasets [3]. A number of
distributed algorithms have been developed for
different DDM tasks, including distributed clas-
sification, clustering and association [1]. The fun-
damental concept of these algorithms is that each
local dataset is mined individually and the local
patterns obtained are then combined to produce
global patterns of the entire data. Thus, they
mostly adopt the computing paradigm of local
processing and global synthesizing for different
DDM tasks. Because this computing paradigm
is generally adopted in DDM, we aim to present
an effective Grid scheduling framework for it. In
the following, a workflow of distributed classifica-
tion is given as the running example of our Grid
application.

2.1. Distributed Classification: a Running
Example

The DM workflow for classification in Figure 2
aims to find the optimal local classification pat-
tern for the local dataset. It is a complex, highly
dynamic, and resource-intensive process, which
consists of several different phases. In each phase,
many different algorithms are available with dif-
ferent parameters. The workflow in Figure 2 con-
sists of preprocessing, training&testing and evalu-
ation phase. The preprocessing phase can be sub-
divided into three sequential sub-phases of nor-
malization, discretization, and attribute reduc-
tion based on rough set. The mining steps within
a phase are optional operations with different per-

Distributed Data Mining in Grid Computing Environments 3

Figure 2. Data mining process in local processing

formances. For convenience and clarity, we give
the following definitions.

Definition 2.1 (DM Step). A DM step corre-
sponds to a particular algorithm to be executed,
provided a dataset and a certain set of input pa-
rameters for it. Each DM step Λ is described as
a quad:

Λ = (A,F, D, ~P)

where A is the data mining algorithm, F is the
data mining phase that contains the algorithm A,
D is the input dataset and ~P is the vector of al-
gorithm parameters.

Let Λ1 = (A1, F1, D1, ~P1) and Λ2 =
(A2, F2, D2, ~P2), Λ1 = Λ2 if and only if A1 =
A2, F1 = F2, D1 = D2, ~P1 = ~P2.

Definition 2.2 (DM Path). Let Λ1 =
(A1, F1, D1, ~P1), · · · ,Λk = (Ak, Fk, Dk, ~Pk), DM
Path is ~Λ = (Λ1, · · · ,Λk), where Fi(1 ≤ i ≤ k) is
the i-th phase of the whole k-phase data mining
process.

In Figure 2, a DM path can be easily obtained
after we select a DM step from each mining phase.
If there are n1, n2, n3, n4 different DM steps in
the four phases of normalization, discretization,
attribute reduction and training&testing respec-
tively, the number of all possible DM paths would
be n1 × n2 × n3 × n4 according to the Multi-
ply Theorem. Along a DM path, a mining step

transfers its output to the following step until the
path terminates and the final result would be ob-
tained. Then, using the training and validation
datasets as an input of the DM path, a mea-
surement will be obtained for this path according
to certain evaluation criterion. For classification
problems, the evaluation measurements could be
accuracy, weighted accuracy and AUC (Area Un-
der Curve), etc. After exhaustively evaluating all
the DM paths, ranks of all resultant patterns for
all DM paths are generated.
After local processing, the global synthesizing be-
gins. The combining techniques include voting,
arbitrating, combining and stacked generalizer,
etc. However, the computing flow in this process
is much simpler than that in local processing.

2.2. Workflow Model of Distributed Data
Mining

We model the DM workflow as a weighted
DAG, G = G(V, E), where V = {v1, · · · , vn} is a
set of weighted node and E is a set of weighted di-
rected edges, representing data dependencies and
communications between nodes. A node in the
DAG represents a job (referred to as the cor-
responding DM step), which must be executed
without preemption on a host. The weight of
a node is referred to as the standard compu-
tation cost, representing its execution time on
a standard computer, denoted by ∆standard(vi).
eij = (vi, vj) ∈ E indicates data transportation
from job vi to vj , and |eij | represents communi-
cation cost between these two jobs if they are not
executed on the same machine. The precedence
constraints of a DAG require that a node should
not start executing before it gathers all the data
from its predecessors. The node without prede-
cessors is called the entry of G. The node without
successors is called the end of G. The critical path
of G is the longest path (there can be more than
one longest path) from an entry to an end of G.
The weight of this path is the sum of the weights
of the nodes and edges along this path. In the
following, a task refers to a DAG and a job refers
to a node in a DAG.
Figure 3 is the corresponding un-weighted DAG

of the DM process in Figure 2. The direction
of all the edges in Figure 3 is from the node in

4 Ping Luo

Figure 3. The DAG of classification workflow

Figure 4. The DAG of the whole distributed clas-
sification

the upper layer to the one in the lower layer. If
we feed the datasets to the uppermost node in
Figure 3, after the whole computation the lower-
most node in this figure will output the rank of
all patterns for all DM paths, indicating the op-
timal local pattern. Figure 4 depicts the DAG of
the whole distributed classification with k local
data sites. Thus, it is a k-entry DAG with k local
sub-DAGs. Each local sub-DAG represents the
complex local processing, pictured in Figure 3.
The lowermost node in this figure corresponds to
the synthesizing processing of local patterns and
ultimately output the global pattern.

2.3. Problem Definition and Assumptions
Consider the following computation problem of

DDM. The local site, which owns local data for
DDM, can be scattered anywhere on the Internet.
However, it has not enough computing power to
support the complex local processing. This task
of DDM is then fed to a dedicated InterGrid. The

InterGrid simultaneously supports the computa-
tion of multiple competitive DDM DAGs. Our
research objective is to propose an effective and
efficient scheduling framework for DDM DAGs.
We assume that the InterGrid is connected via
a two-level hierarchical network as illustrated in
Figure 1. The first level is an Internet-wide net-
work (WAN) that connects local area networks
(LANs) at the second-level. A group of machines,
connected by LAN, form an IntraGrid. The local
communication cost between computers within
an IntraGrid is ignored due to the following rea-
sons: 1) the network bandwidth within an In-
traGrid is high speed and 2) even if the volume
of the transferred data is large, its correspond-
ing processing time on a computer is much longer
than its communication time. However, the com-
munication cost between IntraGrids is considered
because of the limited and dynamic bandwidth
on a WAN.

3. Two-Phase Scheduling for Distributed
Classification Workflow in an InterGrid

The Grid scheduling process of the workflow
of distributed classification consists of four steps:
partition of distributed classification workflow, ex-
ternal scheduling, internal scheduling and synthe-
sization of local patterns. Partition of distributed
classification workflow divides the whole k-entry
DAG into k sub-DAGs, each of which represents
the corresponding local processing. The exter-
nal scheduling involves the process of mapping
the resultant sub-DAGs onto suitable IntraGrids
according to some criterion, considering commu-
nication costs and IntraGrid credibilities. It is a
WAN-wide and DAG-level scheduling. After an
IntraGrid receives a sub-DAG it maps the jobs
in the sub-DAG onto the computers in it, while
keeping the job precedence constraints. This is
the process of internal scheduling, which is a
LAN-wide and job-level scheduling. After all the
IntraGrids send their local patterns to a public
site, the synthesization process begins and even-
tually outputs the global pattern. The entire
scheduling process is described in Algorithm 1.
The partition algorithm for DDM workflow in our
running example is straightforward. After seg-

Distributed Data Mining in Grid Computing Environments 5

menting the edges between the lowermost node in
Figure 4 and all its predecessors, the sub-DAGs
are generated. The synthesization process is a
computation atom on a machine and does not
concern about task scheduling. So we omit the
description of these two processes.

Algorithm 1 Scheduling for the Whole DAG of
DDM
1: partition the k-entry DAG into k sub-DAGs
2: send the k sub-DAGs to the nearest external

scheduler i
3: the external scheduler maps these k sub-

DAGs onto suitable IntraGrids by external
scheduling algorithm

4: after receiving a sub-DAG for executing the
IntraGrid processes it by internal scheduling
algorithm

5: if a sub-DAG finished notification received
then

6: store this notification
7: if all sub-DAGs finished then
8: select a IntraGrid j with the minimal

communication cost for moving all local
patterns to this IntraGrid

9: synthesization of local patterns on Intra-
Grid j

10: return
11: end if
12: end if

3.1. External Scheduling Algorithm
In our scheduling framework we adopt the mod-

ification of the external scheduling algorithm pre-
sented in [4]. This algorithm processes through
the sealed-bid auction and is decentralized since
an external scheduler resides on each IntraGrid.
Once an external scheduler receives a DAG, it
sends its bidding request with the Requested Task
Response Time (RTRT) to the other external
schedulers for task auction. Those bidders (ex-
ternal scheduler) reply to this request and send
back its Estimate Task Response Time (ETRT).
After receiving all replies it chooses the best In-
traGrid with the minimal ETRT.

RTRT is the approximate estimation of the exe-
cution time for a DAG. In our algorithm RTRT
is estimated by the weight of the critical path of
a DAG. Because the DDM sub-DAG is executed
within an IntraGrid the communication cost is
omitted and then only the weights of nodes are
counted for this critical path. The ETRT is deter-
mined by three issues: RTRT, Network Transfer
Rate (NTR) and Average IntraGrid Credibility
(AIC).
IntraGrid Credibility (IC) represents the comput-
ing reliability of that IntraGrid. After a DAG
is completed we can obtain the Actual Task
Response Time (ATRT). Then IC is computed
by (1)

ICi,j =
ATRTi,j

ETRTi,j
(1)

where ICi,j is the IC of IntraGrid i for DAGj ,
ATRTi,j is the actual task response time of DAGj

on IntraGrid i, ETRTi,j is the estimate task re-
sponse time of DAGj on IntraGrid i.
The AIC is a weighted average that is shown
in (2). The initial AIC is set to be 1.

AICj = old AICj · (1− α) + ICi,j · α (2)

where AICj is the AIC of IntraGrid j, old AICj

is the previous AIC of IntraGrid j, ICi,j is the
IC of IntraGrid i for DAG j. α (0 ≤ α ≤ 1)
is the coefficient, indicating the tradeoff between
previous and current credibilities. The more α is
set to be, the more AICj represents the current
credibility of IntraGrid j. In [4] α is set to be
0.01. However, we suggest α be a much bigger
value to let AICj indicate the current computing
reliability of IntraGrid j more.
The external scheduler decides which IntraGrid is
selected by ETRT, computed by (3)

ETRTi,j = (RTRTi+
Task Data Sizei

NTRk,j
)·AICj

(3)

where ETRTi,j is the estimate task response time
of task i on IntraGrid j, RTRTi is the requested
task response time of task i, AICj is the AIC of
IntraGrid j, Task Data Sizei is the data size of

6 Ping Luo

task i, NTRk,j is the network transfer rate be-
tween IntraGrid k and IntraGrid j. The pseudo-
code of external scheduling for a DAG is pre-
sented in Algorithm 2.

Algorithm 2 External Scheduling
1: if a DAG submitted then
2: for all external schedulers participating in

bidding do
3: send bidding request with RTRT to ex-

ternal schedulers
4: end for
5: if a bidding reply received then
6: store the bidding reply
7: if all bidding replies for this task are re-

ceived then
8: IntraGrid i = IntraGrid with the min-

imal ETRT
9: send task to IntraGrid i

10: end if
11: end if
12: end if

3.2. Internal Scheduling Algorithm
An IntraGrid is a heterogeneous computing

(HC) environment, which consists of multiple
computers with different configurations, con-
nected by a high-speed LAN. Thus, the exist-
ing research results from the field of HC can be
adopted in scheduling jobs from DAGs. The re-
search focus of HC is the design of an algorithm,
which orchestrates all the computing hardware to
perform an application that has diverse compu-
tational requirements [5] so as to minimize the
completion time, i.e., the overall execution time
of the application.
This internal scheduling, in fact, can be described
as a problem of dynamic scheduling for compet-
itive DAGs. It has been proved, in general, to
be NP-complete [6], thus requiring the develop-
ment of heuristic techniques [7,8] for practical us-
age. The adopted internal scheduling algorithm
in this paper is based on our previous work on
scheduling data mining workflows in a heteroge-

neous computing environment [9], which is de-
signed to satisfy the issues on the characteristic
of DM workflows. Based on an approximate esti-
mation of job execution time, this algorithm first
maps DM jobs to machines in a decentralized and
diligent manner. Then the performance of this
initial mapping can be improved through job mi-
grations when necessary. The scheduling heuris-
tic used in it considers the factors of both the
minimal completion time criterion and the critical
path in a DAG. These two aspects are integrated
and implemented in the initial job mapping pro-
cess and the job execution control process, re-
spectively. The detail of this internal scheduling
algorithm is presented in [9].

4. Experiment Procedure and Results

We first focus on the implementation of the
DM IntraGrid, involving internal scheduling only.
This IntraGrid, named DMGCE (Data Mining
Grid Computing Environment), is developed in
a MAS environment MAGE [10] so as to mea-
sure the system performance and then to provide
this Grid service practically. The evaluation of
this system is carried out with practical DM data
from well logging analysis. Well logging analysis
plays an essential role in petroleum exploration
and exploitation. It is used to identify the pay
zones of gas or oil in the reservoir formations.
The performance metrics in the experiments in-
clude task response-time, system throughput and
system efficiency defined in the following.

4.1. Experiment Procedure
In these experiments 9 machines with different

configurations are used. The main configurations
of these machines are listed in Table 1. To mea-
sure the system performance based on the metrics
mentioned above, a DM task for classification de-
noted by G∗, is constructed for the whole exper-
iment process. The corresponding DAG of this
task, which contains 16 jobs, is isomorphic with
the DAG in Figure 3. After removing the end
node of the DAG it becomes a tree, which indi-
cates that all the successors of an internal node
in the tree can be mapped once its execution is
completed. The input data for this DAG is from

Distributed Data Mining in Grid Computing Environments 7

Table 1
Machine Configuration List

Machine Type Index CPU Main Memory Machine Amount
1 3 GHz 512 M 5
2 2.8 GHz 512 M 1
3 2.4 GHz 1024 M 1
4 2.2 GHz 512 M 1
5 731 MHz 448 M 1

the well logging analysis. This data contains 2000
labeled examples with 10 numeric condition at-
tributes.

An approximate running time estimation for
each job in G∗ is generated by the following pro-
cess. We regard one of the machine in Machine
Type 1 of Table 1 as the standard computer. First
we execute a group of benchmark DM jobs on
each machine i and record the actual total exe-
cution time of these jobs, denoted by ∆i, which
would give a performance assessment of the ma-
chine i. Next, G∗ is executed on the standard
machine and the actual running time of each job
Λ, denoted by ∆standard(Λ), is recorded. Thus,
the average execution time of DM jobs of cer-
tain algorithm A on the standard machine can be
computed in (4)

∆standard(A) =

∑
Λ∈ ~A ∆standard(Λ)

| ~A|
(4)

where ~A contains all the jobs performing algo-
rithm A with different parameters or input data
in G∗. And the running time of the average ex-
ecution time of DM jobs of algorithm A on the
other machine i can be estimated by (5)

∆i(A) = ρi ·∆standard(A) (5)

where ρi = ∆i

∆standard
. In our system the machine

heterogeneity, measured by the standard devia-
tion of all ρi, is 2.3835. Then, in our experiment
the running time of a job Λ(A,F, D, ~P) on ma-
chine i is approximately estimated by ∆i(A) as
shown in (6)

∆i(Λ(A,F, D, ~P)) = ∆i(A). (6)

This estimation method considers only the algo-
rithm type it performs, and ignores the other ele-
ments in the quad of Λ, so as to check the tolerant

performance of the internal scheduling algorithm
on the approximate time estimations of DM jobs.
These experiments are performed in two parts.
In the first part, the 4 machines from Machine
Type 1 are used to form a homogeneous system,
in order to measure task response time and sys-
tem throughput versus the number of joining ma-
chines with the same configuration. Let the ar-
rival time of the task G be a(G), the completion
time of G be c(G), then the response-time of G is
r(G) = c(G) − a(G). The system throughput is
defined by the number of G∗, which is completed
by the system in a fixed time.
The second part of the experiments is to evaluate
the scheduling performance in a heterogeneous
system, which contains all the 9 machines listed
in Table 1. In these experiments exponential dis-
tribution is used to generate the task sequence,
including 100 tasks of G∗. These tasks are as-
signed under two inter-arrival times, tl = 25 sec-
onds and th = 50 seconds. The task arrival time
is generated, which satisfies |ta−t|

t < 0.06, where
ta is the actual average inter-arrival time of the
task sequence and t is the expected inter-arrival
time. We record the average response time of the
tasks in the sequence and compute the weighted
system efficiency in (7), which considers the ma-
chine heterogeneity in an HC system.

ηweighted =
tcomputation

ttotal
=

∑l
i=1

tcomputation(i)
ρi∑l

i=1
ttotal(i)

ρi

(7)

where tcomputation(i) is the system CPU time for
the computation on machine i, ttotal(i) is the total
system CPU time on machine i, l is the number
of machines in our system, and ρi is the same as
the one in (5).
All the above experiments are performed under
two situations, with and without job migrations
after initial mapping, and repeated five times.
The average values of these metrics are listed in
subsection 4.2.

4.2. Experiment Results
Figure 5(a) and Figure 5(b) show the results

from the first part of experiments. Figure 5(a)
illustrates that the response time of a single task

8 Ping Luo

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5

re
sp

on
se

 ti
m

e
(s

ec
)

number of machines

without job migration
with job migration

(a) response time versus homoge-
neous machines

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5

th
ro

ug
hp

ut
 (

ta
sk

s/
10

0s
ec

)

number of machines

without job migration
with job migration

(b) throughput versus homogeneous
machines

Figure 5. The experimental results for homoge-
neous computing

 0

 200

 400

 600

 800

 1000

 1200

5025

re
sp

on
se

 ti
m

e
(s

ec
)

inter-arrival time (sec)

with job migration
without job migration

(a) average response time of the tasks
in task sequence

 0

 20

 40

 60

 80

 100

5025

w
ei

gh
te

d
ef

fic
ie

nc
y

(%
)

inter-arrival time (sec)

with job migration
without job migration

(b) weighted efficiency when execut-
ing the tasks in task sequence

Figure 6. The experimental results for heteroge-
neous computing

G∗ decreases along with the increase of the num-
ber of machines. However, the response time
decreases in a non-linear manner and eventually
reaches at a minimal level, because in our ap-
plication the minimal computing granularity is a
job, which could not be broken down any fur-
ther for parallelization. In theory, the minimum
response time of a DAG is the weight sum of
the critical path in the DAG. Figure 5(b) shows
that the throughput of the HC system increases
close to linear along with the increase of the num-
ber of joining machines. These two figures also
show that the use of job migration could improve
the system performance in terms of task response
time and system throughput.
The results from the second part of the ex-
periments can be seen in Figure 6(a) and Fig-
ure 6(b). In Figure 6(a) it can be found that
through the use of job migration technique the
average response times of the 100 tasks decrease
5.58% and 13.21% for the cases of 25-second inter-
arrival and 50-second inter-arrival, respectively.
The weighted efficiency of the HC system is also
improved through job migration technique, as
shown in Figure 6(b).

5. Related Work and Conclusions

5.1. Related Work
The issues of building a computational Grid

for Data Mining have been recently addressed
by a number of researchers. WEKA4WS [11]
adapts the Weka toolkit to a Grid environment
and exposes all the 78 algorithms as WSRF-
compliant Web Services. FAEHIM (Federated
Analysis Environment for Heterogeneous Intel-
ligent Mining) [12] is Web Services based on a
toolkit of DM and mainly focuses on the com-
position of existing DM Web Services by Triana
problem solving environment [13]. The Knowl-
edge Grid [14,15] is a reference software archi-
tecture for geographically distributed knowledge
discovery systems. It is built on top of a compu-
tational Grid of Globus and uses basic Grid ser-
vices to implement the DM services on connected
computers. A visual environment for Grid appli-
cation (VEGA) is developed in this system, sup-
porting visual DM plan generation and automatic

Distributed Data Mining in Grid Computing Environments 9

DM plan execution. GridMiner [16] focuses its ef-
fort on data mining and On-Line Analytical Pro-
cessing (OLAP), two complementary technolo-
gies, which, if applied in conjunction, can provide
a highly efficient and powerful data analysis and
knowledge discovery solution on the Grid. Dis-
covery Net [17] builds the world’s first e-Science
platform for scientific discovery in various fields.
To make good use of the computing hardware
in heterogeneous systems for DM workflow a
scheduling framework is urgently needed. Al-
though this computing paradigm can be achieved
by exposing all the DM algorithms as Web Ser-
vices on every host in this system or by dynamic
Web Service deployment, however, the schedul-
ing framework for DM DAG applications, in gen-
eral, has drawn a very little attention except
for the scheduling heuristics mentioned in [15].
Paper [15] also emphasizes the importance of
scheduling algorithm in Knowledge Grid and uses
the concept of abstract hosts to represent any
computing host.

5.2. Conclusions
In this paper a novel two-phase scheduling

framework, based on the two-level architecture of
an InterGrid, is presented for the Internet-wide
distributed data mining, which shares the com-
puting paradigm of local processing and global
synthesizing. The external scheduling for DDM
sub-DAGs operates through the sealed-bid auc-
tion, with the consideration of communication
costs and IntraGrid credibilities. The internal
scheduling for jobs in a sub-DAG is formalized
as a problem of scheduling for competitive DM
DAGs in heterogeneous computing environments.
According to the characteristics of DM workflows,
a new internal scheduling framework is adopted
based on our previous work [9] with three fea-
tures: totally decentralized, the hybrid heuristic
scheme, and the technique of job migration af-
ter mapping. The DM IntraGrid with this inter-
nal scheduling algorithm has been implemented
in a multi-agent system environment. Its per-
formance has also been tested by real-world DM
data, which is demonstrated by our experiments.

Acknowledgements

Our work is supported by the National Science
Foundation of China (No.60435010), the national
863 Project (No.2003AA115220), the national
973 Project (No.2003CB317004) and the Na-
ture Science Foundation of Beijing (No.4052025).
Kevin Lü would like to show his appreciation to
Wang Kuan Cheng Science Foundation, Chinese
Academy of Sciences for the funding to enable
him to conduct this research.

REFERENCES

1. Y. Fu. Distributed data mining: An
overview. IEEE TCDP newsletter, 2001.

2. Yanmin Zhu. A survey on grid scheduling
systems. Technical report, Computer Science
Department of Hong Kong University of Sci-
ence and Technology, 2003.

3. S. Krishnaswamy, S. Loke, and A. Zaslavsky.
Supporting the optimization of distributed
data mining by predicting application run
times. In Proceedings of the Fourth Interna-
tional Conference on Enterprise Information
Systems, pages 374–381, Ciudad Real, Spain,
2002.

4. H. Chen and M. Maheswaran. Distributed
dynamic scheduling of composite tasks on
grid computing systems. In Proceedings of the
11th IEEE Heterogeneous Computing Work-
shop, 2002.

5. Yu-Kwong Kwok and Ishfaq Ahmad. Static
scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Com-
puting Surveys, 31(4):406–471, 1999.

6. D. Fernandez-Baca. Allocating modules
to processors in a distributed system.
IEEE Transaction on Software Engineering,
15(11):1427–1436, 1989.

7. Michael Iverson and Fusun Ozguner. Dy-
namic, competitive scheduling of multiple
dags in a distributed heterogeneous environ-
ment. In Proceedings of the Eighth Heteroge-
neous Computing Workshop, 1999.

8. Rizos Sakellariou and Henan Zhao. A hybrid
heuristic for dag scheduling on heterogeneous
systems. In Poceedings of the 13th Heteroge-

10 Ping Luo

neous Computing Workshop, 2004.
9. Ping Luo, Kevin Lü, Qing He, and Zhongzhi

Shi. Scheduling for data mining workflows
in a heterogeneous computing system. Tech-
nical report, Institute of Computing Tech-
nology, Chinese Academy of Sciences, 2006.
http://www.intsci.ac.cn/users/luop/.

10. Zhongzhi Shi, Haijun Zhang, Yong Cheng,
Yuncheng Jiang, Qiujian Sheng, and Zhikung
Zhao. Mage: An agent-oriented program-
ming environment. In Proceedings of IEEE
International Conference on Cognitive Infor-
matics, pages 250–257, 2004.

11. D. Talia, P. Trunfio, and O. Verta. Weka4ws:
a wsrf-enabled weka toolkit for distributed
data mining on grids. In Proceedings of
the 9th European Conference on Princi-
ples and Practice of Knowledge Discovery in
Databases, Porto, Portugal, 2005.

12. Ali Shaikh Ali, Omer F. Rana, and Ian J.
Taylor. Web services composition for dis-
tributed data mining. In Proceedings of In-
ternational Conference on Parallel Processing
Workshops, pages 11–18, 2005.

13. The Triana Problem Solving Environment.
http://www.trianacode.org.

14. M. Cannataro, D. Talia, and P. Trunfio. Dis-
tributed data mining on the grid. Future
Generation Computer Systems, 18(8):1101–
1112, 2002.

15. M. Cannataro, A. Congiusta, A. Pugliese,
D. Talia, and P. Trunfio. Distributed data
mining on grids: Services, tools, and applica-
tions. IEEE Transactions on Systems, Man
and Cybernetics, 34(6):2451– 2465, 2004.

16. GridMiner. www.gridminer.org.
17. Discovery Net. www.discovery-on-the.net.

