66 research outputs found

    Detecting spammers and content promoters in online video social networks

    Full text link

    Enhancing spammer detection in online social networks with trust-based metrics.

    Get PDF
    As online social networks acquire larger user bases, they also become more interesting targets for spammers. Spam can take very different forms on social Web sites and cannot always be detected by analyzing textual content. However, the platform\u27s social nature also offers new ways of approaching the spam problem. In this work the possibilities of analyzing a user\u27s direct neighbors in the social graph to improve spammer detection are explored. Special features of social Web sites and their implicit trust relations are utilized to create an enhanced attribute set that categorizes users on the Twitter microblogging platform as spammers or legitimate users

    Combating Threats to the Quality of Information in Social Systems

    Get PDF
    Many large-scale social systems such as Web-based social networks, online social media sites and Web-scale crowdsourcing systems have been growing rapidly, enabling millions of human participants to generate, share and consume content on a massive scale. This reliance on users can lead to many positive effects, including large-scale growth in the size and content in the community, bottom-up discovery of “citizen-experts”, serendipitous discovery of new resources beyond the scope of the system designers, and new social-based information search and retrieval algorithms. But the relative openness and reliance on users coupled with the widespread interest and growth of these social systems carries risks and raises growing concerns over the quality of information in these systems. In this dissertation research, we focus on countering threats to the quality of information in self-managing social systems. Concretely, we identify three classes of threats to these systems: (i) content pollution by social spammers, (ii) coordinated campaigns for strategic manipulation, and (iii) threats to collective attention. To combat these threats, we propose three inter-related methods for detecting evidence of these threats, mitigating their impact, and improving the quality of information in social systems. We augment this three-fold defense with an exploration of their origins in “crowdturfing” – a sinister counterpart to the enormous positive opportunities of crowdsourcing. In particular, this dissertation research makes four unique contributions: • The first contribution of this dissertation research is a framework for detecting and filtering social spammers and content polluters in social systems. To detect and filter individual social spammers and content polluters, we propose and evaluate a novel social honeypot-based approach. • Second, we present a set of methods and algorithms for detecting coordinated campaigns in large-scale social systems. We propose and evaluate a content- driven framework for effectively linking free text posts with common “talking points” and extracting campaigns from large-scale social systems. • Third, we present a dual study of the robustness of social systems to collective attention threats through both a data-driven modeling approach and deploy- ment over a real system trace. We evaluate the effectiveness of countermeasures deployed based on the first moments of a bursting phenomenon in a real system. • Finally, we study the underlying ecosystem of crowdturfing for engaging in each of the three threat types. We present a framework for “pulling back the curtain” on crowdturfers to reveal their underlying ecosystem on both crowdsourcing sites and social media

    Analyzing and Detecting Malicious Activities in Emerging Communication Platforms

    Get PDF
    Benefiting from innovatory techniques, two communication platforms (online social networking (OSN) platforms and smartphone platforms) have emerged and been widely used in the last few years. However, cybercriminals have also utilized these two emerging platforms to launch malicious activities such as sending spam, spreading malware, hosting botnet command and control (C&C) channels, and performing other illicit activities. All these malicious activities may cause significant economic loss to our society and even threaten national security. Thus, great efforts are indeed needed to mitigate malicious activities on these advanced communication platforms. The goal of this research is to make a deep analysis of malicious activities on OSN and smartphone platforms, and to develop effective and efficient defense approaches against those malicious activities. Firstly, this dissertation performs an empirical analysis of the cyber criminal ecosystem on a large-scale online social networking website space. Secondly, through reverse engineering OSN spammers’ tastes (their preferred targets to spam), this dissertation provides guidelines for building more effective social honeypots on the online social networking platforms, and generates new insights to defend against OSN spammers. Thirdly, this dissertation shows a comprehensive empirical study on analyzing the market-level and network-level behaviors of the Android malware ecosystem. Lastly, by grouping the common program logic among malware families, this dissertation designs an effective system to automatically detect Android malware

    Modeling User Expertise in Folksonomies by Fusing Multi-type Features

    Get PDF
    Abstract. The folksonomy refers to the online collaborative tagging system which offers a new open platform for content annotation with uncontrolled vocabulary. As folksonomies are gaining in popularity, the expert search and spammer detection in folksonomies attract more and more attention. However, most of previous work are limited on some folksonomy features. In this paper, we introduce a generic and flexible user expertise model for expert search and spammer detection. We first investigate a comprehensive set of expertise evidences related to users, objects and tags in folksonomies. Then we discuss the rich interactions between them and propose a unified Continuous CRF model to integrate these features and interactions. This model's applications for expert recommendation and spammer detection are also exploited. Extensive experiments are conducted on a real tagging dataset and demonstrate the model's advantages over previous methods, both in performance and coverage

    Addressing the new generation of spam (Spam 2.0) through Web usage models

    Get PDF
    New Internet collaborative media introduce new ways of communicating that are not immune to abuse. A fake eye-catching profile in social networking websites, a promotional review, a response to a thread in online forums with unsolicited content or a manipulated Wiki page, are examples of new the generation of spam on the web, referred to as Web 2.0 Spam or Spam 2.0. Spam 2.0 is defined as the propagation of unsolicited, anonymous, mass content to infiltrate legitimate Web 2.0 applications.The current literature does not address Spam 2.0 in depth and the outcome of efforts to date are inadequate. The aim of this research is to formalise a definition for Spam 2.0 and provide Spam 2.0 filtering solutions. Early-detection, extendibility, robustness and adaptability are key factors in the design of the proposed method.This dissertation provides a comprehensive survey of the state-of-the-art web spam and Spam 2.0 filtering methods to highlight the unresolved issues and open problems, while at the same time effectively capturing the knowledge in the domain of spam filtering.This dissertation proposes three solutions in the area of Spam 2.0 filtering including: (1) characterising and profiling Spam 2.0, (2) Early-Detection based Spam 2.0 Filtering (EDSF) approach, and (3) On-the-Fly Spam 2.0 Filtering (OFSF) approach. All the proposed solutions are tested against real-world datasets and their performance is compared with that of existing Spam 2.0 filtering methods.This work has coined the term ‘Spam 2.0’, provided insight into the nature of Spam 2.0, and proposed filtering mechanisms to address this new and rapidly evolving problem
    • …
    corecore