25,752 research outputs found

    SAFE: Self-Attentive Function Embeddings for Binary Similarity

    Get PDF
    The binary similarity problem consists in determining if two functions are similar by only considering their compiled form. Advanced techniques for binary similarity recently gained momentum as they can be applied in several fields, such as copyright disputes, malware analysis, vulnerability detection, etc., and thus have an immediate practical impact. Current solutions compare functions by first transforming their binary code in multi-dimensional vector representations (embeddings), and then comparing vectors through simple and efficient geometric operations. However, embeddings are usually derived from binary code using manual feature extraction, that may fail in considering important function characteristics, or may consider features that are not important for the binary similarity problem. In this paper we propose SAFE, a novel architecture for the embedding of functions based on a self-attentive neural network. SAFE works directly on disassembled binary functions, does not require manual feature extraction, is computationally more efficient than existing solutions (i.e., it does not incur in the computational overhead of building or manipulating control flow graphs), and is more general as it works on stripped binaries and on multiple architectures. We report the results from a quantitative and qualitative analysis that show how SAFE provides a noticeable performance improvement with respect to previous solutions. Furthermore, we show how clusters of our embedding vectors are closely related to the semantic of the implemented algorithms, paving the way for further interesting applications (e.g. semantic-based binary function search).Comment: Published in International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA) 201

    Lockdown: Dynamic Control-Flow Integrity

    Full text link
    Applications written in low-level languages without type or memory safety are especially prone to memory corruption. Attackers gain code execution capabilities through such applications despite all currently deployed defenses by exploiting memory corruption vulnerabilities. Control-Flow Integrity (CFI) is a promising defense mechanism that restricts open control-flow transfers to a static set of well-known locations. We present Lockdown, an approach to dynamic CFI that protects legacy, binary-only executables and libraries. Lockdown adaptively learns the control-flow graph of a running process using information from a trusted dynamic loader. The sandbox component of Lockdown restricts interactions between different shared objects to imported and exported functions by enforcing fine-grained CFI checks. Our prototype implementation shows that dynamic CFI results in low performance overhead.Comment: ETH Technical Repor

    Mitigating smart card fault injection with link-time code rewriting: a feasibility study

    Get PDF
    We present a feasibility study to protect smart card software against fault-injection attacks by means of binary code rewriting. We implemented a range of protection techniques in a link-time rewriter and evaluate and discuss the obtained coverage, the associated overhead and engineering effort, as well as its practical usability

    Lemon: an MPI parallel I/O library for data encapsulation using LIME

    Full text link
    We introduce Lemon, an MPI parallel I/O library that is intended to allow for efficient parallel I/O of both binary and metadata on massively parallel architectures. Motivated by the demands of the Lattice Quantum Chromodynamics community, the data is stored in the SciDAC Lattice QCD Interchange Message Encapsulation format. This format allows for storing large blocks of binary data and corresponding metadata in the same file. Even if designed for LQCD needs, this format might be useful for any application with this type of data profile. The design, implementation and application of Lemon are described. We conclude with presenting the excellent scaling properties of Lemon on state of the art high performance computers
    • …
    corecore