9 research outputs found

    On the performance of non-orthogonal multiple access (NOMA) using FPGA

    Get PDF
    In this paper,  non-orthogonal multiple access (NOMA) is designed and implemented for the fifth generation (5G) of multi-user wireless communication.  Field-programmable gate array (FPGA) is considered for the implementation of this technique for two users. NOMA is applied in downlink phase of the base-station (BS) by applying power allocation mechanism for far and near users, in which one signal contains the superposition of two scaled signals depending on the distance of each user from the BS.  We assume an additive white Gaussian noise (AWGN) channel for each user in the presence of the interference due to the non-orthogonality between the two users’ signals. Therefore, successive-interference cancellation (SIC) is exploited to remove the undesired signal of the other user. The outage probability and the bit-error rate performance are presented over different signal-to-interference-plus-noise ratio (SINR). Furthermore, Monte-Carlo simulations via Matlab are utilized to verify the results obtained by FPGA, which show exact-close match

    Application-Based Coexistence of Different Waveforms on Non-orthogonal Multiple Access

    Get PDF
    The coexistence of different wireless communication systems such as LTE and Wi-Fi by sharing the unlicensed band is well studied in the literature. In these studies, various methods are proposed to support the coexistence of systems, including listen-before-talk mechanism, joint user association and resource allocation. However, in this study, the coexistence of different waveform structures in the same resource elements are studied under the theory of non-orthogonal multiple access. This study introduces a paradigm-shift on NOMA towards the application-centric waveform coexistence. Throughout the paper, the coexistence of different waveforms is explained with two specific use cases, which are power-balanced NOMA and joint radar-sensing and communication with NOMA. In addition, some of the previous works in the literature regarding non-orthogonal waveform coexistence are reviewed. However, the concept is not limited to these use cases. With the rapid development of wireless technology, next-generation wireless systems are proposed to be flexible and hybrid, having different kinds of capabilities such as sensing, security, intelligence, control, and computing. Therefore, the concept of different waveforms' coexistence to meet these concerns are becoming impressive for researchers.Comment: Submitted to IEEE for possible publication. arXiv admin note: text overlap with arXiv:2007.05753, arXiv:2003.0554

    Rate compatible modulation for non-orthogonal multiple access

    Get PDF
    We propose a new Non-Orthogonal Multiple Access (NOMA) coding scheme based on the use of a Rate Compatible Modulation (RCM) encoder for each user. By properly designing the encoders and taking advantage of the additive nature of the Multiple Access Channel (MAC), the joint decoder from the inputs of all the users can be represented by a bipartite graph corresponding to a standard point-topoint RCM structure with certain constraints. Decoding is performed over this bipartite graph utilizing the sum-product algorithm. The proposed scheme allows the simultaneous transmission of a large number of uncorrelated users at high rates, while the decoding complexity is the same as that of standard point-to-point RCM schemes. When Rayleigh fast fading channels are considered, the BER vs SNR performance improves as the number of simultaneous users increases, as a result of the averaging effect

    PNC Enabled IIoT: A General Framework for Channel-Coded Asymmetric Physical-Layer Network Coding

    Full text link
    This paper investigates the application of physical-layer network coding (PNC) to Industrial Internet-of-Things (IIoT) where a controller and a robot are out of each other's transmission range, and they exchange messages with the assistance of a relay. We particularly focus on a scenario where the controller has more transmitted information, and the channel of the controller is stronger than that of the robot. To reduce the communication latency, we propose an asymmetric transmission scheme where the controller and robot transmit different amount of information in the uplink of PNC simultaneously. To achieve this, the controller chooses a higher order modulation. In addition, the both users apply channel codes to guarantee the reliability. A problem is a superimposed symbol at the relay contains different amount of source information from the two end users. It is thus hard for the relay to deduce meaningful network-coded messages by applying the current PNC decoding techniques which require the end users to transmit the same amount of information. To solve this problem, we propose a lattice-based scheme where the two users encode-and-modulate their information in lattices with different lattice construction levels. Our design is versatile on that the two end users can freely choose their modulation orders based on their channel power, and the design is applicable for arbitrary channel codes.Comment: Submitted to IEEE for possible publicatio

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Practical Power-Balanced Non-Orthogonal Multiple Access

    No full text
    corecore