658 research outputs found

    Private-Key Fully Homomorphic Encryption for Private Classification of Medical Data

    Full text link
    A wealth of medical data is inaccessible to researchers and clinicians due to privacy restrictions such as HIPAA. Clinicians would benefit from access to predictive models for diagnosis, such as classification of tumors as malignant or benign, without compromising patients’ privacy. In addition, the medical institutions and companies who own these medical information systems wish to keep their models private when used by outside parties. Fully homomorphic encryption (FHE) enables practical polynomial computation over encrypted data. This dissertation begins with coverage of speed and security improvements to existing private-key fully homomorphic encryption methods. Next this dissertation presents a protocol for third-party private search using private-key FHE. Finally, fully homomorphic protocols for polynomial machine learning algorithms are presented using privacy-preserving Naive Bayes and Decision Tree classifiers. These protocols allow clients to privately classify their data points without direct access to the learned model. Experiments using these classifiers are run using publicly available medical data sets. These protocols are applied to the task of privacy-preserving classification of real-world medical data. Results show that private-key fully homomorphic encryption is able to provide fast and accurate results for privacy-preserving medical classification

    ARPA Whitepaper

    Get PDF
    We propose a secure computation solution for blockchain networks. The correctness of computation is verifiable even under malicious majority condition using information-theoretic Message Authentication Code (MAC), and the privacy is preserved using Secret-Sharing. With state-of-the-art multiparty computation protocol and a layer2 solution, our privacy-preserving computation guarantees data security on blockchain, cryptographically, while reducing the heavy-lifting computation job to a few nodes. This breakthrough has several implications on the future of decentralized networks. First, secure computation can be used to support Private Smart Contracts, where consensus is reached without exposing the information in the public contract. Second, it enables data to be shared and used in trustless network, without disclosing the raw data during data-at-use, where data ownership and data usage is safely separated. Last but not least, computation and verification processes are separated, which can be perceived as computational sharding, this effectively makes the transaction processing speed linear to the number of participating nodes. Our objective is to deploy our secure computation network as an layer2 solution to any blockchain system. Smart Contracts\cite{smartcontract} will be used as bridge to link the blockchain and computation networks. Additionally, they will be used as verifier to ensure that outsourced computation is completed correctly. In order to achieve this, we first develop a general MPC network with advanced features, such as: 1) Secure Computation, 2) Off-chain Computation, 3) Verifiable Computation, and 4)Support dApps' needs like privacy-preserving data exchange

    Exploring Privacy-Preserving Disease Diagnosis: A Comparative Analysis

    Get PDF
    In the healthcare sector, data is considered as a valuable asset, with enormous amounts generated in the form of patient records and disease-related information. Leveraging machine learning techniques enables the analysis of extensive datasets, unveiling hidden patterns in diseases, facilitating personalized treatments, and forecasting potential health issues. However, the flourish of online diagnosis and prediction still faces some challenges related to information security and privacy as disease diagnosis technologies utilizes a lot of clinical records and sensitive patient data. Hence, it becomes imperative to prioritize the development of innovative methodologies that not only advance the accuracy and efficiency of disease prediction but also ensure the highest standards of privacy protection. This requires collaborative efforts between researchers, healthcare practitioners, and policymakers to establish a comprehensive framework that addresses the evolving landscape of healthcare data while safeguarding individual privacy. Addressing this constraint, numerous researchers integrate privacy preservation measures with disease prediction techniques to develop a system capable of diagnosing diseases without compromising the confidentiality of sensitive information. The survey paper conducts a comparative analysis of privacy-preserving techniques employed in disease diagnosis and prediction. It explores existing methodologies across various domains, assessing their efficacy and trade-offs in maintaining data confidentiality while optimizing diagnostic accuracy. The review highlights the need for robust privacy measures in disease prediction, shortcomings related to existing techniques of privacy preserving disease diagnosis, and provides insights into promising directions for future research in this critical intersection of healthcare and privacy preservation

    Systematizing Genome Privacy Research: A Privacy-Enhancing Technologies Perspective

    Full text link
    Rapid advances in human genomics are enabling researchers to gain a better understanding of the role of the genome in our health and well-being, stimulating hope for more effective and cost efficient healthcare. However, this also prompts a number of security and privacy concerns stemming from the distinctive characteristics of genomic data. To address them, a new research community has emerged and produced a large number of publications and initiatives. In this paper, we rely on a structured methodology to contextualize and provide a critical analysis of the current knowledge on privacy-enhancing technologies used for testing, storing, and sharing genomic data, using a representative sample of the work published in the past decade. We identify and discuss limitations, technical challenges, and issues faced by the community, focusing in particular on those that are inherently tied to the nature of the problem and are harder for the community alone to address. Finally, we report on the importance and difficulty of the identified challenges based on an online survey of genome data privacy expertsComment: To appear in the Proceedings on Privacy Enhancing Technologies (PoPETs), Vol. 2019, Issue

    Privacy-Aware Processing of Biometric Templates by Means of Secure Two-Party Computation

    Get PDF
    The use of biometric data for person identification and access control is gaining more and more popularity. Handling biometric data, however, requires particular care, since biometric data is indissolubly tied to the identity of the owner hence raising important security and privacy issues. This chapter focuses on the latter, presenting an innovative approach that, by relying on tools borrowed from Secure Two Party Computation (STPC) theory, permits to process the biometric data in encrypted form, thus eliminating any risk that private biometric information is leaked during an identification process. The basic concepts behind STPC are reviewed together with the basic cryptographic primitives needed to achieve privacy-aware processing of biometric data in a STPC context. The two main approaches proposed so far, namely homomorphic encryption and garbled circuits, are discussed and the way such techniques can be used to develop a full biometric matching protocol described. Some general guidelines to be used in the design of a privacy-aware biometric system are given, so as to allow the reader to choose the most appropriate tools depending on the application at hand
    • …
    corecore