67 research outputs found

    Algorithmic Aspects of Energy-Delay Tradeoff in Multihop Cooperative Wireless Networks

    Full text link
    We consider the problem of energy-efficient transmission in delay constrained cooperative multihop wireless networks. The combinatorial nature of cooperative multihop schemes makes it difficult to design efficient polynomial-time algorithms for deciding which nodes should take part in cooperation, and when and with what power they should transmit. In this work, we tackle this problem in memoryless networks with or without delay constraints, i.e., quality of service guarantee. We analyze a wide class of setups, including unicast, multicast, and broadcast, and two main cooperative approaches, namely: energy accumulation (EA) and mutual information accumulation (MIA). We provide a generalized algorithmic formulation of the problem that encompasses all those cases. We investigate the similarities and differences of EA and MIA in our generalized formulation. We prove that the broadcast and multicast problems are, in general, not only NP hard but also o(log(n)) inapproximable. We break these problems into three parts: ordering, scheduling and power control, and propose a novel algorithm that, given an ordering, can optimally solve the joint power allocation and scheduling problems simultaneously in polynomial time. We further show empirically that this algorithm used in conjunction with an ordering derived heuristically using the Dijkstra's shortest path algorithm yields near-optimal performance in typical settings. For the unicast case, we prove that although the problem remains NP hard with MIA, it can be solved optimally and in polynomial time when EA is used. We further use our algorithm to study numerically the trade-off between delay and power-efficiency in cooperative broadcast and compare the performance of EA vs MIA as well as the performance of our cooperative algorithm with a smart noncooperative algorithm in a broadcast setting.Comment: 12 pages, 9 figure

    Whether and Where to Code in the Wireless Relay Channel

    Full text link
    The throughput benefits of random linear network codes have been studied extensively for wirelined and wireless erasure networks. It is often assumed that all nodes within a network perform coding operations. In energy-constrained systems, however, coding subgraphs should be chosen to control the number of coding nodes while maintaining throughput. In this paper, we explore the strategic use of network coding in the wireless packet erasure relay channel according to both throughput and energy metrics. In the relay channel, a single source communicates to a single sink through the aid of a half-duplex relay. The fluid flow model is used to describe the case where both the source and the relay are coding, and Markov chain models are proposed to describe packet evolution if only the source or only the relay is coding. In addition to transmission energy, we take into account coding and reception energies. We show that coding at the relay alone while operating in a rateless fashion is neither throughput nor energy efficient. Given a set of system parameters, our analysis determines the optimal amount of time the relay should participate in the transmission, and where coding should be performed.Comment: 11 pages, 12 figures, to be published in the IEEE JSAC Special Issue on Theories and Methods for Advanced Wireless Relay

    Applications of graph-based codes in networks: analysis of capacity and design of improved algorithms

    Get PDF
    The conception of turbo codes by Berrou et al. has created a renewed interest in modern graph-based codes. Several encouraging results that have come to light since then have fortified the role these codes shall play as potential solutions for present and future communication problems. This work focuses on both practical and theoretical aspects of graph-based codes. The thesis can be broadly categorized into three parts. The first part of the thesis focuses on the design of practical graph-based codes of short lengths. While both low-density parity-check codes and rateless codes have been shown to be asymptotically optimal under the message-passing (MP) decoder, the performance of short-length codes from these families under MP decoding is starkly sub-optimal. This work first addresses the structural characterization of stopping sets to understand this sub-optimality. Using this characterization, a novel improved decoder that offers several orders of magnitude improvement in bit-error rates is introduced. Next, a novel scheme for the design of a good rate-compatible family of punctured codes is proposed. The second part of the thesis aims at establishing these codes as a good tool to develop reliable, energy-efficient and low-latency data dissemination schemes in networks. The problems of broadcasting in wireless multihop networks and that of unicast in delay-tolerant networks are investigated. In both cases, rateless coding is seen to offer an elegant means of achieving the goals of the chosen communication protocols. It was noticed that the ratelessness and the randomness in encoding process make this scheme specifically suited to such network applications. The final part of the thesis investigates an application of a specific class of codes called network codes to finite-buffer wired networks. This part of the work aims at establishing a framework for the theoretical study and understanding of finite-buffer networks. The proposed Markov chain-based method extends existing results to develop an iterative Markov chain-based technique for general acyclic wired networks. The framework not only estimates the capacity of such networks, but also provides a means to monitor network traffic and packet drop rates on various links of the network.Ph.D.Committee Chair: Fekri, Faramarz; Committee Member: Li, Ye; Committee Member: McLaughlin, Steven; Committee Member: Sivakumar, Raghupathy; Committee Member: Tetali, Prasa

    Joint source-channel-network coding in wireless mesh networks with temporal reuse

    Get PDF
    Technological innovation that empowers tiny low-cost transceivers to operate with a high degree of utilisation efficiency in multihop wireless mesh networks is contributed in this dissertation. Transmission scheduling and joint source-channel-network coding are two of the main aspects that are addressed. This work focuses on integrating recent enhancements such as wireless network coding and temporal reuse into a cross-layer optimisation framework, and to design a joint coding scheme that allows for space-optimal transceiver implementations. Link-assigned transmission schedules with timeslot reuse by multiple links in both the space and time domains are investigated for quasi-stationary multihop wireless mesh networks with both rate and power adaptivity. Specifically, predefined cross-layer optimised schedules with proportionally fair end-to-end flow rates and network coding capability are constructed for networks operating under the physical interference model with single-path minimum hop routing. Extending transmission rights in a link-assigned schedule allows for network coding and temporal reuse, which increases timeslot usage efficiency when a scheduled link experiences packet depletion. The schedules that suffer from packet depletion are characterised and a generic temporal reuse-aware achievable rate region is derived. Extensive computational experiments show improved schedule capacity, quality of service, power efficiency and benefit from opportunistic bidirectional network coding accrued with schedules optimised in the proposed temporal reuse-aware convex capacity region. The application of joint source-channel coding, based on fountain codes, in the broadcast timeslot of wireless two-way network coding is also investigated. A computationally efficient subroutine is contributed to the implementation of the fountain compressor, and an error analysis is done. Motivated to develop a true joint source-channel-network code that compresses, adds robustness against channel noise and network codes two packets on a single bipartite graph and iteratively decodes the intended packet on the same Tanner graph, an adaptation of the fountain compressor is presented. The proposed code is shown to outperform a separated joint source-channel and network code in high source entropy and high channel noise regions, in anticipated support of dense networks that employ intelligent signalling. AFRIKAANS : Tegnologiese innovasie wat klein lae-koste kommunikasie toestelle bemagtig om met ’n hoë mate van benuttings doeltreffendheid te werk word bygedra in hierdie proefskrif. Transmissie-skedulering en gesamentlike bron-kanaal-netwerk kodering is twee van die belangrike aspekte wat aangespreek word. Hierdie werk fokus op die integrasie van onlangse verbeteringe soos draadlose netwerk kodering en temporêre herwinning in ’n tussen-laag optimaliserings raamwerk, en om ’n gesamentlike kodering skema te ontwerp wat voorsiening maak vir spasie-optimale toestel implementerings. Skakel-toegekende transmissie skedules met tydgleuf herwinning deur veelvuldige skakels in beide die ruimte en tyd domeine word ondersoek vir kwasi-stilstaande, veelvuldige-sprong draadlose rooster netwerke met beide transmissie-spoed en krag aanpassings. Om spesifiek te wees, word vooraf bepaalde tussen-laag geoptimiseerde skedules met verhoudings-regverdige punt-tot-punt vloei tempo’s en netwerk kodering vermoë saamgestel vir netwerke wat bedryf word onder die fisiese inmengings-model met enkel-pad minimale sprong roetering. Die uitbreiding van transmissie-regte in ’n skakel-toegekende skedule maak voorsiening vir netwerk kodering en temporêre herwinning, wat tydgleuf gebruiks-doeltreffendheid verhoog wanneer ’n geskeduleerde skakel pakkie-uitputting ervaar. Die skedules wat ly aan pakkie-uitputting word gekenmerk en ’n generiese temporêre herwinnings-bewuste haalbare transmissie-spoed gebied word afgelei. Omvattende berekenings-eksperimente toon verbeterde skedulerings kapasiteit, diensgehalte, krag doeltreffendheid asook verbeterde voordeel wat getrek word uit opportunistiese tweerigting netwerk kodering met die skedules wat geoptimiseer word in die temporêre herwinnings-bewuste konvekse transmissie-spoed gebied. Die toepassing van gesamentlike bron-kanaal kodering, gebaseer op fontein kodes, in die uitsaai-tydgleuf van draadlose tweerigting netwerk kodering word ook ondersoek. ’n Berekenings-effektiewe subroetine word bygedra in die implementering van die fontein kompressor, en ’n foutanalise word gedoen. Gemotiveer om ’n ware gesamentlike bron-kanaal-netwerk kode te ontwikkel, wat robuustheid byvoeg teen kanaal geraas en twee pakkies netwerk kodeer op ’n enkele bipartiete grafiek en die beoogde pakkie iteratief dekodeer op dieselfde Tanner grafiek, word ’n aanpassing van die fontein kompressor aangebied. Dit word getoon dat die voorgestelde kode ’n geskeide gesamentlike bron-kanaal en netwerk kode in hoë bron-entropie en ho¨e kanaal-geraas gebiede oortref in verwagte ondersteuning van digte netwerke wat van intelligente sein-metodes gebruik maak.Dissertation (MEng)--University of Pretoria, 2011.Electrical, Electronic and Computer Engineeringunrestricte

    Towards reliable communication in LTE-A connected heterogeneous machine to machine network

    Get PDF
    Machine to machine (M2M) communication is an emerging technology that enables heterogeneous devices to communicate with each other without human intervention and thus forming so-called Internet of Things (IoTs). Wireless cellular networks (WCNs) play a significant role in the successful deployment of M2M communication. Specially the ongoing massive deployment of long term evolution advanced (LTE-A) makes it possible to establish machine type communication (MTC) in most urban and remote areas, and by using LTE-A backhaul network, a seamless network communication is being established between MTC-devices and-applications. However, the extensive network coverage does not ensure a successful implementation of M2M communication in the LTE-A, and therefore there are still some challenges. Energy efficient reliable transmission is perhaps the most compelling demand for various M2M applications. Among the factors affecting reliability of M2M communication are the high endto-end delay and high bit error rate. The objective of the thesis is to provide reliable M2M communication in LTE-A network. In this aim, to alleviate the signalling congestion on air interface and efficient data aggregation we consider a cluster based architecture where the MTC devices are grouped into number of clusters and traffics are forwarded through some special nodes called cluster heads (CHs) to the base station (BS) using single or multi-hop transmissions. In many deployment scenarios, some machines are allowed to move and change their location in the deployment area with very low mobility. In practice, the performance of data transmission often degrades with the increase of distance between neighboring CHs. CH needs to be reselected in such cases. However, frequent re-selection of CHs results in counter effect on routing and reconfiguration of resource allocation associated with CH-dependent protocols. In addition, the link quality between a CH-CH and CH-BS are very often affected by various dynamic environmental factors such as heat and humidity, obstacles and RF interferences. Since CH aggregates the traffic from all cluster members, failure of the CH means that the full cluster will fail. Many solutions have been proposed to combat with error prone wireless channel such as automatic repeat request (ARQ) and multipath routing. Though the above mentioned techniques improve the communication reliability but intervene the communication efficiency. In the former scheme, the transmitter retransmits the whole packet even though the part of the packet has been received correctly and in the later one, the receiver may receive the same information from multiple paths; thus both techniques are bandwidth and energy inefficient. In addition, with retransmission, overall end to end delay may exceed the maximum allowable delay budget. Based on the aforementioned observations, we identify CH-to-CH channel is one of the bottlenecks to provide reliable communication in cluster based multihop M2M network and present a full solution to support fountain coded cooperative communications. Our solution covers many aspects from relay selection to cooperative formation to meet the user’s QoS requirements. In the first part of the thesis, we first design a rateless-coded-incremental-relay selection (RCIRS) algorithm based on greedy techniques to guarantee the required data rate with a minimum cost. After that, we develop fountain coded cooperative communication protocols to facilitate the data transmission between two neighbor CHs. In the second part, we propose joint network and fountain coding schemes for reliable communication. Through coupling channel coding and network coding simultaneously in the physical layer, joint network and fountain coding schemes efficiently exploit the redundancy of both codes and effectively combat the detrimental effect of fading conditions in wireless channels. In the proposed scheme, after correctly decoding the information from different sources, a relay node applies network and fountain coding on the received signals and then transmits to the destination in a single transmission. Therefore, the proposed schemes exploit the diversity and coding gain to improve the system performance. In the third part, we focus on the reliable uplink transmission between CHs and BS where CHs transmit to BS directly or with the help of the LTE-A relay nodes (RN). We investigate both type-I and type-II enhanced LTE-A networks and propose a set of joint network and fountain coding schemes to enhance the link robustness. Finally, the proposed solutions are evaluated through extensive numerical simulations and the numerical results are presented to provide a comparison with the related works found in the literature

    Towards increasing packet diversity for relaying LT Fountain Codes in Wireless Sensor Networks

    Get PDF
    Diversity is a powerful means to increase the transmission performance of wireless communications. For the case of fountain codes relaying, it has been shown previously that introducing diversity is also beneficial since it counteracts transmission losses on the channel. Instead of simply hop-by-hop forwarding information, each sensor node diversifies the information flow using XOR combinations of stored packets. This approach has been shown to be efficient for random linear fountain codes. However, random linear codes exhibit high decoding complexity. In this paper, we propose diversity increased relaying strategies for the more realistic Luby Transform code in order to maintain high transmission performance with low decoding computational complexity in a linear network. Results are provided herein for a linear network assuming uniform imperfect channel states
    • …
    corecore