2,691 research outputs found

    The interaction of knowledge sources in word sense disambiguation

    Get PDF
    Word sense disambiguation (WSD) is a computational linguistics task likely to benefit from the tradition of combining different knowledge sources in artificial in telligence research. An important step in the exploration of this hypothesis is to determine which linguistic knowledge sources are most useful and whether their combination leads to improved results. We present a sense tagger which uses several knowledge sources. Tested accuracy exceeds 94% on our evaluation corpus.Our system attempts to disambiguate all content words in running text rather than limiting itself to treating a restricted vocabulary of words. It is argued that this approach is more likely to assist the creation of practical systems

    Corpus-based Ontology Learning for Word Sense Disambiguation

    Get PDF

    Analysis of equivalence mapping for terminology services

    Get PDF
    This paper assesses the range of equivalence or mapping types required to facilitate interoperability in the context of a distributed terminology server. A detailed set of mapping types were examined, with a view to determining their validity for characterizing relationships between mappings from selected terminologies (AAT, LCSH, MeSH, and UNESCO) to the Dewey Decimal Classification (DDC) scheme. It was hypothesized that the detailed set of 19 match types proposed by Chaplan in 1995 is unnecessary in this context and that they could be reduced to a less detailed conceptually-based set. Results from an extensive mapping exercise support the main hypothesis and a generic suite of match types are proposed, although doubt remains over the current adequacy of the developing Simple Knowledge Organization System (SKOS) Core Mapping Vocabulary Specification (MVS) for inter-terminology mapping

    A time-sensitive historical thesaurus-based semantic tagger for deep semantic annotation

    Get PDF
    Automatic extraction and analysis of meaning-related information from natural language data has been an important issue in a number of research areas, such as natural language processing (NLP), text mining, corpus linguistics, and data science. An important aspect of such information extraction and analysis is the semantic annotation of language data using a semantic tagger. In practice, various semantic annotation tools have been designed to carry out different levels of semantic annotation, such as topics of documents, semantic role labeling, named entities or events. Currently, the majority of existing semantic annotation tools identify and tag partial core semantic information in language data, but they tend to be applicable only for modern language corpora. While such semantic analyzers have proven useful for various purposes, a semantic annotation tool that is capable of annotating deep semantic senses of all lexical units, or all-words tagging, is still desirable for a deep, comprehensive semantic analysis of language data. With large-scale digitization efforts underway, delivering historical corpora with texts dating from the last 400 years, a particularly challenging aspect is the need to adapt the annotation in the face of significant word meaning change over time. In this paper, we report on the development of a new semantic tagger (the Historical Thesaurus Semantic Tagger), and discuss challenging issues we faced in this work. This new semantic tagger is built on existing NLP tools and incorporates a large-scale historical English thesaurus linked to the Oxford English Dictionary. Employing contextual disambiguation algorithms, this tool is capable of annotating lexical units with a historically-valid highly fine-grained semantic categorization scheme that contains about 225,000 semantic concepts and 4,033 thematic semantic categories. In terms of novelty, it is adapted for processing historical English data, with rich information about historical usage of words and a spelling variant normalizer for historical forms of English. Furthermore, it is able to make use of knowledge about the publication date of a text to adapt its output. In our evaluation, the system achieved encouraging accuracies ranging from 77.12% to 91.08% on individual test texts. Applying time-sensitive methods improved results by as much as 3.54% and by 1.72% on average

    Thesaurus-based disambiguation of gene symbols

    Get PDF
    BACKGROUND: Massive text mining of the biological literature holds great promise of relating disparate information and discovering new knowledge. However, disambiguation of gene symbols is a major bottleneck. RESULTS: We developed a simple thesaurus-based disambiguation algorithm that can operate with very little training data. The thesaurus comprises the information from five human genetic databases and MeSH. The extent of the homonym problem for human gene symbols is shown to be substantial (33% of the genes in our combined thesaurus had one or more ambiguous symbols), not only because one symbol can refer to multiple genes, but also because a gene symbol can have many non-gene meanings. A test set of 52,529 Medline abstracts, containing 690 ambiguous human gene symbols taken from OMIM, was automatically generated. Overall accuracy of the disambiguation algorithm was up to 92.7% on the test set. CONCLUSION: The ambiguity of human gene symbols is substantial, not only because one symbol may denote multiple genes but particularly because many symbols have other, non-gene meanings. The proposed disambiguation approach resolves most ambiguities in our test set with high accuracy, including the important gene/not a gene decisions. The algorithm is fast and scalable, enabling gene-symbol disambiguation in massive text mining applications

    BIOMEDICAL WORD SENSE DISAMBIGUATION WITH NEURAL WORD AND CONCEPT EMBEDDINGS

    Get PDF
    Addressing ambiguity issues is an important step in natural language processing (NLP) pipelines designed for information extraction and knowledge discovery. This problem is also common in biomedicine where NLP applications have become indispensable to exploit latent information from biomedical literature and clinical narratives from electronic medical records. In this thesis, we propose an ensemble model that employs recent advances in neural word embeddings along with knowledge based approaches to build a biomedical word sense disambiguation (WSD) system. Specifically, our system identities the correct sense from a given set of candidates for each ambiguous word when presented in its context (surrounding words). We use the MSH WSD dataset, a well known public dataset consisting of 203 ambiguous terms each with nearly 200 different instances and an average of two candidate senses represented by concepts in the unified medical language system (UMLS). We employ a popular biomedical concept, Our linear time (in terms of number of senses and context length) unsupervised and knowledge based approach improves over the state-of-the-art methods by over 3% in accuracy. A more expensive approach based on the k-nearest neighbor framework improves over prior best results by 5% in accuracy. Our results demonstrate that recent advances in neural dense word vector representations offer excellent potential for solving biomedical WSD
    • …
    corecore