
ANALYZING AND DETECTING MALICIOUS ACTIVITIES IN EMERGING

COMMUNICATION PLATFORMS

A Dissertation

by

CHAO YANG

Submitted to the O�ce of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Guofei Gu
Committee Members, James Caverlee

Anxiao Jiang
Narasimha Reddy

Head of Department, Nancy Amato

August 2014

Major Subject: Computer Engineering

Copyright 2014 Chao Yang

ABSTRACT

Benefiting from innovatory techniques, two communication platforms (online so-

cial networking (OSN) platforms and smartphone platforms) have emerged and been

widely used in the last few years. However, cybercriminals have also utilized these

two emerging platforms to launch malicious activities such as sending spam, spread-

ing malware, hosting botnet command and control (C&C) channels, and performing

other illicit activities. All these malicious activities may cause significant economic

loss to our society and even threaten national security. Thus, great e↵orts are indeed

needed to mitigate malicious activities on these advanced communication platforms.

The goal of this research is to make a deep analysis of malicious activities on OSN

and smartphone platforms, and to develop e↵ective and e�cient defense approaches

against those malicious activities. Firstly, this dissertation performs an empirical

analysis of the cyber criminal ecosystem on a large-scale online social networking

website space. Secondly, through reverse engineering OSN spammers’ tastes (their

preferred targets to spam), this dissertation provides guidelines for building more

e↵ective social honeypots on the online social networking platforms, and generates

new insights to defend against OSN spammers. Thirdly, this dissertation shows

a comprehensive empirical study on analyzing the market-level and network-level

behaviors of the Android malware ecosystem. Lastly, by grouping the common pro-

gram logic among malware families, this dissertation designs an e↵ective system to

automatically detect Android malware.

ii

ACKNOWLEDGEMENTS

First of all, I would like to express my deep gratitude to my advisor, Prof. Guofei

Gu, for his continuous support and guidance throughout my PhD study. His advice

helped me all the time in my research. Without his inspiration, this work would

not have been possible. I would also like to thank the rest of my thesis committee

members, Prof. James Caverlee, Prof. Anxiao Jiang, and Prof. Narasimha Reddy,

for their comments and encouragements.

Furthermore, I am very grateful to my collaborators and friends, Dr. Phil Porras,

Dr. Vinod Yegneswaran, Robert Harkreader, Jialong Zhang and Zhaoyan Xu. It has

been a fruitful and fun experience working with them over the past few years.

Last but not the least, I take this opportunity to thank my parents. Through the

good times and bad, they always stand behind me and devote their love. I cannot

be more thankful to them.

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . viii

LIST OF TABLES . xi

1. INTRODUCTION . 1

1.1 Malicious Activities in the OSN and Smartphone Platforms 2
1.2 Common Charactersitics between OSN and Smartphone Platforms . . 4
1.3 Research Challenges of Detecting Malicious Activities 6
1.4 Research Goal and Solution Overview 7
1.5 Contributions . 13

2. BACKGROUND AND TERMINOLOGY 15

2.1 Background and Terminology of Twitter 15
2.2 Background and Terminology of Android 16

3. RELATED WORK . 19

3.1 Related Work on Understanding and Detecting Malicious Activities
on the OSN Platforms . 19
3.1.1 Analysis of OSN Characteristics 19
3.1.2 Detection of OSN Malicious Accounts 20
3.1.3 Utilization of Honeypots . 20
3.1.4 Measurement of Spam Campaigns and Networks. 21

3.2 Related Work on Understanding and Detecting Malicious Activities
on the Smartphone Platform . 23
3.2.1 Android Malware Detection 23
3.2.2 Android Security Extensions 25
3.2.3 Analysis of Attackers . 25
3.2.4 Analysis of Mobile Tra�c . 26

iv

4. ANALYZING SPAMMERS’ SOCIAL NETWORKS 28

4.1 Research Goal and Dataset . 31
4.1.1 Research Goal . 31
4.1.2 Dataset . 31

4.2 Inner Social Relationships . 33
4.2.1 Visualizing Relationship Graph 33
4.2.2 Revealing Relationship Characteristics 34

4.3 Outer Social Relationships . 38
4.3.1 Extracting Malicious Supporters 39
4.3.2 Characterizing Malicious Supporters 42

4.4 Inferring Malicious Accounts . 47
4.4.1 Design of CIA . 47
4.4.2 Evaluation of CIA . 49

4.5 Limitation . 55
4.6 Summary . 56

5. REVERSE ENGINEERING TWITTER SPAMMERS 58

5.1 Problem Statement . 61
5.2 Reverse Engineering Spammers . 63

5.2.1 Collecting Spammers’ Tastes 63
5.2.2 Analyzing Spammers’ Tastes 69

5.3 Prioritizing the Sampling of Likely Spammers 79
5.3.1 Motivation . 79
5.3.2 Hashtag Sampler . 80
5.3.3 Friend Sampler . 81

5.4 Evaluation of Samplers . 82
5.4.1 Ground Truth and Evaluation Metrics 82
5.4.2 Implementation . 84
5.4.3 E↵ectiveness of Hashtag Sampler 85
5.4.4 E↵ectiveness of Friend Sampler 86
5.4.5 Diversity and Complementarity 86
5.4.6 Comparison with Existing Strategies 88

5.5 Limitation . 89
5.6 Summary . 90

6. UNDERSTANDING ANDROID MALWARE ECOSYSTEM 91

6.1 Background and Overview . 93
6.1.1 Background . 93
6.1.2 Analysis Overview . 94

6.2 Data Collection . 96

v

6.2.1 Crawling Android Apps . 96
6.2.2 Identifying Android Malware 97

6.3 Analyzing Market-level Behaviors . 99
6.3.1 Collecting Market Accounts 99
6.3.2 Detailed Analysis . 100

6.4 Analyzing Network-level Behaviors 109
6.4.1 Extracting Remote Servers . 109
6.4.2 Filtering Benign Servers . 111
6.4.3 Detailed Analysis . 112

6.5 Combating Malicious Apps . 125
6.5.1 Design of Inference Algorithm 126
6.5.2 Evaluation . 128
6.5.3 Possible Evasions . 130

6.6 Limitation . 131
6.7 Summary . 131

7. AUTOMATED MINING MALICIOUS BEHAVIORS IN ANDROID AP-
PLICATIONS . 133

7.1 Motivation and System Goals . 134
7.1.1 Case Study . 135
7.1.2 Goals and Assumptions . 137

7.2 System Design . 138
7.2.1 Behavior Graph and Modality 140
7.2.2 Mining Modalities . 143
7.2.3 Identification of Modalities . 148
7.2.4 Modality Use Cases . 149

7.3 Evaluation . 153
7.3.1 Prototype Implementation . 154
7.3.2 Data Collection . 155
7.3.3 Evaluation Result . 157

7.4 Discussion and Limitation . 166
7.4.1 DroidMiner Against Zero-day Attacks 166
7.4.2 DroidMiner Against Common Evasion Techniques 167
7.4.3 Limitations . 167

7.5 Summary . 168

8. LESSONS LEARNED AND A FUTURE MALICIOUS ACTIVITY DE-
TECTION SYSTEM . 170

8.1 Lessons Learned . 170
8.2 A Future Malicious Activity Detection System 171

vi

9. CONCLUSION AND FUTURE WORK 175

9.1 Conclusion . 175
9.2 Future Work . 177

REFERENCES . 179

vii

LIST OF FIGURES

FIGURE Page

1.1 The illustration of the framework of our solution. 10

4.1 Structure of the cyber criminal ecosystem. 29

4.2 Criminal relationship graph. Each “dot” represents a criminal account
and each “line” connects a pair of following and follower criminal
account. The more relationships an account has, the more central it
is positioned in the graph. 34

4.3 The comparison of the criminal accounts and normal accounts. 36

4.4 The comparison between criminal hubs and criminal leaves. 38

4.5 The policies of assigning MR scores. 41

4.6 The entropy of the domain names. 45

4.7 Case studies for malicious supporters. 45

4.8 Using di↵erent selection strategies and setting di↵erent selection sizes
of accounts. 51

4.9 Striating from di↵erent sizes of seed sets and di↵erent types of seeds. 52

4.10 Evaluation of multiple round recursive inference. 53

4.11 Evaluation on Dataset II. 55

5.1 Illustration of interactions between users’ social behaviors and spam-
mers’ actions. 59

5.2 Illustration of the analysis flow. 62

5.3 The implementation of social honeypots. 68

5.4 Comparison of di↵erent tweet frequencies. 72

5.5 The e↵ectiveness of tweet topics. 73

viii

5.6 The e↵ectiveness of tweet keywords and follow behavior. 73

5.7 The e↵ectiveness of advanced honeypots. 76

5.8 One real case study of potential victims. 76

5.9 Illustration of Hashtag Sampler. 81

5.10 Illustration of Friends Sampler. 82

5.11 Collection results of Hashtag Sampler by using individual spammers’
hashtags. 86

6.1 The flow of actions taken by Android malware authors to spread An-
droid malware. 95

6.2 The analysis overview. 96

6.3 Lag period between the submission date and the firstly-seen date. . . 104

6.4 The distribution of account malicious ratios, and the time intevals
between two consequent malware submissions from the same malicious
account. 105

6.5 The comparison of the downloading numbers for MalApps and RestApps
in the third-party markets and GooglePlay. 107

6.6 The comparision of the distribution of the usage of IP address between
malicious apps and other apps. 114

6.7 The distributions of the number of malicious apps, and the famliy
coverages among MalEC2Servers. 118

6.8 The distributions of the number of malicious apps, and the famliy
coverages among MalEC2Subnets. 119

6.9 The visulazation of the community graph for malicious Android apps. 122

6.10 The distribution of the cumulative community coverage under di↵erent
ranks. 123

6.11 The hit number and hit rate based on VirusTotal. 129

7.1 Capabilities embedded in malware from the ADRD family. 135

7.2 DroidMiner System Architecture . 138

ix

7.3 Two-tier behavior graph. 140

7.4 Illustration of generating a CBG with framework API functions. . . . 144

7.5 An illustration of function modality generation. 149

7.6 The Dalvik bytecode of the method Myservice.onCreat() used in a
real-world malware with capabilities of reading device ID and access-
ing SMS. 155

7.7 The confusion matrix of malware classification for multiple malware
families. 162

7.8 Processing time for generating behavior graphs. 166

8.1 Example combination of multiple techniques in a future malicious ac-
tivity detection system on OSN and smartphone platforms. 172

x

LIST OF TABLES

TABLE Page

1.1 Selective attacks in the online social networking platforms. 3

1.2 Research overview of the dissertation. 8

4.1 Twitter accounts crawling information. 32

4.2 The time (in second) used for each step in CIA to output malicious
score. 54

5.1 Summary of 96 “benchmark” social honeypots with 24 fine-grained
social behavior patterns. 64

5.2 The e↵ectiveness of Hashtag Sampler. 85

5.3 The e↵ectiveness of Friend Sampler. 86

5.4 Exclusive ratios between two samplers. 87

5.5 Result of combining two algorithms. 87

5.6 Comparison with existing social honeypots. 89

6.1 Summary of crawling Android apps. 97

6.2 Summary of collecting Android malware. 98

6.3 Summary of collecting market accounts. 100

6.4 The comparsion of market quality. 101

6.5 The categories of apps tend to be malicious. 104

6.6 The summary of extracting remote servers. 110

6.7 The number of servers in each filtered dataset. 112

6.8 The top ten ASes for RestApps. 115

6.9 The top ten most frequently used in FTMalServers. 115

xi

6.10 The top ten most frequently used in FAMalServers. 116

6.11 The number of identified remote servers and a↵ected malicious apps. 120

6.12 In-depth analysis of the top three communities. 124

6.13 Weights used to build the malicious relevance graph. 127

6.14 The actual hit number by using three di↵erent sets of seeds. 130

7.1 An example of behavior matrix. 153

7.2 The summary of collecting Android apps. 156

7.3 E↵ectiveness of malware detection (DR denotes detection rate, FP
denotes false positive). 158

7.4 Training time (in seconds). 159

7.5 Malware samples used for classification. 161

7.6 Malicious behaviors in di↵erent families. 164

7.7 Number of association rules mined for common malicious behaviors. . 165

7.8 Processing time for identifying modalities. 165

xii

1. INTRODUCTION

In the recent years, with the innovation of Online Social Networking (OSN) plat-

forms (e.g., Twitter and Facebook) and Smartphone platforms (e.g., Android), many

people have changed their lifestyle, from posting their recent experiences, finding out

what friends are up to, and keeping track of the hottest trends, to viewing interesting

photos or videos, and playing games with friends.

However, cyber-criminals have also utilized OSN platforms and smartphone plat-

forms to launch malicious activities such as sending spam, spreading malware, hosting

botnet command and control (C&C) channels, and performing other illicit activities.

All these malicious activities have caused significant economic loss to our society,

and even threaten national security. Thus, great e↵orts are indeed needed to miti-

gate malicious activities on these advanced communication platforms. The goal of

this research is to make a deep analysis of malicious activities on these two types

of emerging communication platforms, and to further develop e↵ective and e�cient

defense insights against those malicious activities.

In this chapter, we first introduce the malicious activities in these two types of

the platforms, and then outline the research challenges for the analysis and detection

of those malicious activities. Next, we show the common characteristics of these two

types of platforms that are essentially utilized by cyber-criminals to launch malicious

activities. We further provide an overview of our solution: a deep understanding of

spammers’ social networks, and a comprehensive measurement of spammers’ strate-

gies of selecting spamming targets, and two Android malware detection approaches

(one is built based on the understanding of Android malware ecosystem; the other

one is built by disassembling Android apps, and analyzing the programming pro-

1

cedure shared by known malware.). Finally, we present the contributions of the

dissertation.

1.1 Malicious Activities in the OSN and Smartphone Platforms

Traditionally, cyber-criminals typically require great e↵orts to build their own

platforms to induce victims to visit their spam/malicious websites or further down-

load their malware. Generally, the e↵ectiveness of cyber-criminals to successfully

induce victims is highly restricted by two major factors: (1) the number of users

that the links to the cyber-criminals’ spam/malicious websites can be exposed to;

(2) click-through rate, which is the probability that the users would click links to

visit spam/malicious links (or further download malware). Cyber-criminals typically

spread their malicious links in popular forums to induce victims. Since most of the

forums are interested by particular groups of people, and most people only read re-

cent news typically shown in the top a few pages, the e↵ectiveness of this approach to

induce victims is highly limited by the number of users that can access the malicious

links.

However, the emergency of OSN and smartphone platforms eased the process

of cyber-criminals to induce victims. Cyber-criminals have already utilized such

communication platforms to launch multiple types of malicious activities. Table 1.1

shows several selective attacks that historically are launched in the OSN platforms.

As seen from this table, in the early stage of the OSN platforms, due to the week

security vetting process, cyber-criminals can easily spread spam [81] or phishing at-

tacks [56] by posting unsolicited messages on their faked accounts’ profile, or sending

unsolicited messages to other users. As a very stealthy channel, cyber-criminals have

also utilized OSN platforms to host C&C commands to coordinate with their con-

trolled bots. Later, cyber-criminals evolved to exploit the security vulnerabilities

2

Attack Type Year Attack Details

Spam 2009 Twitter spam invades trending topics [81]

Phishing 2009 A new phishing scam spreads through direct messages [56]

Hosting Botnet 2009 Twitter-based Botnet Command Channel [59]

Clickjacking 2010 Facebook clickjacking attack spreads through Facebook likes [120]

Cross-site Scripting 2010 Twitter onMouseOver security flaws [28]

Distributing Malware 2011 New Koobface malware spreads on Facebook [17]

Hacking Accounts 2010 Twitter phishing hack hits BBC, Guardian and cabinet minister [6]

Table 1.1: Selective attacks in the online social networking platforms.

of OSN platforms to launch more complex attacks (e.g., clickjacking attacks [120]

and cross-site scripting attacks [28]). In addition, once some famous OSN accounts

owning thousands of OSN friends (e.g., followers in Twitter or friends in Facebook)

are hacked, cyber criminals utilized these accounts to spread their malicious content

very e�ciently, and made great cost for victims [6].

Similarly, cyber-criminals have also unleashed a great number of smartphone mal-

ware to achieve multiple malicious goals (e.g., hijacking phones [72], privacy leak-

ing [20] and money stealing [98, 119]). According to a survey in China, until March

2012, over 210 thousands smartphones have been injected malicious code that can

steal victims’ money by stealthily making phone calls or sending SMS messages to

premium-rate numbers. It makes victims to lose over 10 million dollars per year [98].

Meanwhile, the number of malicious smartphone apps also increases quickly during

these years. According to a Mobile Report, the number of malicious Android apps

received by F-Secure grew from 139 in the first quarter (Q1) of 201, to 3,063 and

over 10,000 during the same Q1 period of 2012 and 2013, respectively. F-Secure also

receives 153 new Android malware families in the first quarter (Q1) of 2013, which

increases to 252 in the third quarter (Q3) of 2013. Trend Micro identified about

5,000 malicious Android apps in the first quarter of 2012, a number that rose to

3

20,000 by the end of June. Google has realized the seriousness of the malware threat

and implemented the Google Bouncer for its GooglePlay marketplace. But, Google-

Play remains inaccessible in countries like China, where users have no choice but to

rely on dubious third-party marketplaces. Furthermore, clever malware could still

fingerprint and evade the analysis of Bouncer [125]. Trend Micro also reports that

it found 17 malicious apps in GooglePlay (Google’s o�cial Android marketplace),

and those apps were downloaded more than 700,000 times before Google removed

them. In addition, di↵erent from spreading desktop malware, malware authors can

utilize Android markets to spread Android malware more e�ciently. According to a

recent report in 2013, during a security check of over 90,000 Android apps from 24

Chinese third-party Android markets, 860 types of Android malware were discovered

and had been downloaded over 8.5 million times [99]. One type of the Android mal-

ware, named Skullkey, was inserted to over 6,000 Android apps and spread widely in

those third-party markets. This malware could even bypass the detection of existing

commercial anti-virus tools and achieve multiple malicious goals (e.g.,steal sensitive

information and send SMS to premium-rate numbers).

According to the previous discussions, we can clearly see that we need to take

great e↵orts to design e↵ective approaches to defend against those malicious ac-

tivities launched in such emerging communication platforms. Thus, the desire of

understanding and further detecting such new types of malicious activities forms the

key motivation of this dissertation.

1.2 Common Charactersitics between OSN and Smartphone Platforms

The reason why the emergency of the OSN and smartphone platforms facilities

cyber-criminals to launch attacks is mainly due to the following four major common

characteristics:

4

• User-based. Both of these two types of platforms rely on users’ contribution

(e.g., Tweets in Twitter, Walls in Facebook, and Android apps in GooglePlay).

Restricted by limited policies, users have a great freedom to submit any infor-

mation they like to share. Also, in the current design of these two types of

platforms’ architecture, the content submit by the users can be pushed to (or

recommended to) other users. Thus, utilizing such platforms, cyber-criminals

can stealthily submit their malicious content, and expose them to potential

victims more e�ciently.

• Global Centralized. Both of these two types of platforms have been widely

used by the people from all of the world. By Jan. 1st of 2014, Twitter has

over 645 million active registered users and over 58 million tweets per day.

By Jan. 14th of 2014, smartphones have taken over 90% of global market

shares (Android takes up around 51.7%). By July 2013, over 1 million Android

apps are available in GooglePlay and over 50 billion times of apps have been

downloaded by users. Such a global centralized architecture essentially can be

utilized by cyber-criminals to expose their malicious content to more potential

victims at a very fast speed.

• Interactive. Unlike traditional chatting rooms and forums, users can interact

with their friends (e.g., sharing interesting news, personal photos, and playing

games) more frequently and easily in these emerging communication platforms.

In the real-world, people tend to trust the information sent from their friends,

or trust the items selected by a large number of people. With the same habi-

tat, users are typically less aware of potential security risks in the messages

(e.g., Tweets and Walls) post/sent from their OSN friends (or famous OSN

users), and also more likely to download those hot apps that have been down-

5

loaded a lot. Thus, once cyber-criminals successfully compromise such trust

to post malicious content (e.g., compromise famous OSN accounts, or fraudu-

lently increase the downloading numbers of smartphone apps), these malicious

content can be spread at a very fast speed. In fact, many benign users’ OSN

accounts are compromised due to their less awareness of the security risks in

the messages sent from their friends or their favorite stars.

• Week Security Vetting Process. In the early stage of these two types of plat-

forms, organizers typically pay more attentions to encouraging users to con-

tribute more content to the system, than the quality (potential security risks)

of those content. Once these platforms become larger and more popular, the

great amount of information post by users makes it extremely changeling for

the organizers to vet potential security risks or attacks in every piece of the

information within a short time period.

1.3 Research Challenges of Detecting Malicious Activities

The first challenge of detecting malicious activities in these two types of platforms

is that we lack basic insights of the strategies that are utilized by cyber-criminals

to launch malicious activities. More specifically, in terms of the OSN platform,

cyber-criminals typically require to register a corpus of fake (spam) accounts to

spread malicious activities. Although existing studies have been made to detect

sybil nodes. These studies rely on the assumption that it is di�cult for sybil nodes

to mix with benign nodes. However, is this assumption held in the real-world OSN

platforms? If not, how do spam accounts mix into the real-world OSN platforms?

How are spam accounts correlated with each other? How do spam accounts find

their spamming targets? How do malware authors utilize app markets to spread

smartphone malware? How do malware authors build networking infrastructure to

6

communicate with their malware? The deep understanding of these questions are

essentially very important to facilitate to design e↵ective approaches to detect those

malicious activities.

The second challenge is that how to design e↵ective and e�cient approaches to

detect (or to guide the sample of more likely) malicious activities, given the limited

time/resource. Given the fact that there are millions of OSN accounts and billions

of OSN messages sent per day, it is extremely di�cult to analyze every account and

every message within a short time of period. Thus, a guided inference to those more

likely spam accounts is highly desirable. Also, due to the socialization property of

the OSN platform, to design e↵ective defensive approach, we may also need to bor-

row knowledge from other areas (e.g., graph theory and nature language processing

theory). Similarly, in the smartphone platform, not every smartphone app market

(especially those third-party markets) has su�cient resource/time/expertise to make

a deep security analysis of the all apps that are uploaded to the markets. Even for

the o�cial smartphone app market (e.g., GooglePlay), it will be very challenging (or

even impossible) to vet every app within a short time period. Thus, an e↵ective and

lightweight approach to sample those more likely malicious apps is also desirable.

In addition, given the special programming design of smartphone platforms, we also

need to deeply analyze the programming procedure in known smartphone malware

to design an e↵ective approach to automatically detect smartphone malware.

1.4 Research Goal and Solution Overview

In this section, we present the research goal and the overview of our solutions. As

illustrated in Table 1.2, this dissertation aims at providing in-depth analysis of the

malicious activities, and further providing defense insights against those malicious

activities in the OSN and Smartphone platforms.

7

OSN Platform Smartphone Platform

Malicious Activities Malicious OSN Accounts Malicious Android Apps

In-depth Analysis Spammers’ Social Network Market-level and Networking-level Behaviors

Defensive Insights Social Honeypot Malware Programming Procedure

Table 1.2: Research overview of the dissertation.

More specifically, to understand the characteristics of the social relationships

among malicious OSN accounts, we aim at describing a detailed analysis of OSN

spammers’ social network (i.e., cyber criminal ecosystem) on Twitter. After un-

derstanding the characteristics of OSN spammers’ spamming targets, we plan to

further provide detection approaches including guidelines of building e↵ective so-

cial honeypots to attract spammers and two inference-based algorithms to sample

spam accounts. Similarly, we aim at providing a deeper understanding how Android

malware authors spread malicious Android apps by analyzing the Android malware

ecosystem, and further designing an automatic approach to detect malicious Android

apps.

Based on our research goal, Figure 1.1 illustrates a general framework of our

solution, including three major phases: collecting data, making in-depth analysis,

and generating defensive insights.

In the phase of collecting data, we first build an e↵ective crawler to collect a

large-scale of real-world dataset. In this dissertation, we choose Twitter and An-

droid markets as our case studies. Due to the challenging of obtain a perfect ground

truth for such large-scale datasets, we require to adopt a practical and relatively

accurate policy to identify malicious activities from our collected datasets (i.e., mali-

cious/spam Twitter accounts in Twitter, and malicious Android apps in the Android

markets).

8

In the phase of making in-depth analysis, we mainly analyze the following three

aspects of the malicious activities in Twitter: Spammer Behaviors (the social behav-

iors of individual spam account), Malicious Account Community (the relationships

among multiple malicious Twitter accounts), and Strategies of Spreading Twitter

spam (the strategies used by spammers to find spam targets). From a similar re-

search viewpoint, we mainly analyze the following three aspects of the malicious

activities in the Android platform: Malware Author Behavior (the market behavior

of individual malware author), Malicious App Community (the relationships among

multiple malicious Android apps), and Infrastructure of Spreading Malicious Apps

(the market and networking infrastructure used by malware authors to spread mali-

cious apps).

In the phase of generating defensive insights against Twitter spammers, our solu-

tion obtains indications from analyzing Tweet Content (content of the tweets), Insert

URL (URLs that are inserted in the tweet), Spammer Behavior (social behavior of

spam account), Community Relationships (the relationships among multiple spam

accounts), Social Honeypot (fake Twitter accounts that are used to capture spam

accounts’ contact). Similarly, in the phase of generating defensive insights against

Android malware, our solution obtains indications from analyzing Programming Pro-

cedure (Android framework APIs and control-flow logics that are commonly used in

Android malware), Remote Server (the remote servers that are used to communicate

with Android malware), Author Behavior (Android malware authors market be-

havior), and Community Relationships (the relationships among multiple malicious

Android apps).

We integrate our solution into four technical chapters: Twitter Spammer Ecosys-

tem (an in-depth analysis of the ecosystem of Twitter spammers), Reversing En-

gineering Twitter Spammers (a comprehensive measurement of the strategies used

9

Figure 1.1: The illustration of the framework of our solution.

by Twitter spammers to select spamming targets), Android Malware Ecosystem (an

in-depth analysis of the ecosystem of Android malware), and DroidMiner (an auto-

matic Android malware detection system). We next present an overview of each of

the four technical chapters with more details.

In Chapter 4, this dissertation empirically analyzes the cyber criminal ecosys-

tem on Twitter, including malicious account community composed of malicious ac-

counts, and malicious supporter community composed of other accounts who have

close friendships (following relationships) with malicious accounts. Specifically, this

dissertation analyzes inner social relationships in the malicious account community to

examine how malicious accounts socially connect with each other. Then, it analyzes

10

outer social relationships between malicious accounts and their malicious supporters

to reveal the characteristics of those accounts who have close friendships with mali-

cious accounts. Through these analyses, this dissertation aims at understanding how

malicious accounts survive and mix into the whole Twitter space, and presenting

new defense insights to e↵ectively catch more malicious accounts on Twitter.

In Chapter 5, through reverse engineering spammers’ tastes (their preferred tar-

gets to spam), this dissertation provides guidelines for designing e↵ective social hon-

eypots, and design lightweight and guided strategies to actively sample more likely

social spam accounts. To achieve this goal, this dissertation use Twitter as a case

study due to its great popularity and publicity. Specifically, to reveal which behaviors

tend to incur spammers’ contact, we implement 96 “benchmark” Twitter social hon-

eypots with 24 diverse fine-grained social behavior patterns to trap spam accounts.

After launching our social honeypots for five months, we successfully garner around

600 spam accounts. Using these data, we analyze spammers’ tastes (how spammers

find their targets), through comparing the e↵ectiveness of social honeypots with

di↵erent behavior patterns. Based on these analyses, we design and implement 10

more e↵ective (“advanced”) honeypots to trap Twitter spammers. Within the same

time period, using those advanced honeypots can trap spammers around 26 times

faster than using “traditional” honeypots. To further understand spammers’ tastes,

we also design an algorithm to extract semantic topic terms, which may highly at-

tract spammers’ attentions. In addition, with the concern of limited time/resource,

through reverse engineering spammers’ strategies of selecting targets, we gain the

insights to design two guided approaches to prioritize the active sampling of more

likely spam accounts from Twittersphere, which is an e↵ective complement to exist-

ing passive social honeypots.

In Chapter 6, this dissertation empirically performs the first comprehensive mea-

11

surement study on analyzing the market-level and network-level behaviors of the

Android malware ecosystem. Through the analysis, we provide more deep analy-

sis on how Android malware is spread, and generate new defense insights against

Android malware. In the phase of analyzing the market-level behaviors, we mainly

investigate: (1) whether the location of the market is an e↵ective indication to the

quality of Android apps; (2) whether the downloading number has a strong corre-

lation with the quality of Android apps; (3) whether the public Android anti-virus

blacklist is e↵ective to stop malware authors from submitting their malicious apps

to the markets; (4) whether malicious accounts have specific temporal behavioral

patterns to submit malware samples. In the phase of analyzing the network-level

behaviors, we investigate: (1) which IP address spaces are mainly used by Android

malware; (2) which special networks tend to be used to host remote servers; (3)

whether existing IP/domain blacklists are e↵ective to be used to find Android mal-

ware; (4) the characteristics of malware communities. Spurred by our analysis, we

design an Android malware inference algorithm, to infer more malicious Android

apps by starting from a small seed set of known malicious ones.

In Chapter 7, this dissertation presents DroidMiner for discovering and auto-

matically extracting malware modalities. While our e↵orts are primarily focused on

identifying and then characterizing malware behavior, aspects of our methodology

are also directly applicable to automated characterization of a broad class of Android

application behaviors, including the detection of shared security vulnerabilities. We

evaluate DroidMiner using 2,466 malicious apps, identified from a corpus of over

67,000 third-party market Android apps, plus an additional set of over 10,000 o�cial

market Android apps. Specifically, this dissertation measure the utility of Droid-

Miner modalities with respect to three specific use cases: (i) malware detection, (ii)

malware family classification, and (iii) malware behavioral characterization. Our

12

results validate that DroidMiner modalities are useful for classification and capable

of isolating a wide range of suspicious behavioral traits embedded within Android

applications. Furthermore, the composite of these traits enables a unique means by

which Android malware can be identified with a high degree of accuracy.

1.5 Contributions

In this thesis, we make the following main contributions:

• In order to analyze the cyber criminal ecosystem on Twitter, this disserta-

tion finds a few observations about inner- and outer-social relationships among

Twitter spammers. We have two main findings: (i) Malicious accounts tend to

be socially connected, forming a small-world network; (ii) Compared with ma-

licious leaves, malicious hubs are more inclined to follow malicious accounts.

We also find that malicious accounts in some particular malicious campaign

tend to have strong semantic and timing coordinations. To analyze how Twit-

ter spammers mix into Twitter space, we propose a new algorithm to extract

malicious supporters who have close friendships with malicious accounts. We

also investigate the characteristics of three representative categories of mali-

cious supporters. We design a new algorithm to selectively sample and infer

more malicious accounts based on a known seed set by analyzing their social

relationships and semantic coordinations with other accounts.

• To provide guidelines for designing e↵ective social honeypots, and design a

lightweight algorithm to actively sample more likely social spam accounts, this

dissertation contributes a set of new defense insights. We present a deep anal-

ysis of spammers’ tastes: spammers tend to contact with accounts that tweet

messages and follow accounts related to specific topics. We present our guide-

13

lines of deploying more e↵ective honeypots, and two lightweight, guided ap-

proaches to prioritize the sampling of more likely Twitter spam accounts.

• Through analyzing the market-level and network-level behaviors of the An-

droid malware ecosystem, this dissertation provides a series of security obser-

vations among Android malware, and design defense approaches against them.

Through analyzing the market-level behaviors, this dissertation find that: (1)

Neither the location of the market nor the popularity of the apps has a strong

correlation with the quality of the apps; (2) The public Android anti-virus

blacklist is too slow at identifying new Android malware; (3) The same mal-

ware authors tend to submit multiple malicious apps, and within a short time

period. Through analyzing the network-level behaviors, this dissertation find

that: (1) There is a strong provider locality property in the Android mal-

ware’s remote servers hosting infrastructure; Android malware authors tend to

use cloud vendors to host remote servers to communicate with their malware

samples; (2) Existing IP/domain blacklists are not e↵ective to be used to find

Android malware; (3) A few malware communities (sharing common authors

or remote servers) contribute to a large portion of Android malware. We design

a novel algorithm to infer more malicious apps by exploiting their community

relationships, which requires neither the disassembling of Android apps nor the

deep domain knowledge of the Android system.

• We design and implementation a novel system for automated extraction of An-

droid app modalities, and use machine learning strategies to classify a given app

under the modality pattern. We made an in-depth evaluation of DroidMiner

with respect to its run-time performance and e�cacy in malware detection,

family classification, and behavioral characterization.

14

2. BACKGROUND AND TERMINOLOGY

2.1 Background and Terminology of Twitter

Twitter is one of the most famous online social networking websites that allows

users to register accounts and use them to personal messages. In one message, at

most 140 characters is allowed. Through this platform, people can easily follow up

the newest update from other users they are interested. A great number of people

and organizations have utilized this platform to successfully promote themselves or

their business to the public. To guarantee a better service, Twitter also releases a

series of Twitter Rules [108] to restrict some cyber-criminals’ malicious operations

on Twitter. Once an account is judged to have violated Twitter Rules by Twitter,

Twitter will suspend this account. As one of the most representative Twitter Rules,

“a Twitter account can be considered to be spamming, and thus be suspended by

Twitter, if it has a small number of followers compared to the amount of accounts

that it follows.”

We next introduce basic terminologies of Twitter:

• Tweet. Once a Twitter user register a Twitter account and use it to post

a message, this message is named as “tweet”, and the user is said to have

”tweeted”. Users typically have a great freedom to post whatever they want

to, or even post links to other websites. And, each URL will be automatically

recognized by Twitter. In addition, due to the limitation of the number of

characters in one Tweet, users prefer to post short URL instead of real URL.

• Follow. One user can choose other users they are interested in to follow. Once

a user follows other users, the user will automatically and instantly receive

15

other users’ updates, without the requirement of visiting other users’ accounts’

homepages. Updates for all the users one account follow will appear in reverse

chronological order with the most recent update on top of the page.

• @mention (@reply). @metion allows one user to send a Tweet to another

specific target user. No matter whether the target user followed the sender or

not, the target user can read the @mention messages, which contains a string

composed of the symbol of “@” and the target user’s username. Before 2012,

@metions will be directly shown on the users’ public time. Since then, users

will receive senders’ @mentions in the users’ Notifications, which is a tab in

the users’ homepage showing users’ social interactions with others.

• Direct Message. A direct message is a private message from one Twitter user

to another, which can only be seen in receivers’ message inbox. Thus, direct

messages can only be seen by the receivers, after they login into their Twitter

accounts and check their message inboxes.

• # (Hashtag). Once a Tweet contains a symbol of “#” with another keyword,

it implies that this tweet represents a topic. This tweet will be also indexed by

Twitter and searched out by using the keyword as the search query.

2.2 Background and Terminology of Android

Android apps are composed of several components and have a complex and event-

driven programming paradigm involving multiple entry points. Android defines a

component-based framework for developing mobile apps. Android apps comprise

four types of components: Activities, Services, Broadcast Receivers, and Content

Providers. Each component in an app works as a unit performing certain tasks:

16

• Activities support basic functionalities such as interacting with end-users through

graphical user interfaces (GUIs); each GUI (screen) is controlled by one Activ-

ity.

• Services are designed to provide interfaces in the background for communicat-

ing with other components and applications. Thus, unlike activities, services do

not represent any GUI and cannot be activated/stopped by users. They will

run as background processes forever until they are stopped by some certain

application components.

• Broadcast Receivers are designed to achieve the mechanism of incident response

in Android. A receiver will continuously listen to system-wide broadcast mes-

sages. When it receives relevant messages, it will automatically trigger corre-

sponding registered events/operations.

• Content Providers act as database management systems, from where other

components/apps could query or store an app’s data without the requirement

of knowing how the data is stored.

Android application authors implement Android components in an app as Java

classes by inheriting corresponding super classes defined in the Android SDK (e.g.,

Activity, Service, BroadcastReceiver or ContentProvider). Android components

are identified by other components through registration in the applications’ man-

ifest file (“AndroidManifest.XML”). This enables these components to interact with

each other by using specific intents and framework API calls defined in the An-

droid Framework. For example, an activity could activate a service by invoking the

startService() Framework API call. In addition, unlike traditional software, the

lifetimes of Android components are controlled by a series of lifecycle API functions

17

defined by the Android platform (e.g., onStart() and onDestroy() used in a ser-

vice will start and stop the service, respectively). Moreover, the (data and control)

sub-flows in an app are typically loosely connected. All these di↵erences make An-

droid program analysis uniquely challenging and di↵erent from traditional malware

analysis.

18

3. RELATED WORK

In the previous two chapters, we first identified the research scope of this disserta-

tion, and the challenges for malicious activity detection on the OSN and smartphone

platforms. Then, we introduced the basic background and terminologies of these two

platform. In this chapter, we will answer the following questions: why are exist-

ing techniques not su�cient for malicious activity detection on these two platforms?

How are they related to or di↵erent from our solution?

3.1 Related Work on Understanding and Detecting Malicious Activities on the

OSN Platforms

3.1.1 Analysis of OSN Characteristics

Due to the great popularity of the OSNs, some work has studied OSN charac-

teristics. Mislove et al. present a large-scale measurement study and analysis of the

structure of multiple OSNs including Flickr, YouTube, LiveJournal, and Orkut [76].

Kwak et al. have shown a comprehensive and quantitative study on Twitter accounts’

behavior [63]. Wang et al. use Twitter to study the unbiased sampling algorithm

for directed social graphs [117]. Cha et al. utilize di↵erent metrics to measure the

user influence on Twitter [19]. Galuba et al. focus on characterizing and modeling

the information cascades formed by individual URL mentions in the Twitter follower

graph [42]. Castillo et al. design automatic methods for assessing the credibility of

a given set of tweets [18]. Metaxas et al. analyze political community behavior and

the spread of political opinions on Twitter [75], and Ratkiewicz et al. analyze the

spread of Astroturf memes on Twitter [92].

19

3.1.2 Detection of OSN Malicious Accounts

Since spam and attacks are so rampant in the OSNs, many researchers have stud-

ied detecting OSN malicious accounts. A framework to detect tag spam in tagging

systems is proposed in [61]. This work prevents the attackers who desire to increase

the visibility of an object from fooling the search mechanism. Benevenuto et al.

[11, 12] utilize machine learning techniques to identify video spammers on YouTube.

Meanwhile, most Twitter malicious account detection work can be classified into two

categories. The first category of work, such as [65, 10, 116, 102], utilizes machine

learning techniques to classify legitimate accounts and malicious accounts accord-

ing to their collected training data and their selections of classification features like

“following-follower ratio”. The second category of work, e.g., [51], detects and an-

alyzes malicious accounts by examining whether URLs or domains posted in the

tweets are labeled as malicious by public URL blacklists or domain blacklists.

3.1.3 Utilization of Honeypots

A honeypot is a decoy (e.g., a computer, data, or a network site) mainly set up

to attract attackers. Traditionally, the honeypot techniques have been widely used

for capturing malware and related malicious activities. Server-side honeypots are

mainly implemented by emulating vulnerable services or software to trap attacks,

aiming at collecting malware and malicious requests [135], understanding network

and web attacks [58], building network intrusion detection systems [62], or preventing

the spread of spam email [34]. Client-side honeypots are mainly used to detect

compromised (web) servers [87, 52, 118, 77]. In [4], Antonatos et al. proposed an

approach to detect instant messaging (IM) threats using IM honeypots.

In the context of OSN, social honeypots are defined as OSN accounts that appear

to belong to real users, but are actually fake accounts used for attracting spammers.

20

Due to its simplicity and low false positives, social honeypots are a great way to

collect spammers for further study, e.g., understanding their characteristics and then

further building e↵ective machine-learning features to detect them. Many existing

studies [102, 65] use this social honeypot technique. However, an important missing

component in this line of research is that, we still know little about the interactions

between users’ behaviors and spammers’ actions, e.g., why this social honeypot can

attract few (many) spammers. Essentially, we need a systematic analysis on how to

build more e↵ective social honeypots, which is an important goal of this work. Thus,

this paper bridges the gap in existing research using social honeypots.

3.1.4 Measurement of Spam Campaigns and Networks.

Yardi et al. analyzed Twitter spam accounts’ social behaviors and network struc-

tures by investigating a specific spam campaign [134]. In [43], Gao et al. conducted

a study on detecting and characterizing social spam campaigns on Facebook, based

on the observation that spam accounts in the same spam campaign, tend to send

similar spam messages simultaneously. In [105], Thomas et al. analyzed tools, tech-

niques, and support infrastructure utilized by spam accounts through retrospecting

suspended accounts.

While most existing approaches [11, 65, 10, 102, 132] focus on detecting Twitter

criminal accounts individually, we still understand far less about the properties of

those criminal accounts’ social relationships on Twitter. Yet, it is these very rela-

tionships that may be utilized by criminal accounts to increase their influence or to

avoid detection and suspension. Specifically, since Twitter users can automatically

obtain their following accounts’ updates, criminal accounts’ social relationships can

aid them in increasing the visibility of their malicious content – thus in obtaining

more victims. In addition, by gaining more followers, Twitter criminal accounts

21

can evade existing detection approaches such as “Twitter Rules” and break through

Twitter’s “Follow Limit Policy”1, while maintaining their high visibility. Particu-

larly, according to Twitter Rules [108], “a Twitter account can be considered to be

spamming, and thus be suspended by Twitter, if it has a small number of followers

compared to the amount of accounts that it follows.”

However, we lack basic insights into the characteristics of criminal accounts’ social

relationships. How do criminal accounts socially connect with each other on Twit-

ter? What is the topological structure of social relationships among those criminal

accounts? Due to the fact that legitimate accounts normally do not like to follow

criminal accounts, what are the main characteristics of criminal accounts’ followers?

Can we exploit these miscreants’ tactics to build e↵ective defense strategies against

cyber criminals? The desire of addressing these questions empirically – and thus

obtaining insights for defending against Twitter criminal accounts – forms the core

motivation of this dissertation.

In addition, among many existing research and engineering e↵orts in fighting

against spam/spammers, social honeypot techniques are quite promising, and have

been widely deployed in existing studies to collect spammers [65, 66, 102]. A social

honeypot is essentially a specially created fake account with the intent to capture

spammers’ social interactions. However, current social honeypots are designed to

be either too static (few behaviors performed by honeypots) or too uniform (few

variations among honeypots’ behaviors). As a result, those honeypots are not used in

an optimal or e↵ective way to trap as many spammers as they can. The fundamental

reason is that we still lack the basic insights of the strategies utilized by spammers

to select spam targets. Thus, a good understanding of spammers’ tastes is pressing

1According to this policy, once an account has followed 2,000 users, the number of additional
accounts it can follow is limited to its follower number [113].

22

and we seriously need systematic guidelines for building more e↵ective (attractive)

social honeypots.

Compared with previous work on analyzing and detecting OSN malicious activ-

ities, our work focuses more on analyzing cyber criminal ecosystem – investigating

inner social relationships in the malicious account community and outer relationships

between malicious accounts and their supporters. Our proposed sampling strategies

can provide a guided approach to prioritize the sampling of more likely spam ac-

counts (instead of blind/random crawling) in the huge Twittersphere, thus providing

a good first-layer filter for existing detection approaches. In addition, we perform a

deep social honeypot measurement study to understand spammers’ tastes, thus help

to design new guidelines for building better social honeypots and guided strategies

to prioritize the sampling of more likely spam accounts. Thus, our work is a new

supplement to existing work.

3.2 Related Work on Understanding and Detecting Malicious Activities on the

Smartphone Platform

3.2.1 Android Malware Detection

The growing threat of malicious mobile applications, particularly on the smart-

phone platform, has attracted considerable research attention. We group proposed

detection approaches for mobile malware into the following three subcategories, based

on the inputs that each algorithm consumes.

3.2.1.1 System Call Monitoring

Systems such as [16, 85, 94, 95] detect malware by monitoring and analysis of

system calls. A fundamental shortcoming of such approaches is the semantic gap

between the system calls and specific behaviors (e.g., it is exceedingly di�cult to

know whether an app sends an SMS to a premium number by analyzing a sequence

23

of Android kernel-level system calls). DroidScope [131] is designed to reconstruct

both OS-level and Java-level semantics. Their dynamic analysis approach is limited

by path exploration challenges, but is a useful complement to DroidMiner’s static-

based approach.

3.2.1.2 Android Permission Monitoring

Enck et al. studied the security of Android apps by analyzing the permissions

registered in the top o�cial Market apps [36]. Stowaway [40] and COPES [9] are

designed to find those apps that request more permissions than they need. PScout [7]

analyzes the usage trend of permissions in Android apps. Kirin [37] detected ma-

licious Android apps by finding permissions declared in Android apps that break

“pre-defined” security rules. More recent work also detected malicious Android apps

by designing several classifiers, whose features were built primarily on the application

categories and permissions [84]. A concern with these approaches is false positives

stemming from the coarse-grained nature of permissions and the highly common

nature of benign apps to over-claim their set of required permissions.

3.2.1.3 Framework API Monitoring

Bose et al. detected malware on Symbian OS through analyzing the temporal

pattern of the usage of APIs in the DLL files [13]. TaintDroid [35] tracks the data

flow and the usage of framework API calls to detect those apps that may leak users’

privacy information. However, it is not designed to detect other kinds of malicious

behaviors such as stealthily sending SMS. RiskRanker [143] detects malicious apps

based on the knowledge of known Android system vulnerabilities, which could be

utilized by malicious apps, and several heuristics, e.g., malware intends to charge

the victims while blocking notifications to the victims. DroidRanger [142] detects

malicious Android apps by statically matching against “pre-defined” signatures (per-

24

missions and Android Framework API calls) of well-known malware families. It also

includes a heuristic-based approach to detect malicious applications from unknown

families that requires semi-manual analysis of suspicious system calls. In [129], the

frequencies of API calls were used as detection features, and more recently in [1],

the names and parameters of APIs and packages were used as detection features.

Both studies di↵er fundamentally from DroidMiner in that our modalities capture

the connections of multiple sensitive API functions, not just the frequency or names

of APIs. In addition, DroidMiner introduces the use of �-analysis for sensitive node

identification and associative rule mining in identifying malicious modalities. Pe-

gasus [21] is designed to detect Android malware through abstraction of Android

apps into permission event graphs, and checking whether such graphs contain pre-

defined malicious intents. However, such manual selection of heuristics (or detection

patterns) is not systematic and not robust to the evolution of malware.

3.2.2 Android Security Extensions

Existing studies have also developed several security extensions to improve the

security mechanism of current Android platform including defending against confused

deputy attacks and collusion attacks [32, 15], achieving fine-grained access control

policies [80, 79, 29, 130, 78, 37], protecting privacy leak [53], and securing smartphone

OSes [85, 64, 3, 97]. These complementary studies are developed to increase the

security assurance from the phone-side, which focuses more on the quality of the

smartphone systems.

3.2.3 Analysis of Attackers

A series of studies have also been conducted to understand attackers’ (or spam-

mers’) behaviors in di↵erent attack scenarios. Ramachandran et al studied the

network-level behavior of spammers such as IP address ranges that send the most

25

spam and common spamming modes [90]. Leontiadis et al measured and analyzed

search-redirection attacks in the illicit online prescription drug trade [67]. Christin

et al analyzed an online confidence scam (One Click Fraud) [24]. One recent An-

droid malware measurement studies is made on analyzing the working mechanism of

malware (e.g., the activation of the malware) [141].

3.2.4 Analysis of Mobile Tra�c

A few existing studies have been conducted on analyzing mobile tra�c to un-

cover general mobile network characteristics [39, 44, 38]. Falaki et al found that

the browsing contributes over half of the tra�c [39]. Erman et al examined cellular

video tra�c and find that only 40% of the videos are fully downloaded [38]. Through

analyzing malicious tra�c in cellular carriers, Lever et al claimed that only a vanish-

ingly small number of mobile devices appear to be infected, and Apple’s App Store

and operating system do not make devices in the ecosystem more secure [68].

While most existing research e↵orts are spent on detecting Android malware [13,

35, 142, 129, 143, 21, 139] or designing new security extensions to defend against

specific types of attacks [32, 15], we still lack some basic insights on the whole

ecosystem of spreading Android malware. It is known that malware authors typically

need to submit Android malware to the markets to attract victims’ downloads, and

build remote servers to communicate with the malware to achieve malicious goals

(e.g., C&C control and compromising victims’ privacy). However, the characteristics

of the market-level behaviors and network-level behaviors of the Android

malware ecosystem are still not well understood. Are there any special characteristics

of those market accounts that submit malware? Are there any special networks

mainly utilized by Android malware authors to host their remote servers? Are there

any large communities among Android malware? The desire of addressing these

26

questions empirically, and obtaining insights for defending against Android malware,

forms the core motivation of this work.

In addition, existing static analysis approaches for detecting Android malware

rely on either matching against manually-selected heuristics and programming pat-

terns [142, 21] or designing detection models that use coarse-grained features such as

permissions registered in the apps [84]. We design a new system, named DroidMiner,

to salably detect and characterize Android malware through robust and automated

learning of fine-grained programming logic and patterns in known malware. While

DroidMiner also relies on analyzing Framework API calls, it di↵ers from existing

approaches in the following ways: (1) it uses a learning-based approach to automat-

ically generate behavior models, which are composed of individual modalities and

could be used to detect malware instance from unseen families; (2) rather than sim-

ply examining whether or not the target app is malicious, it also reports specific app

behavior traits (modalities); (3) instead of focusing on analyzing isolated usage of (or

even the number of) Framework APIs, our detection model considers the API usage

sequence, enabling DroidMiner to capture the semantic relationships across multiple

APIs.

27

4. ANALYZING SPAMMERS’ SOCIAL NETWORKS*

We have introduced the malicious activities that are launched on social network

platforms, and briefly explained why the analysis of OSN spammers characteristics

is important to design e↵ective detection approaches. In this chapter, we provide our

deep analysis of the spammers’ social networks to reveal how malicious OSN accounts

are socially connected in the OSN, and further provide an e↵ective inference-based

algorithm to sample more likely Twitter spammers [133].⇤

We analyze the cyber criminal ecosystem on Twitter, containing criminal

account community composed of criminal (spam) accounts, and criminal supporter

community composed of those accounts outside the criminal account community who

have close friendships (following relationships) with criminal accounts, defined in our

work as criminal supporters (See Figure 4.1). Specifically, we analyze inner social

relationships in the criminal account community to reveal insights on how criminal

accounts socially connect with each other. Meanwhile, we analyze outer social

relationships between criminal accounts and their criminal supporters to reveal the

characteristics of those accounts who have close friendships with criminal accounts.

We also aim at finding possible reasons why criminal supporters outside the criminal

community become criminal accounts’ followers. Essentially, these supporters aid

criminal accounts in avoiding detection by increasing criminal accounts’ followers,

and in preying on more victims due to the “social-intercourse” nature of Twitter

(Twitter users may visit their friends’ friends’ profiles). Through these analyses, we

aim at understanding how criminal accounts mix into the whole Twitters space, and

⇤Reprinted with permission from “Analyzing Spammers’ Social Networks For Fun and Profit – A
Case Study of Cyber Criminal Ecosystem on Twitter” by Chao Yang, Robert Harkreader, Jialong
Zhang, Seungwon Shin, and Guofei Gu, 2012. Proceedings of the 21st International World Wide
Web Conference, Copyright[2012] by IW3C2.

28

presenting new defense insights to e↵ectively catch Twitter criminal accounts.

Figure 4.1: Structure of the cyber criminal ecosystem.

We conduct our empirical analysis based on a sample dataset containing around

half million Twitter accounts with around 14 million tweets and 6 million URLs.

After building a sample criminal account community composed of 2,060 identified

spammer accounts in that dataset, we analyze its inner relationships by building and

analyzing the social relationship graph. To analyze outer relationships, we propose

a Malicious Relevance Score Propagation Algorithm (Mr.SPA) to extract criminal

supporters. We then observe typical characteristics of three categories of support-

ers and provide possible reasons why these supporters have close friendships with

criminal accounts.

We design a Criminal account Inference Algorithm (CIA), to infer unknown spam

Twitter accounts by starting from a seed set of known criminal ones and exploiting

29

the properties of their social relationships and semantic coordinations with other

criminal accounts.

We make the following major contributions:

• We present the first in-depth case study of analyzing social relationships among

malicious accounts. We have two main findings: (i) Malicious accounts tend

to be socially connected, forming a small-world network; (ii) Compared with

malicious leaves, malicious hubs are more inclined to follow malicious accounts.

• We also find that malicious accounts in some particular malicious campaign

tend to have strong semantic and timing coordinations.

• We propose a new algorithm Mr.SPA and have extracted 5,924 malicious sup-

porters who have close friendships with malicious accounts. We also investigate

the characteristics of three representative categories of malicious supporters.

• We find that around 64% of supporters tend to build a lot of social friendships.

We also find around 48% of supporters will follow back the accounts within 48

hours, who initially follow them. However, less than 2% of normal accounts

would do this. This implies that malicious accounts could fully utilize these

accounts to mix into Twitter.

• We design a new algorithm CIA to selectively sample and infer more malicious

accounts based on a known seed set by analyzing their social relationships

and semantic coordinations with other accounts. Using CIA, this dissertation

can infer over 20 times more malicious accounts than that of using a random

selection strategy.

30

4.1 Research Goal and Dataset

4.1.1 Research Goal

Our research goal is to provide the first empirical analysis on how criminal ac-

counts mix and survive in the whole Twitter space. Specifically, we target on those

criminal accounts as defined by Twitter Rules [108], who mainly post malicious URLs

linking to malicious content with an intention to compromise users’ computers or

privacy. Through analyzing inner social relationships in the criminal community

composed of criminal accounts (in Section 4.2), we aim at answering the following

questions: What is the structure of criminal accounts’ network? What are possible

factors and inherent reasons leading to that structure? Are there any di↵erent so-

cial roles for di↵erent types of criminal accounts? Through analyzing outer social

relationships (in Section 4.3), we aim at answering the following questions: what are

typical characteristics of the accounts outside the criminal community that tend to

follow criminal accounts? What are possible reasons that these accounts have close

friendships with criminal accounts? Then, through exploiting criminal accounts’ so-

cial relationships, we design an inference algorithm to catch more criminal accounts

(in Section 4.4).

4.1.2 Dataset

To analyze criminal accounts, we crawl a large dataset of Twitter account profiles

and identify Twitter spam accounts from the dataset. More specifically, we develop

a Twitter crawler that taps into Twitter’s Streaming API [107]. We first collect 20

seed Twitter accounts from the public timeline [111]. For each of these 20 accounts,

we also crawl their followers and followings. We then repeat this process by collecting

another 20 seed Twitter accounts from the timeline. For each account, we collect

its 40 most recent Tweets and the URLs in the tweets. Due to the large amount of

31

redirection URLs used in Twitter, we also follow the URL redirection chain to obtain

the final destination URL. This resulted in the collection of nearly 500,000 Twitter

accounts which posted over 14 million tweets containing almost 6 million URLs (see

Table 4.1).

Item Accounts Followings Followers Tweets URLs

Number 485,721 791,648,649 855,772,191 14,401,157 5,805,351

Table 4.1: Twitter accounts crawling information.

Next, we use a relatively strict strategy to collect Twitter spammers. More

specifically, we focus on those Twitter spammers, who post URLs linking to mali-

cious content with an intention to compromise other users’ computers or privacy, as

mentioned in The Twitter Rules. We target at this type of spam accounts due to

their excessively hazard and prevalence on Twitter. Thus, unlike other related work

(e.g., [65]), we do not necessarily consider advertisers in Twitter as spammers, unless

they post malicious content. To label Twitter spam accounts, we first utilize two

methods to detect malicious or phishing URLs in the tweets: Google Safe Brows-

ing [49] and URL honeypot. GSB is a widely used and trustable blacklist to identify

malicious URLs, which is fast but may miss labeling malicious links. Thus, we also

build a high-interaction client-side URL honeypot based on Capture-HPC [52], which

will emulate a real person to click the URL in the browser in a virtual machine. The

honeypot detects a link as malicious, if the visit of the linked website will modify

sensitive data (e.g., process, files and registries) in the virtual machine. We define a

Tweet that contains at least one malicious or phishing URL as a Spam Tweet. In this

way, we collect 3,051 accounts by using GSB and 9,634 accounts by using honeypot,

32

who at least post one Spam Tweet. For each account, we define its spam ratio as

the ratio of the number of its spam tweets that we detect to the total number of its

tweets that we collect. In this way, we extract 2,933 Twitter accounts with spam ra-

tios higher than 10%. In order to further decrease false positives, our group members

spend several days on manually verifying those 2,933 accounts by viewing whether

their tweets are useful and meaningful. Finally, we obtain 2,060 identified spam

accounts. Based on this dataset, we build and analyze a sample criminal account

community, which is composed of those 2,060 identified spam accounts.

4.2 Inner Social Relationships

In this section, we empirically analyze inner social relationships in our sample

criminal account community by visualizing its relationship graph and revealing its

relationship characteristics.

4.2.1 Visualizing Relationship Graph

If we view each criminal account as a node v and each follow relationship as

a directed edge e, we can view inner social relationships in the criminal account

community on Twitter as a directed graph, named as the criminal relationship graph

G = (V,E). In our dataset, the criminal relationship graph consists of 2,060 nodes

and 9,868 directed edges (see Figure 4.2(a)). By further breaking down the graph,

we can obtain 8 weakly connected components containing at least three nodes and

521 isolated nodes. (Since we can partially crawl the whole Twitters space and

utilize a relatively strict way of identifying criminal accounts, the number of isolated

accounts may be somewhat overestimated.) The giant connected component contains

954 nodes (see Figure 4.2(b)).

33

(a) Relationship graph (b) Connected component

Figure 4.2: Criminal relationship graph. Each “dot” represents a criminal account
and each “line” connects a pair of following and follower criminal account. The more
relationships an account has, the more central it is positioned in the graph.

4.2.2 Revealing Relationship Characteristics

After visualizing our sample criminal relationship graph, we analyze this graph

by utilizing graph theoretical knowledge and obtain the following two main findings.

Finding 1: Criminal accounts tend to be socially connected, forming a small-

world network. From Figure 4.2(a), we can observe that criminal accounts tend to

socially connect with each other. To quantitatively validate this finding, we measure

three graph metrics: graph density, reciprocity, and average shortest path length.

Graph density is the proportion of the number of edges in a graph to the maximal

number of edges, which can be computed as |E|
|V |·(|V |�1) . This metric measures how

closely a graph is to being a complete graph. A higher value implies that the graph is

denser. After calculating the graph density for both our sample criminal relationship

and a public entire Twitter snapshot[63] containing 41.7 million users and 1.47 billion

edges, we find that the graph density of our sample criminal relationship graph, which

is 2.33⇥10�3, is much higher than that of the Twitter snapshot, which is 8.45⇥10�7.

This shows that the criminals have closer relationship than regular Twitter users.

34

Reciprocity is represented by the number of bi-directional links1 to the number

of outlinks. We find that criminal accounts have higher reciprocity in the criminal

relationship graph, but lower reciprocity in our Twitter snapshot graph (contain-

ing around 500K nodes). Specifically, around 5% of criminal accounts’ values of

reciprocity in the criminal graph are lower than 0.2, while around 45% of normal

accounts and 75% of criminal accounts in our crawled graph have such values (See

Figure 4.3(a)). Also, around 20% of criminal accounts’ values of reciprocity in the

criminal graph are nearly 1.0, i.e., other criminal accounts followed by these 20%

of criminal accounts also follow them back. This observation implies that criminal

accounts have stronger social relationships in the criminal account community.

Average Shortest Path Length is defined as the average number of steps along the

shortest paths for all possible pairs of graph nodes. It can be used to measure the

e�ciency of information flow on a graph. Compared with the average path length

of a sample data set with 3,000 legitimate Twitter accounts [63], which is 4.12,

the average shortest path length of the criminal relationship graph is even smaller,

which is 2.60. This implies that the criminal account community is also a small-

world network. As an important property, a small-world network contains a giant

connected component, which can be verified in Figure 4.2(b).

From the above analysis, we can find that criminal accounts have strong social

connections with each other. Then, the next question we try to answer is: what are

the main factors (criminal accounts’ actions) leading to that structure?

Finding 2: Compared with criminal leaves, criminal hubs are more inclined to

follow criminal accounts. To validate this finding, we examine whether criminal hubs’

followings are more likely to be criminal accounts. For better description, we term

a criminal account’s following account as a “criminal-following”, if this following

1There is a bi-directional link between two nodes, if they reciprocally link to each other.

35

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reciprocity

E
m

p
ir

ic
a
l
C

D
F

NA in Crawled Graph

MA in Crminal Graph

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Following Quality

E
m

p
ir

ic
ia

l
C

D
F

Normal Accounts

Malicious Accounts

(a) Reciprocity (b) Following Quality

Figure 4.3: The comparison of the criminal accounts and normal accounts.

account is also a criminal. Then, we design a metric, named Criminal Following

Ratio (CFR), which is the ratio of the number of an account’s criminal-followings to

its total following number. A higher CFR of an account implies that this account

is more inclined to follow criminal accounts. From Figure 4.4(a), we can find that

criminal hubs’ CFRs are much higher than that of criminal leaves. Specifically,

around 80% criminal hubs’ CFRs are higher than 0.1, while only 20% of criminal

leaves’ CFRs are higher than 0.1. Also, almost no criminal hubs’ CFRs are lower

than 0.05, while around 60% of criminal leaves’ CFRs are lower than 0.05. This

observation validates that criminal hubs tend to follow more criminal accounts than

leaves do. Similar to Finding 1, we next provide and validate possible explanations

to Finding 2.

We make the following possible explanation for this finding: Criminal hubs tend

to obtain followers more e↵ectively by following other criminal accounts. Although

criminal accounts could obtain followers by randomly following any account and

expecting it to follow back, this method is still not very e↵ective, due to the low

chance of successfully alluring legitimate accounts to follow back. However, through

36

following criminal accounts, hubs can automatically acquire those criminal accounts’

followers’ information (Username or Account ID). Then, there is a bigger chance

for criminal hubs to successfully allure other criminal accounts’ followers to become

their own followers, since these followers are already proved to be more susceptible

to follow criminal accounts, which many legitimate accounts may not choose to do.

In this way, criminal hubs can obtain followers more e↵ectively.

To validate this explanation, we examine whether criminal hubs’ followers are

highly shared with their criminal-followings. Specifically, we design a metric, named

Shared Follower Ratio (SFR), which is the percentage of an account’s followers, who

is also a follower of at least one of this account’s criminal-followings. A high SFR

of an account implies that most of this account’s followers are also its criminal-

followings’ followers, i.e., this account tends to share common followers with its

criminal-followings. We find that criminal hubs’ SFRs are higher than criminal

leaves’. Around 80% of criminal hubs’ SFRs are higher than 0.4, while around 5%

of criminal leaves have such values (see Figure 4.4(b)). This observation reflects

that compared with criminal leaves, criminal hubs’ followers share more follower

information with their criminal-followings. This indirectly implies that criminal hubs

could obtain followers by knowing their criminal-followings’ followers’ information,

once these hubs follow other criminal accounts.

From these two findings, we can roughly draw a picture on how criminal accounts

obtain followers on Twitter. Similar to the Bee Community, in the criminal account

community, criminal leaves, like bee workers, mainly focus on collecting pollen (ran-

domly following other accounts to expect them to follow back); criminal hubs in

the interior, like bee queens, mainly focus on supporting bee workers and acquiring

pollen from them (following leaves and acquiring their followers’ information).

37

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

Following Malicious Ratio (FMR)

E
m

p
ir

ic
a

l
C

D
F

Malicious Hub

Malicious Leaf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Follower Shared Ratio (FSR)

E
m

p
ir

ic
a

l
C

D
F

Malicious Hub

Malicious Leaf

(a) Criminal Following Ratio (b) Shared Follower Ratio

Figure 4.4: The comparison between criminal hubs and criminal leaves.

4.3 Outer Social Relationships

If malicious accounts mainly build social relationships within themselves, mali-

cious accounts can be detected by using existing sybil attack detection approaches

such as Sybil Guard [136] and Sybil Infer [31]. However, many Twitter malicious

accounts have already utilize several tricks to obtain followers outside the malicious

account community and mix well into the whole Twittersphere [88]. Thus, those

accounts, outside the malicious community who have close “follow relationships”

with malicious accounts, defined as malicious supporters, essentially help malicious

accounts avoid detection and spread malicious content [121].

However, we have little knowledge about the characteristics of those malicious

supporters. Thus, in this section, we conduct the first analysis of outer social re-

lationships between malicious accounts and their supporters including extracting

malicious supporters and characterizing them. By doing this, we can reveal typi-

cal characteristics of malicious supporters and understand more on how malicious

accounts can mix into the Twitter space.

38

4.3.1 Extracting Malicious Supporters

We first design a Malicious Relevance Score Propagation Algorithm (Mr.SPA)

to extract malicious supports. Specifically, Mr.SPA will assign a malicious relevance

score (MR score) to each Twitter account, measuring how closely this account follows

malicious accounts. A higher MR score implies a closer “follow relationship” to

malicious accounts. Then, we measure the MR score based on three heuristics: (1)

the more malicious accounts that an account has followed, the higher score this

account should inherit; (2) the further an account is away from a malicious account,

the lower score the account should inherit; (3) the closer the support relationship

between an account and a malicious account is, the higher score the account should

inherit.

To formalize the above intuitions, we build a malicious relevance graph G =

(V,E) to model the support relationship. In this graph, we consider each Twitter

account i in our dataset outside the malicious community as a node Vi. There

is a directed edge eij from the node Vi to the node Vj, if the account i follows

the account j. The weight Wij of the edge eij is determined by the closeness of

the relationship between i and j. We next introduce our malicious relevance score

propagation algorithm including: initializing MR score and propagating MR score.

MR Score Initialization: Before propagating MR score, we first assign an

initial score M0
i to each node Vi. If we denote C = {Ci|Ci is a malicious account},

then each malicious account Ci 2 C is assigned a non-zero score mi
2. For other

accounts, the score is initialized to zero.

MR Score Propagation: To propagate a MR scoreMi to each node Vi after the

initialization phase, we make the following three score-assigning policies according

2In our preliminary experiment, we set mi = 1.

39

to the above three heuristics:

• Policy 1: MR Score Aggregation. An account’s score should sum up all the

scores inherited from the accounts it follows. As Figure 4.5(a) illustrates, when

A follows both malicious accounts C1 and C2, the score of A is the sum of the

malicious scores of C1 and C2.

• Policy 2: MR Score Dampening. The amount of MR score that an account

inherits from other accounts should be multiplied by a dampening factor of

↵ according to their social distances, where 0 < ↵ < 1. As Figure 4.5(b)

illustrates, when A1 is one hop away from a malicious account C, we assign it

a dampening factor of ↵, where 0 < ↵ < 1. When A2 is two-hop away, A2 will

get a dampening factor of ↵ · ↵ = ↵2.

• Policy 3: MR Score Splitting. The amount of MR score that an account inherits

from the accounts it follows should be multiplied by a relationship-closeness

factor Wij, which is the weight of the edge in our malicious relevance graph.

Specifically, we use the number of followers of an account to reflect the closeness

of the relationship between this account and its followers. (The intuition is

that if an account has more followers, the closeness of the relationship between

this account and each of its followers will become weaker.) As Figure 4.5(c)

illustrates, if A1 and A2 have followed the same malicious account C, the

relationship-closeness factor of each account to C is 0.5. Thus, according to this

policy, the score of a node Vi can be computed as Mi = Wij ·Mj, if (i, j) 2 E.

Before presenting our mathematical model of propagating MR score, we first

introduce some notations. Let n be the number of nodes in the malicious relevance

graph. We use the indication function Iij = {0, 1} to indicate whether (i, j) 2 E (i.e.,

40

Figure 4.5: The policies of assigning MR scores.

if (i, j) 2 E, Iij = 1; otherwise, Iij = 0). If we use numIndegree(j) to denote the

number of the indegree of the node j, then from MR Score Splitting policy, we can

obtain that Wij =
1

numIndegree(j) . We use I to denote the column-vector normalized

adjacency matrix of nodes (i.e., Iij = Iij · Wij, if numIndegree(j) 6= 0; Iij = 1
n
, if

numIndegree(j) = 0). Let
�!
M0 be initial MR Score vector for all nodes and let

�!
Mt

be malicious score column vector for all nodes at the step t.

According to those three policies and our notations, at each step, for each node

Vi, its simple MR score Mi can be computed using Eq.(4.1).

Mi = ↵ ·
nX

j=1

Iij ·Wij ·Mj (4.1)

In addition, with the consideration of each node’s historical score record, at each

step t(t > 0), we add an initial score bias (1 � ↵) ·M0
i to its simple MR Score. (In

our experiment, we set ↵ = 0.85, since it is widely used in the random-walk model.)

Thus, we can compute the MR Score column-vector
�!
Mt for all nodes at the step

t(t > 0) by Eq.(4.2).

�!
Mt = ↵ ·

�����!
I ·Mt�1 + (1� ↵) ·

�!
M0 (t > 0) (4.2)

41

When the score vector converges after several propagation steps, we can obtain

final MR scores for all nodes. Once all MR scores have been calculated, a threshold

is needed to determine which accounts have su�ciently close friend relationships

to their malicious counterparts. To find an acceptable threshold, we first use x-

means algorithm [83] to cluster accounts based on their MR scores. In this way,

accounts with similar scores will be grouped together indicating they have similar

follow relationships with malicious accounts. Then, we observe that most accounts

have relatively small scores and are grouped into one single cluster. That is mainly

because most accounts do not have very close follow relationships with malicious

accounts. With this observation, we choose the highest score of the account in that

cluster as the threshold. Then, we output 5,924 malicious supporters, whose MR

scores are higher than the threshold.

4.3.2 Characterizing Malicious Supporters

After extracting malicious supporters, according to our empirical studies, we

observe three representative categories of supporters (social butterflies, social pro-

moters, and dummies) according to our defined thresholds. (Since we aim at showing

preliminary and basic insights of malicious supporters’ characteristics, the thresholds

that are used to characterize them can be tunable according to how strictly to reflect

their behavioral characteristics.)

Social Butterflies are those accounts that have extraordinarily large numbers

of followers and followings. Like social butterflies in our real life, these accounts

build a lot of social relationships with other accounts without discriminating those

accounts’ qualities. To qualitatively define social butterflies, we use 2,000 following

as a threshold in terms of Twitter’s Following Limit Policy [113], which can be an

e�cient number to distinguish whether the account is socialized. In this way, we can

42

find 3,818 social butterflies.

We present our hypothesis that the reason why social butterflies intend to have

close friendships with maliciouss is mainly because most of them usually follow back

the users who follow them without careful examinations. Especially, some public

software and services[115] can help users automatically follow back other users who

have followed them. In this way, these social butterflies would unintentionally follow

back malicious accounts upon requests.

To validate this hypothesis, we first sign up 30 accounts without any tweets and

any personal information. Then we use 10 accounts to follow 500 accounts (each

account follows 50 accounts) that are randomly selected from those 3,818 butter-

flies. Meanwhile, we use another 10 accounts to follow another randomly selected

500 normal accounts without any tweets, and the other 10 accounts to follow another

randomly selected 500 identified malicious accounts. To minimize the influence gen-

erated by our experiment, we close our signed-up accounts after 48 hours. During this

timespan, we find 47.8% of those butterflies follow back to our signed-up accounts,

while only 1.8% of those normal accounts and 0.6% of those malicious accounts follow

back. The fast speed in which these social butterfly accounts followed our accounts

back validates our hypothesis that these accounts may automatically follow back any

accounts that follow them. Such a low value for those malicious accounts validates

that our identified malicious accounts are not social butterflies. And they usually

will not follow back other accounts, since this behavior will not increase their follower

numbers and influence. This experiment also shows that even though those Twitter

accounts with many followers are usually popular and trustable, we cannot totally

trust their friends’ quality.

Social Promoters are those Twitter accounts that have large following-follower

ratios (the ratio of an account’s following number to its follower number), larger

43

following numbers and relatively high URL ratios. The owners of these accounts

usually use Twitter to promote themselves or their business. We extract those social

promoters whose URL ratios (the ratio of the number of URLs to the number of

tweets) are higher than 0.1, and following numbers and following-follower ratios are

both at the top 10-percentile of all accounts in our dataset. In this way, we obtain

508 social promoters.

We make our hypothesis that the reason why social promoters intend to have

close friendships with malicious accounts is probably because most of them usually

promote themselves or their business by actively following other accounts without

considerations of those accounts’ quality. Thus, promoters may become malicious

supporters by unintentionally following malicious accounts.

For this type of supporters, we use a heuristic method to validate our hypothesis.

Since the goals of these promoters are promoting themselves or their business, they

usually repeat posting URLs with the same domain names, which link to the web-

pages containing their promotion information. Thus, the purity of domain names

in promoters’ posted URLs are higher, leading a lower domain name entropy. With

this intuition, to calculate domain name entropy for each social promoter, we ex-

tract each promoter’s posted domain names in the final URLs, which are obtained

through following URL redirection chains, since many URLs on Twitter are short-

ening URLs. Then, we can compute its domain name entropy by using �
NP
i=1

pi ln pi,

where N denotes the number of distinct domain names and pi denotes the ratio of

the occurrences of the i-th distinct domain name to the total number of domain

names.

From Figure 4.6, we can find around 40% social promoters’ domain name en-

tropy are zero, which implies that all their URLs have the same domain names.

Also, social promoters’ domain name entropy are lower than that of other accounts.

44

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Domain Name Entropy

E
m

p
ir

ic
a

l
C

D
F

Social Promoters
All Accounts

Figure 4.6: The entropy of the domain names.

Specifically, around 80% social promoters’ domain name entropy are lower than 1.0,

whereas around 45% of all accounts in our dataset have such values. The observation

heuristically validates our hypothesis that supporters tend to use Twitter to promote

themselves by actively following other accounts, leading to close relationships with

malicious accounts. One case study for a social promoter can be seen in Figure

4.7(a). The owner of this promoter mainly utilizes Twitter to promote an online

book selling website.

(a) Social Promoter (b) Dummy

Figure 4.7: Case studies for malicious supporters.

45

Dummies are those Twitter accounts who post few tweets but have many fol-

lowers. Since in Twitter, legitimate users intend to follow those accounts that share

more useful information, it is relatively weird that these dummies with close relation-

ships with malicious accounts also have high follower numbers while sharing little

information. In particular, we extract intriguing dummy accounts who post fewer

than 5 tweets3 and whose follower numbers are at the top 10-percentile4. In this way,

we obtain 81 dummies.

We make our hypothesis that the reason why dummies intend to have close friend-

ship with malicious accounts is mainly because most of them are controlled or uti-

lized by cyber criminals. To validate this, we analyze these dummy accounts several

months after the data collection. Then, we find that one account has been suspended

by Twitter, and 6 accounts do not exist any more (closed), and 36 accounts begin

posting malware URLs labeled by Google Safe Browsing, and 8 accounts begin post-

ing (verified) phishing URLs. A case study of one dummy account, who posted no

tweets at the time when we crawled its profile, starts to post malicious tweets later

(see Figure 4.7(b)). The owner of this dummy account steals victims’ email addresses

by claiming to help people make money.

From the above experiment, we can find that unlike social butterflies and pro-

moters, “dummy” accounts are a special type of supporters. Since they initially do

not post any malicious URLs, they are not considered as malicious. However, those

dummy accounts extracted by Mr. SPA could evolve to malicious accounts. The

generation of this discrepancy is mainly because our work provides a static view of

the ecosystem. Thus, we do not argue whether dummies are supporters or malicious

accounts. This observation also implies that Mr.SPA could be applied as an early

3None of these tweets contain URLs that are labeled as malicious by GSB or honey client.
4According to [8], less than 10% of the Twitter accounts’ follower numbers are higher than 100.

46

monitoring algorithm to catch those highly suspicious accounts, which may evolve

to be malicious.

Through analyzing outer social relationships between malicious accounts and

their supporters, we can understand more on how malicious accounts can mix into the

whole Twitter space by achieving malicious supporters. Also, once we extract these

supporters, we can warn legitimate users not to make friends with these supporters

so as to avoid exposure to malicious accounts.

4.4 Inferring Malicious Accounts

Considering the huge number of Twitter accounts, it is impractical to make in-

depth checks on every account whether it is a malicious account at the same time.

A lightweight sampling or inference algorithm, to guide to more suspicious accounts

instead of scanning or analyzing all accounts given limited resources or time, is

indeed needed. As malicious accounts tend to be socially connected, a spontaneous

and practical strategy is to first check those accounts that are connected with known

malicious accounts by using Breadth First Search (BFS) algorithm. In this section,

we propose a maliCious account Inference Algorithm (CIA) to selectively sample and

infer more malicious accounts by exploiting malicious accounts’ social relationships

and semantic coordination.

4.4.1 Design of CIA

In brief, our malicious account inference algorithm (CIA) propagates malicious

scores from a seed set of known malicious accounts to their followers according to

the closeness of social relationships and the strength of semantic coordinations. If

an account accumulates su�cient malicious score, it is more likely to be a malicious

account.

The intuition of CIA is based on the following two observations: (1) malicious

47

accounts tend to be socially connected; (2) malicious accounts usually share similar

topic/keywords/URLs to attract victims, thus having strong semantic coordinations

among them. The first observation has been shown and discussed in Section 4.2.

The second observation has also been analyzed in existing work such as [51, 43],

which validates the existence of shared semantic topics among di↵erent malicious

campaigns.

In general, our CIA integrates the first observation by referring to Mr.SPA de-

signed in Section 4.3 to quantify the closeness of social relationships. To integrate

the second observation, we use semantic similarity (SS) score to measure the seman-

tic coordination for each pair of accounts. A higher SS score between two accounts

implies that they have stronger semantic coordinations.

With the above intuitions and notions, we then describe the design of CIA in

details. To infer malicious accounts in a set of U Twitter accounts, we first start

from a known seed set of M malicious accounts. Then, similar to Mr.SPA, we build a

malicious relevance graph by using these (M+U) accounts, denoted asG = (V,E). In

this graph, each account denotes a vertex in V and each follow relationship denotes a

directed edge in E. Then, unlike Mr.SPA, we assign a weight for each edge eij 2 E,

by using a semantic weight assignment function WS(i, j), to reflect the semantic

coordination between each pair of accounts. The basic intuition of designing this

function is based on that if an account has higher SS scores (stronger semantic

coordination) with its followings, it should inherit more malicious score from its

followings. With this intuition, for each account j, we calculate SS score between

itself and each of its follower account i, denoted as SSij. Then, the weight WS(i, j)

of the edge eij can be calculated as: WS(i, j) = SSijP
ekj2E

SSkj
.

Then, similar to Mr.SPA, for each malicious account, we assign a non-zero mali-

cious score and propagate this score by using the semantic weight assignment function

48

WS(i, j). In this way, we can see that an account’s malicious score can be proportion-

ally distributed to its followers according to the closeness of social relationships and

strength of semantic coordinations. When the score vector converges after several

propagation steps, we infer those accounts with high malicious scores as malicious

accounts.

4.4.2 Evaluation of CIA

We evaluate our malicious account inference algorithm (CIA) based on two dif-

ferent datasets – Dataset I and Dataset II. Dataset I refers to the one we use for

the previous analyses. Dataset II contains another new crawled 30K accounts by

starting from 10 newly identified malicious accounts and using breath-first search

(BFS) strategy.

To evaluate the e↵ectiveness of our CIA, similar to [138] that uses the number

of hits in top list, we use the number of correctly inferred malicious accounts and

malicious a↵ected accounts, denoted as CA and MA, respectively. (Even though

these malicious a↵ected accounts may not be real malicious accounts, they still pol-

lute Twitter with malicious URLs and create a risk for innocent users.) Thus, a

higher number of CA and MA indicates that the algorithm is more e↵ective to infer

malicious accounts.

Note that as a lightweight inference and ranking algorithm aiming at magnifying

suspicious accounts from a small seed set, we do not position CIA as a full detection

algorithm. Thus, we adopt similar metrics to “Hit Count” used in [138] to measure

CIA’s e↵ectiveness rather than using false positive and false negative rate. However,

CIA could definitely be incorporated into an actual detection system by combining

with other detection features.

49

4.4.2.1 Evaluation on Dataset I

We first design six experiments to evaluate the e↵ectiveness of our CIA based on

Dataset I:

• Di↵erent Selection Strategies. In this experiment, we start from the same

seed set of N identified malicious accounts, which are randomly selected from

2,060 identified malicious accounts. Then, starting from this seed set, we use

the following five strategies to select five di↵erent account sets with the same

selection size of k from the dataset5: random search (RAND), breath-first

search (BFS), depth-first search (DFS), random combination of breadth-first

and depth-first search (RBDFS)6, and CIA. From Figure 4.8(a), we can see

that CIA can outperform all the other selection strategies. Specifically, CIA

can infer 20.42 times as many CA and 10.66 times as many MA as that of

using random selection strategy. Also, CIA can infer 2.58 times as many CA

and around 2.00 times as many MA as that of using BFS, which can infer the

second most CA. Also, CIA can perform much better than the naive algorithm

that considering all accounts are possible malicious accounts. Specifically, CIA

can correctly predict around 0.0625 malicious accounts and over 0.25 malicious

a↵ected accounts by selecting 1 account. However, the naive algorithm can only

correctly predict 0.004 malicious accounts and 0.02 malicious a↵ected accounts

by selecting 1 account.

• Di↵erent Selection Sizes. In this experiment, we start from 100 identified

malicious account seeds and use CIA to infer malicious accounts by choosing

di↵erent selection sizes of accounts, i.e., we evaluate our CIA by changing the

5In this experiment, we choose N = 100 and k = 4, 000.
6Specifically, when RBDFS traverses to an account, it will have a probability of 50% to make a
breath-first or a depth-first search in the next step.

50

values of k in the previous experiment. From Figure 4.8(b), we can see that

when we select more accounts, we can infer more CA and MA, and the increase

of CA and MA is sub-linear with the increase of the selection size.

RAND BFS DFS RBDFS CIA
0

200

400

600

800

1000

N
u

m
b

e
r

MA

CA

1000 3000 5000 7000 9000

500

1000

1500

2000

Selection Size

N
u

m
b

e
r

MA

CA

(a) Selection Strategies (b) Selection Sizes

Figure 4.8: Using di↵erent selection strategies and setting di↵erent selection sizes of
accounts.

• Di↵erent Sizes of Seed Sets. In this experiment, we evaluate CIA by

starting from di↵erent sizes of malicious seeds, i.e., we set di↵erent values of

N . In this experiment, we also set k = 4, 000. From Figure 4.9(a), we can

see that when we increase the number of seeds, we can infer more malicious

accounts while selecting the same size of accounts. This is because when we use

more malicious seeds, we have more knowledge about the relationships among

the malicious account community.

• Di↵erent Types of Seeds. In this experiment, we evaluate CIA by using

di↵erent types of accounts as the seeds. Specifically, we start from the same

number (100) of randomly selected normal accounts (NOR) (posting no mali-

cious tweets), malicious a↵ected accounts (MA), malicious accounts (CA), and

51

50 100 150
0

50

100

150

200

250

300

350

N
u

m
b

e
r

MA

CA

918 1002 1119

NOR MA CA CAHUB
0

200

400

600

800

1000

1200

N
u

m
b

e
r

MA

CA

(a) Seed Size (b) Seed Type

Figure 4.9: Striating from di↵erent sizes of seed sets and di↵erent types of seeds.

malicious hubs (CAHUB) and use CIA to select the same amount of 4,000

accounts. From Figure 4.9(b), we can find that starting from CAHUB and CA

can output much more CA and MA. Specifically, using CA we can infer 245

CA and 1,102 MA, while using MA we can infer 6 CA and 248 MA, and using

NOR we can infer 2 CA and 121 MA. This observation also validates that

malicious accounts have stronger social relationships and semantic coordina-

tions among themselves. Thus, it will be more e↵ective to use known malicious

accounts other than normal accounts as seeds to infer other malicious ones. We

can also find that using CAHUB can even infer more CA and MA than using

CA. That is also mainly because these malicious hubs have even more social

relationships with other malicious accounts than malicious leaves.

• Multiple Round Recursive Inference. In this experiment, we initially

start from a small set of randomly selected 50 identified malicious accounts

to recursively run CIA to infer malicious accounts. Specifically, during each

round, we will combine previous round’s seeds and identified malicious accounts

correctly inferred in the previous round as new seeds to run CIA again. From

52

Figure 4.10, we can find that even when we start from a small number of

malicious accounts (50, which is around 2.4% of all CA in the dataset) within

running 3 rounds of CIA, we can infer around 9 times more malicious accounts

(500, which is around 22.3% of all CA). This observation shows that we can

use CIA to recursively infer more malicious accounts by adding newly correctly

inferred malicious accounts into the existing seed set.

0 1 2 3
50

500

1,000

1,500

Round

N
u

m
b

e
r

MA

CA

Figure 4.10: Evaluation of multiple round recursive inference.

• Performance. In this experiment, we examine the time used by CIA to infer

malicious accounts. Our CIA mainly contains three steps: Generating Social

Graph (Step 1), Calculating Coordination Weight (Step 2), and Propagating

Malicious score (Step 3). SInce the propagation of malicious score essentially

require the computation of a sparse matrix, we implement our propagation

algorithm based on SparseLib++ [86], which is an open library for e�cient

sparse matrix computations. Specifically, we examine the time used for obtain-

ing malicious scores by starting from 100 randomly selected known malicious

53

accounts. Table 4.2 shows the time used for each step to output the final

malicious score.

Step Step 1 Step 2 Step 3 Total

Time 5.42 second 126.38 second 27.47 second 159.27 second

Table 4.2: The time (in second) used for each step in CIA to output malicious score.

From this table, we can see that the total time is less than 160 seconds, which

shows the e�ciency of our CIA algorithm. The most time consuming step is

calculating coordination weight, which needs to calculate the semantic similar-

ity.

4.4.2.2 Evaluation on Dataset II

To decrease the e↵ect of possible sampling bias in our analyzed dataset and to

show the fact that the performance of CIA are reproducible, we also test CIA on

another newly crawled dataset. Also, to guarantee the correctness of identifying ma-

licious accounts, we first use Google Safe Browsing, a trustable blacklist, to collect

malicious a↵ected accounts. Then, we manually identify malicious accounts from

those malicious a↵ected accounts7. Then, we examine the e↵ectiveness of CIA on

newly crawled dataset by comparing di↵erent account selection strategies. Specifi-

cally, we start from only 10 identified malicious accounts and select 4,000 accounts

by using each strategy. From Figure 4.11, we can also find that CIA can generate the

best results. CIA can infer 13 more malicious accounts than that of using RAND.

Through the above experiments, we can find that our malicious account inference

algorithm (CIA) can be used to e↵ectively infer unknown malicious accounts. Also,

7We acknowledge that the numbers of CA and MA are the low bound of real numbers in the
dataset, because we can not detect all CA and MA by simply using GSB itself.

54

RAND BFS BDS RBDFS CIA
0

5

10

15

20

25

30

35

N
u

m
b

e
r

MA

CA

Figure 4.11: Evaluation on Dataset II.

unlike most current work on detecting Twitter spammers based on machine learning

techniques, which require extracting many features from all the accounts in the

dataset, CIA mainly focuses on those accounts that have strong social relationships

with existing known malicious accounts. In addition, CIA can be utilized to work as

an early-stage monitoring and ranking algorithm to monitor those highly suspicious

accounts, which may evolve to be malicious accounts later.

4.5 Limitation

We acknowledge that our analyzed dataset may contain some bias. Also, the

number of our analyzed malicious accounts is a lower bound of the actual number in

the dataset, because we only target on one specific type of malicious accounts due

to their severity and prevalence on Twitter. However, it is extremely challenging to

obtain an ideal, unbiased dataset with perfect ground truth. Especially, to reduce

possible data sampling bias, we crawled two datasets at very di↵erent time to evaluate

the performance of our CIA. We also believe that even though the exact values of

some metrics used in our work may vary a little bit when using di↵erent sample

55

datasets, our major conclusions and insights will likely still hold. Also, our analysis

is mainly based on a snapshot of Twitter space, which only provides a static view.

We also acknowledge that our validations on some possible explanations proposed

in this work may be not absolutely rigorous, due to the di�culties in thoroughly

obtaining malicious ’ social actions or motivations. However, we believe that our

first-in-its-kind analysis of those phenomenon still provides great values and opens a

door to better understand the cyber criminal ecosystem on Twitter.

4.6 Summary

We have presented an empirical analysis of the cyber criminal ecosystem on Twit-

ter, including an in-depth analysis of the inner and outer social relationships among

malicious accounts. We observed that malicious accounts tend to be socially con-

nected, and malicious accounts in some particular malicious campaign tend to have

strong semantic and timing coordinations. We also observed three categories of ac-

counts that have closed social relationships with malicious accounts. Based on these

findings, we designed an inference algorithm to selectively sample more likely mali-

cious accounts based on a known seed set by analyzing their social relationships and

semantic coordinations with other accounts. We evaluated the algorithm’s inference

capabilities in a pre-crawled dataset by using di↵erent Selection Strategies, setting

di↵erent values of selection sizes and seed sizes, and using di↵erent types of seeds.

To prove that the performance of the inference algorithm is reproducible, we also

evaluated the algorithm by using a newly crawled dataset from a very small seed

of known malicious accounts by using di↵erent crawling strategies. Our experience

demonstrates that the algorithm can be e↵ectively used to sample more likely spam

accounts from a seed set of known malicious accounts. Our analysis of the cyber

criminal ecosystem on Twitter is also the first in-depth analysis of the social rela-

56

tionships among malicious OSN accounts. We hope that our analysis can inspire

more studies in this research direction.

57

5. REVERSE ENGINEERING TWITTER SPAMMERS

We have described our analysis of the social relationships among OSN spammers.

Through understanding the social relationships among OSN spammers, we find three

major categories of accounts that have close social relationships with spam accounts.

We also design two inference algorithms to infer unknown spam Twitter accounts

by starting from a seed set of known criminal ones and exploiting the properties of

their social relationships and semantic coordinations with other criminal accounts.

However, the spammers begin to evolve more evasive and to increase the success

chance of obtaining victims, by choosing specific accounts as spamming targets in-

stead of choosing random accounts. In this chapter, we present a novel defense

insights against those OSN spammers by reversing engineering the strategies used

by spammers to select their spam targets.

Restricted by OSNs’ anti-spam measures, many OSN spammers have evolved

to launch Targeted Social-Media Spamming (i.e., spammers selectively choose their

spamming targets by analyzing those targets’ behaviors [101]). Twitter users have

undergone the following experience: once they write some big brand names such

as “Ipad” or “Best Buy” in their tweets, they will receive a slew of tweets o↵ering

“free” products or gift cards related to the brands [69, 93]. Such observations indeed

imply an obvious interaction between users’ social behaviors and spammers’ actions

(as illustrated in Figure 5.1).

The benefit for spammers to use this strategy to find targets is straightforward.

Through selectively choosing targets to initialize unsolicited friend requests or send

unsolicited messages, spammers could significantly decrease the risks of being de-

tected under current OSNs’ policies. (According to our observation, a Twitter ac-

58

Figure 5.1: Illustration of interactions between users’ social behaviors and spammers’
actions.

count, who constantly follows more than 50 accounts per day, will highly possibly

be suspend by Twitter within a week.) Furthermore, after knowing targets’ tastes

or social friend-circles, spammers could significantly increase their chances of suc-

cessfully spamming, either by actively pushing spam messages related to targets’

tastes (e.g., on Twitter) or pretending to be in the same social friend-circle (e.g., on

Facebook). In this way, social spammers could garner victims more e↵ectively by

launching customized actions based on their targets’ social behavior characteristics.

Thus, this is di↵erent from the scenario for traditional email spam or web spam, in

which attackers usually know nothing about their targets and can merely blindly

send spam.

However, we still know little about basic insights of the interactions between users’

behaviors and spammers’ actions, which could be used to catch spam accounts. Also,

such insights may further facilitate us to understand common questions such as “Why

do I get spam friends? [89]”, “Why do I receive spam messages? [96]” and “How

do spammers find their targets?”. The desire of addressing such questions, and thus

obtaining insights for defending against social spammers, forms one motivation of

this work.

59

Furthermore, although many existing studies rely on social honeypots (or even

manual identification) to collect likely spam accounts (aiming at further analyzing

them to generate defense insights), such strategies are still not very e�cient in terms

of collecting a large-scale of spam accounts from the huge Twittersphere. In partic-

ular, the technique of social honeypots is relatively passive and typically requires a

long time to attract many spam accounts. The strategy of manually labeling spam

accounts is tedious, time-consuming, and very di�cult to scale. Thus, given lim-

ited resources/time, a light-weight strategy to selectively sample more likely spam

accounts from the huge Twittersphere is strongly desired.

Through reverse engineering spammers’ tastes (their preferred targets to spam),

this chapter provides guidelines for designing e↵ective social honeypots, and de-

signing lightweight and guided strategies to actively sample more likely social spam

accounts. To achieve this goal, we use Twitter as a case study due to its great popu-

larity and publicity. Specifically, to reveal which behaviors tend to incur spammers’

contact, we implement 96 “benchmark” Twitter social honeypots with 24 diverse

fine-grained social behavior patterns to trap spam accounts. After launching our

social honeypots for five months, we successfully garner around 600 spam accounts.

Using these data, we analyze spammers’ tastes (how spammers find their targets),

through comparing the e↵ectiveness of social honeypots with di↵erent behavior pat-

terns. Based on these analyses, we design and implement 10 more e↵ective (“ad-

vanced”) honeypots to trap Twitter spammers. Within the same time period, using

those advanced honeypots can trap spammers around 26 times faster than using

“traditional” honeypots. To further understand spammers’ tastes, we also design

an algorithm to extract semantic topic terms, which may highly attract spammers’

attentions.

We design two guided approaches to prioritize the active sampling of more likely

60

spam accounts from Twittersphere. These two approaches are designed by the anal-

ysis results obtained through reverse engineering spammers’ strategies of selecting

targets. They are an e↵ective complement to existing passive social honeypots.

We make the following major contributions:

• We present a deep analysis of spammers’ tastes: spammers tend to contact with

accounts that tweet messages and follow accounts related to specific topics.

• We deploy “advanced” (more e↵ective) honeypots based on our provided guide-

lines, which can trap spammers around 26 times faster than using “traditional”

honeypots.

• We design two lightweight, guided approaches to prioritize the sampling of

more likely Twitter spam accounts in the huge Twittersphere. According to

our evaluation, our samplers can e�ciently collect over 17,000 Twitter spam

accounts in a short time with a considerably high “Hit Rate” (correctly collect

0.6 spam account per sampled account).

In Section 5.1, we further clarify the problem that we are targeting. In Section

5.2, we detail the procedure of our collection and analysis of spammers’ interests. In

Section 5.3, we describe the motivation and algorithm design of our two lightweight

samplers to infer more likely Twitter spam accounts. In Section 5.4, we present our

evaluation results of those two samplers. We discuss our limitation in Section 5.5.

5.1 Problem Statement

We next introduce the research scope of this work. Our research goal is to un-

derstand the characteristics of one special type of Twitter spammers, who launch

targeted social-media spamming in Twitter, and further to gain new defense insights

against them by reverse engineering their spamming tastes. Particularly, we use a

61

relatively strict/conservative view (similar to existing work [27] and Twitter rules

[108]) to consider an account to be a spam account, if it meets one of the following

criteria: (1) tend to post spam or malicious URLs in the tweets; (2) tend to post

scam words in the tweets; (3) repeatedly post duplicate tweets; (4) repeatedly send

“@mention” messages to other accounts with few useful content.

Figure 5.2: Illustration of the analysis flow.

To achieve our research goal, we first design 96 social honeypots with diverse

social behavior patterns to garner spammers (see Figure 5.2). Based on the func-

tions provided by Twitter, these social behavior patterns mainly vary in terms of

tweeting behaviors, following behaviors, and application usage. Particularly, the

content posted by users, the famous accounts followed by users and the applications

used by users may display users’ tastes, incurring spammers’ contact. Then, these

social honeypots could trap spammers by receiving spammers’ unsolicited messages

and obtaining spam followers. All of social honeypots’ behavior and their trapped

spammers’ actions (sending unsolicited messages or building unsolicited friendships)

will be saved in a local database.Next, after deeply analyzing spammers’ tastes by

62

comparing the e↵ectiveness of honeypots with di↵erent social behavior patterns, we

can provide guidelines to build e↵ective honeypots. Finally, through reverse engi-

neering spammers’ strategies of selecting targets, we design two lightweight, guided

strategies (Hashtag Sampler and Friend Sampler) to prioritize the sampling of more

likely Twitter spam accounts from the huge Twittersphere. More specially, Hash-

tag Sampler is designed to catch spammers that target on specific accounts if they

tweet specific hashtags. Friend Sampler is designed to catch spammers that target

on specific famous accounts’ followers.

5.2 Reverse Engineering Spammers

In this section, we describe our methodologies of extracting and analyzing social

spammers’ tastes. Specifically, we design and launch multiple social honeypots with

diverse fine-grained behavior patterns to garner spammers. Next, through analyzing

intrinsic properties of the interactions between users’ social behaviors and spammers’

actions, we could better understand the following questions: Who do spammers

spam? How do spammers find their victims? Through these analyses, we further

provide guidelines of building more attractive social honeypots.

5.2.1 Collecting Spammers’ Tastes

To analyze the interactions between users’ behaviors and spammers’ actions, we

need to endow social honeypots with diverse fine-grained social behavior patterns to

show diverse users’ tastes. As a Twitter account mainly has three categories of social

behaviors (posting tweets, following accounts and installing applications), we design

social honeypots based on the variations of these three categories: Tweet Behavior

(Tweet), Follow Behavior (Follow) and Application Usage (App) (see Table 5.1).

63

Index Category Sub-Category Pattern

1-5 Tweet Frequency Once per day

6-10 Tweet Frequency Twice per day

11-15 Tweet Frequency Once per hour

16-20 Tweet Keywords Trending Topics

21-25 Tweet Keywords Arbitrary Hashtags

26-30 Tweet Keywords Current A↵airs

31-35 Tweet Keywords Bait Words

36-40 Tweet Keywords No Hashtags

41-45 Tweet Topic (Twice per day) Entertainment

46-50 Tweet Topic (Twice per day) Expertise

51-55 Tweet Topic (Twice per day) Sports

56-60 Tweet Topic (Twice per day) Economics

61-62 Tweet Topic (Once per hour) Entertainment

63-64 Tweet Topic (Once per hour) Expertise

65-66 Tweet Topic (Once per hour) Sports

67-68 Tweet Topic (Once per hour) Economics

69-70 Follow Two accounts per day Entertainment

71-72 Follow Two accounts per day Expertise

73-74 Follow Two accounts per day Sports

75-76 Follow Two accounts per day Economics

77-81 App NA Twitpic

82-86 App NA Instagr

87-91 App NA Twiends

92-96 Default NA NA

Table 5.1: Summary of 96 “benchmark” social honeypots with 24 fine-grained social
behavior patterns.

5.2.1.1 Tweet Behavior

The content tweeted by users (and tweet frequency) may directly expose users’

interests. Particularly, the keywords/topics posted by users may reveal their tastes,

which could be utilized by spammers to find targets. In fact, users’ real experience

has shown that di↵erent tweet keywords may behave very di↵erently in terms of in-

curring spammers [93]. Accordingly, we divide our social honeypots’ tweet behaviors

into three sub-categories: Tweet Frequency, Tweet Keywords and Tweet Topics.(To

64

reduce possible e↵ects to other users, our social honeypots will not post any links

and “@ mentions”.)

Tweet Frequency refers to how often post one tweet. We divide tweeting frequency

into the following three patterns: 1 tweet per hour, 2 tweets per day, and 1 tweet

per day. For each pattern, we use 5 honeypot accounts to send tweets according to

the specific tweet frequency. Those tweets are randomly selected from the dataset

containing around half million Twitter accounts and 14 million tweets, which was

collected from Apr. 2010 to Aug. 2010 by using Twitter Stream APIs.

Tweet Keywords refer to special words or terms in the tweets, which may repre-

sent specific semantic topics. We divide tweet keywords into four patterns: popu-

lar trending topics, arbitrary hashtags, current a↵airs, bait words, and no hashtag

tweets:

• “Popular trending topics” refer to those hot Twitter trending topics [109],

which are widely used by Twitter users to express their opinions or experience

on specific topics or events. For each day, we collect top (the most widely

used) 10 trending topics. Then, we use 5 honeypot accounts to post these 10

trending topics. Each of them will post 2 trending topics.

• “Arbitrary hashtags” refer to those tweet terms with the tag of “#”. The

tweets containing the same hashtag will be grouped together by Twitter and

searched out by users from Twitter Search [112]. These hashtags are also ran-

domly selected from the pre-collected dataset. For each day, we use 5 honeypot

accounts to send 10 tweets with hashtags. Each of them sends 2 tweets, which

are randomly selected from our collected dataset.

• “Current a↵airs” refer to important social events happened each day. To ex-

tract those events, we implement a web crawler to crawl the top 10 headlines

65

from CNN.com. Then, we use 5 honeypots to post those headlines (each posts

two headlines).

• “Bait words” refer to those keywords that are mainly used by spammers in

their scam webpages or messages to trap victims (e.g., “giftcard”). We use a

list of 200 bait words, mainly obtained through feeding queries such as “scam

word lists” to Google.com. Then, we also use 5 honeypots to send 2 messages

containing bait words per account per day.

• “No hashtags” refer to tweets without any hashtags. To make the comparison

with other social patterns, we also use 5 honeypots to post 10 tweets without

any hashtags on each day. Each of them will post 2 tweets, which are randomly

selected from the dataset.

Tweet Topics refer to specific semantic topics in the tweets. Since these tweets are

closely related with specific semantic topics, they will explicitly reveal users’ tastes.

Particularly, we focus on the following four topics: Entertainment, Expertise, Sports

and Economics. Entertainment contains those semantic topics related to TV media,

music, books and arts; Expertise contains topics related to IT technology, Science,

Fashion and Household; Sports contains topics related to golf, NBA, NCAA, NFL

and NHL; Economics contains topics related to business, finance and charity. To

use our honeypots to tweet those semantic topics, we first collect tweets related with

those topics by searching topic terms (e.g., “NBA”) on Twitter. Then, for each topic,

we use 5 honeypots to send one tweet per day. To compare, we also use 2 honeypots

to send 1 tweet per hour.

66

5.2.1.2 Follow Behavior

Besides the content posted by users, users’ followings (especially those famous

people or companies’ o�cial accounts) may also reveal their tastes. For example, if

an account follows “Lady Gaga”, the owner of the account may like music or live

concert. Thus, this kind of following tastes might be utilized by spammers.

To extract spammers’ such tastes, we use our honeypots to follow “verified ac-

counts”, whose tweets are related with four major topics mentioned above: Enter-

tainment, Expertise, Sports and Economics. Specifically, for each topic, we manu-

ally collect 400 verified accounts from Twitter. These verified accounts are typically

owned by famous people or organizations with high reputation, such as sports stars

and o�cial business accounts. Thus, through following those verified accounts, our

honeypots explicitly show their interests to those topics. Particularly, for each topic,

we use 2 social honeypots to follow 2 verified accounts per day. (To reduce possible

e↵ects, each account will follow 30 verified accounts at most.)

5.2.1.3 Application Usage and Default

Users who install specific Twitter applications (e.g., multimedia sharing tools and

online games) may also reveal their specific tastes and thus become spammers’ tar-

gets. In our test, we choose three very popular Twitter social applications: Twitpic

[106], Instagr [54] and Twiends [110]. (Twitpic and Instagr are popular photo and

video sharing tools, and Twiends is an online Twitter friend-making tool.) For each

application, we use five honeypots to install and use it.

As a comparison, we also use five honeypots with default account registration

configuration, which neither post any tweets nor follow any accounts.

67

5.2.1.4 Deployment of Honeypot

In summary, as seen in Table 5.1, we design 96 honeypots with 24 diverse fine-

grained behavior patterns to garner spammers. Since the aim of designing these social

honeypots is to understand which specific social behaviors tend to incur spammers

rather than to trap more spammers, we refer these 96 honeypots as “benchmark”

honeypots.

To implement those “benchmark” honeypots, we develop a realtime Twitter ap-

plication, named social honeypot app (SHP), which has three major operations:

write, follow, and read. As illustrated in Figure 5.3, write operation is utilized to

implement diverse tweet-behaviors by posting tweets on honeypots’ timelines; follow

operation is utilized to implement diverse follow-behaviors by following other ac-

counts; read operation is utilized to collect spam accounts and spam tweets trapped

by our social honeypots, through reading honeypots’ followers and “@mentions”.

Figure 5.3: The implementation of social honeypots.

More specifically, the application obtains each honeypot’s access token to auto-

68

matically make the corresponding operations (write, follow and read) on the account

to perform its designed social behaviors according to the protocol of OAuth 2.0. All

the auxiliary data such as our collected tweet dataset, popular trending topics and

bait words are loaded into the app to implement corresponding operations. Finally,

the app will record each honeypot’s social behaviors, and its received “@mentions”

and followers into a local database everyday. In this way, we can collect the interac-

tions between honeypots’ behavior patterns and their trapped spammers’ actions.

Particularly, to make our honeypots to be more likely to be real accounts (i.e.,

to decrease the chance of being identified as honeypots by spammers), we register

our honeypot accounts by using real human names (e.g., Tracy Thompson) and valid

email addresses. Also, we will initialize the friendships among those honeypots. We

admit that smart shammers might still recognize our social honeypots by deeply

analyzing those honeypots’ behaviors, because these honeypots are designed with a

set of scheduled tasks. However, many normal accounts (e.g., some o�cial company

accounts) are also customized to post particular messages/notifications in a scheduled

way. Thus, it is not that trivial for spammers to distinguish honeypots from normal

accounts. Also, this limitation is common for all this line of studies, which rely on

deploying automated honeypot accounts.

5.2.2 Analyzing Spammers’ Tastes

We next show the results of spammers collected by “benchmark” honeypots, and

analyze those spammers’ tastes.

5.2.2.1 Data Collection Result

We implemented those 96 “benchmark” honeypots and run them for five months.

We collected 1, 077 unique accounts that at least follow one of our social honeypots,

and 440 unique accounts that at least send one “@mention” to one honeypot. In

69

total, there are 1, 512 unique accounts.

To extract spammers’ tastes, we need to identify spam accounts from those 1, 512

accounts. We first found out 303 accounts that have been suspended by Twitter due

to their violations to the Twitter Rule. Furthermore, following the definition of our

target spam accounts’ described in Section 5.1., we identified additional 278 spam

accounts by manually examining accounts timeline and checking those accounts’

posted URLs. In total, we obtain 578 spam accounts.

Note that the number of spam accounts trapped by our “benchmark” honeypots

seems a little smaller than other earlier social honeypot studies (e.g., [65]). We believe

this is due to the following reasons. First, those studies were conducted in early days

when Twitter has relatively loose policies to identify/mitigate spammers. However,

since 2009, Twitter has taken significant anti-spam e↵orts to actively filter/mitigate

a lot of spam accounts [23]. In addition, in this work, to guarantee the correctness

to analyze spammers’ interests, we use a relatively strict way to consider an account

to be spam. While there could be a few spam accounts missed in our data collection

with this relatively strict spammer identification strategy, we believe that our major

findings/conclusion in this research will still hold.

5.2.2.2 Analysis of Spammers’ Tastes

In this section, we provide our analyses of spammers’ tastes based on 578 trapped

spam accounts. To better measure the e↵ectiveness of social honeypots with di↵erent

behavior patterns, we define a metric named Capture Rate (CR), which is the average

number of spam accounts trapped by a honeypot per day. Thus, a higher value of

CR of honeypots with a specific pattern implies this pattern is more e↵ective to

trap spammers. As mentioned before, we try to answer several questions about the

social behavior interactions between users and spammers (e.g., “Who do spammers

70

spam?”). Then, our analysis and measurement results are presented in the question-

answer format.

Q1: Do spammers tend to find targets by randomly selecting accounts from Twit-

ter public timeline? Empirical Answer: No. One possible way for spammers to find

targets is to send requests to the public timeline, which will return the 20 most recent

tweets per request. However, according to our observation, it is not the case now. As

seen in Figure 5.4(a), we can find that even though we diversify tweeting frequencies

(once per hour – T1h, twice per day – T2d, and once per day – T1d), the performances

of these three patterns are similar (garnering similar numbers of spammers). Partic-

ularly, although T1h honeypots post more tweets than T2d and T1d, T1h’s CR, which

is 0.011, is even slightly smaller than that of T2d, which is 0.012 (see Figure 5.4(b)).

Thus, this observation shows that if an account posts more arbitrary tweets, it does

not necessarily increase the chance of attracting spammers’ more attentions, even

though this behavior will bring in a better chance for the account to be shown on

the Twitter public timeline.1 Nevertheless, we can see that these three types of hon-

eypots can trap more spammers than Default, because tweeting content essentially

may reveal honeypots’ tastes.

Q2: If an account posts more tweets related with specific semantic topics, does it

tend to attract more spammers’ attention? Empirical Answer: Yes. Another pos-

sible way to find targets for spammers is to analyze targets’ tweet content, which

may show targets’ interests on specific topics. Then, through actively pushing spam

related to those topics to those targets, attackers may achieve a higher chance of

success. As seen in Figure 5.5(a), posting messages related with specific topics (En-

tertainment – TEn, Sports – TSp, Economics – TEc, Expertise – TEx), will incur more

1To reduce the possible interference to Twittersphere, we did not test with extremely high tweeting
frequencies. Thus, we do not deny the possibility that our conclusion might be somehow di↵erent
if some accounts post tweets with an extremely high frequency.

71

(a) # of Trapped Spammers (b) Capture Rate

Figure 5.4: Comparison of di↵erent tweet frequencies.

spammers’ contact than posting arbitrary messages even with the same tweeting

frequency (twice per day). More specifically, TEx2d’s CR (the highest for tweeting

topic twice per day) is around 3 times as that of T2d, and TEc2d’s CR (the lowest)

is around 1.5 times as that of T2d. In addition, when we increase the frequency

from twice per day to once per hour (e.g., from TEn2d to TEn1h), honeypots can trap

more spammers (See Figure 5.5(b)). And the average values of CR for these four

topics can be increased around 22.35 times (from 0.021 to 0.494). Thus, unlike the

observation under the pattern of tweet frequency, we can find that honeypots can

trap more spammers through tweeting more messages related with certain semantic

topics.

Q3: Do accounts that tweet more special terms (e.g., “Trending topics”) tend to

attract more spammers’ contact? Empirical Answer: Yes. As seen in Figure 5.6(a),

the values of CR for tweeting trending topics (Trend), arbitrary hashtags (Hashtag),

and bait words (Bait), are all higher than that of Nohash (arbitrary tweets without

hashtags) and Default. This observation indicates that posting special key terms

may also incur spammers’ contact. This because these key terms usually represent

semantic topic meanings, which could be utilized by spammers to find targets (similar

72

(a) Tweet Topics (b) # of Trapped Spammers

Figure 5.5: The e↵ectiveness of tweet topics.

to tweeting topics). In addition, we can find that Trend is more e↵ective than

Hashtag. This might because trending topics are more timely and popular than

arbitrary hashtags.

(a) Tweet Keywords (b) Follow Behavior

Figure 5.6: The e↵ectiveness of tweet keywords and follow behavior.

Q4: Do users’ following behaviors tend to expose them to spammers? Empirical

Answer: Yes. As seen in Figure 5.6(b), similar to tweet topics, the values of CR

for following verified accounts related with the topics of Entertainment (FEn), Sports

73

(FSp), Economics (FEc), Expertise (FEx), are all higher than that of T1d and Default.

This observation implies that the behavior of following those famous (“verified”)

accounts could be utilized by spammers to find their targets. As a case study, we

find one spam account, which mainly posts spam about TV media (the URLs in the

tweets have been identified as suspicious by the URL shortening service), shares 19

followings (most of them are related the topic of art or TV media) with one honeypot.

Q5: Do accounts with the usage of social apps tend to be contacted by more

spammers? Empirical Answer: No. According to our data, the capture rates of

honeypots with the usage of Instagram, Twitpic and Twiends, are 0.008, 0.008,

and 0.009, respectively. These values are lower than that of most of other social

patterns and similar to Default. Thus, using social apps do not help much in terms

of attracting spammers. This might either because spammers have not use this

strategy to find targets or the selections of applications used by our honeypots are

not representative.

According to the above analyses, we can find that many spammers indeed se-

lectively choose spamming targets, rather than random selections. By doing this,

spammers can increase the chance of success, while avoiding being suspended due to

excessive contacts with others.

5.2.2.3 Guidelines for Designing E↵ective Honeypots

According to the above analyses, we could summarize the following guidelines

for designing more e↵ective social honeypots to trap Twitter spammers: (1) post

tweets related with specific topics; (2) post tweets containing special key-

words such as Trending topics; (3) follow famous accounts related with

specific areas.

To evaluate the e↵ectiveness of those guidelines, we denote 96 “benchmark” hon-

74

eypots as GE, and 51 honeypots of them2 that meet at least one guideline as GU. We

find that GU’s capture rate (0.083) is over two times as that of GE (0.040). This obser-

vation indicates that GU (that meet guidelines) is more e↵ective to attract spammers

than GE.

To further evaluate the e↵ectiveness of our guidelines, we deploy another 10

“advanced” honeypots (AD) with more guided social behaviors for a week right after

finishing the 5-month running of “benchmark” honeypots. Specifically, in each day,

each of them will behave the following social patterns3: (1) post one topic tweet

per hour related with each of those four topics; (2) post one tweet containing one

trending topic per hour; (3) post one tweet containing one arbitrary hashtag per

hour; (4) post one tweet containing one bait word per hour; (5) Follow 5 experts

related with each of four topics per day. Then, as seen in Figure 5.7, we compare

the performance of AD with GE and GU by collecting data in the same week. We

can find that AD is much more e↵ective than GE and GU in trapping more spammers.

Particularly, AD’s capture rate (2.17) is 25.5 times as that of GU (0.085), and 45.2

times as that of GE (0.048). Although this comparison result may contain some bias

due to a relatively short period time of data collection, such a huge di↵erence could

still validate the e↵ectiveness of our guidelines for designing better social honeypots.

5.2.2.4 Extracting Spammers’ Interested Topic Terms

To better understand spammers’ tastes, it is meaningful to extract those specific

key terms, which usually contain semantic meanings and tend to be used by spam-

mers to find targets. Even though this could be achieved by manually analyzing

those hashtags in the tweets, a more generic and automated approach to extract key

251 accounts are 16-25, 31-35, 41-76 as labeled in Table 5.1.
3To prevent spammers identifying our accounts as honeypots based on the temporal patterns, some
random delays are inserted before posting each tweet.

75

(a) # of Spammers (b) per Honeypot

Figure 5.7: The e↵ectiveness of advanced honeypots.

terms (not limited to hashtags only) is still needed, because a large amount of tweets

do not contain hashtags. Thus, in this section, we design an approach to extract

those topic terms through analyzing the data collected by our honeypots.

Figure 5.8: One real case study of potential victims.

We first introduce the intuition of our algorithm. As shown in Figure 5.8, we find

that many spammers send illicit “@mentions” not only to our honeypots but also to

other accounts (e.g., “gladynotglady” in this example), which denoted as “potential

victims” in this work. We denote each pair of potential victims and honeypots in one

illicit “@mention” as a “victim relationship”. Thus, we believe that there should be

76

some common social behavior patterns between our honeypots and those potential

victims in each victim relationship, which essentially incur spammers’ contacts. An

intuitive method is to extract the common terms used by both our honeypots and

those victims, which may represent spammers’ tastes. However, this approach will

extract many widely-used common words, which are not representative for spammers’

tastes. Even though we could use a big stop-word list to filter some common words,

it could not help much to achieve this goal, because many words tweeted by users

are not even spelled completely or in a standard form.

Thus, we first use the Latent Dirichlet Allocation (LDA)4 [127] algorithm to

extract topic terms, which are better to represent semantic topics, from the tweets

posted by our honeypots and potential victims. Then, we output those topic terms

that are highly/frequently shared by the pairs of victims and honeypots. In this way,

these topic terms may highly attract spammers’ contact.

Due to the page limitation, we next briefly introduce our algorithm to extract

topic terms based on LDA instead of presenting its details. For each honeypot

{SHPi|i = 1, 2, ..., I}, we extract its received “@mention” messages {Mim|m =

1, 2, ...,M} sent from spam accounts. If the message contains other potential victims

{PVj|j = 1, 2, ..., J}, we put {SHPi and {PVj|j = 1, 2, ..., J} into an account set

SMA, and record each victim relationship vr = (SHPi, PVj) into a victim relation-

ship set V R. Then, for each unique account SMAk 2 SMA, we extract its NTk top

ranked topic terms by using LDA. Next, for each relationship vr 2 V R, we extract

the shared topic terms among the honeypot and the potential victim, and save them

into a semantic topic term set ST . Then, we output the most frequent FT topic

terms shown in all victim relationships as spammers’ interesting topic terms, because

4LDA is a generative probabilistic topic modeling (clustering) algorithm, which could cluster terms
in the large volumes of unlabeled text into several semantic topics by identifying the latent topics
words in the text.

77

these terms with strong semantic topic meanings are highly shared among our social

honeypots and their corresponding potential victims.

Specifically, our honeypots receive 449 “@mention” messages from spammers and

form 5,716 victim relationships with 275 unique potential victims. Then, we extract

1, 500 and 600 topic terms for each honeypot and potential victim, respectively. We

finally output the top 500 as semantic topic terms. (Due to the page limitation, we

skip to show those topic terms.) Furthermore, through extracting semantic topic

terms, we could examine whether there is tweet similarity between spammers and

their targets. Particularly, we extract semantic topic terms for 278 (manually) identi-

fied spam accounts by using LDA. Then, we extract all pairs of honeypots and spam

accounts, if the spam accounts either follow or “@mention” the honeypot. Then,

we find 81.69% of 360 pairs of two accounts share at least one semantic term. This

observation indicates a relatively strong semantic similarity between spammers and

their targets.

5.2.2.5 Ethical Considerations

The technology of deploying social honeypots on real OSNs may raise ethical

considerations: whether such social honeypots will generate big e↵ects to OSNs. In

terms of our work, both “benchmark” and “advanced” honeypots are designed to

neither send any messages to other users nor post any URLs/spam in the tweets.

Also, those accounts only follow a relatively small number (several hundreds) of

“verified” accounts. Thus, we believe our designed honeypots will generate very

limited e↵ects to other normal users. In addition, the technique of social honeypots

has been commonly used to capture spammers [102, 65] or to understand the security

vulnerability [14] on OSNs. Furthermore, as advocated in a recent study on the

ethics of security vulnerability [74], such studies served as social functions are neither

78

unethical nor illegal.

5.3 Prioritizing the Sampling of Likely Spammers

In this section, we design two guided approaches to actively sample more likely

Twitter spam accounts from Twittersphere, based on the observation that many

spammers find their targets based on targets’ social behaviors.

5.3.1 Motivation

The collection of spam accounts is usually the first step to analyze spammers’ be-

haviors and to further generate defense insights. However, given the limited time/re-

source (especially for academic researchers), it is not trivial to collect a large-scale

of spam accounts in the huge Twittersphere. Existing studies mainly rely on the

following three strategies to collect (likely) spam accounts: implementing social

honeypots[65, 66, 102], collecting suspended accounts [105, 57], and manual iden-

tification [65, 116]. However, all these three strategies have certain limitations. The

honeypot approach is a passive one, requiring time (and luck) to wait for spammers’

contacts. Collecting suspended accounts requires to develop a robust crawler and

takes a considerable long time (typically several months) to crawl Twitter and to

wait for collected accounts to be suspended by Twitter. Manual identification could

achieves a high accuracy, which requires tedious human work and is not scalable.

Motivated by the limitations of existing strategies to collect (likely) spam ac-

counts, we design two lightweight, guided strategies (called samplers in this disserta-

tion) to prioritize the active sampling of more likely spam accounts in Twittersphere:

Hashtag Sampler and Friend Sampler. These two samplers are designed to be able to

e�ciently collect/sample a considerable number of targeted social-media spammers

(spam accounts) in a short time period with a relatively high hit rate.

79

5.3.2 Hashtag Sampler

5.3.2.1 Basic Intuition

Spammers tend to follow those accounts that post spammers’ interested keywords

(hashtags). According to this intuition, an account might be suspicious if it follows

many accounts that share some spammers’ interested hashtags in their tweets. At the

high level, Hashtag sampler is designed to preferentially sample likely spam accounts

through checking common followers of multiple accounts that share/post similar,

multiple hashtags as spammers do.

5.3.2.2 Detailed Strategy

As illustrated in Figure 5.9, Hashtag Sampler has three steps to sample likely

spam accounts from Twitter: (1) collecting spammers’ hashtags; (2) searching po-

tential spammers’ targets; (3) sampling suspicious hashtag followers.

Particularly, in Step 1, Hashtag Sampler collects keywords/hashtages that spam-

mers are potentially interested in (i.e., hashtags in spam accounts’ tweets) through

identifying hashtags (“#”) from tweets posted by our trapped spam accounts; in

Step 2, for each hashtag, Hashtag Sampler searches the recent M tweets5 that con-

tain hashtags, through exactly querying the hashtag from Twitter Search. Then, we

consider an account to be a potential spammers’ target, if they send tweets containing

that particular hashtag. Accordingly, through extracting the senders of those tweets,

Hashtag Sampler searches out all the potential targets; in Step 3, for each potential

spammers’ target, we could obtain its followers through using Twitter API. After

extracting all targets’ followers, we denote those followers with high occurrences as

suspicious hashtag followers. These hashtag followers essentially follow many other

5For each query term, Twitter limits to return 1,500 tweets as a maximal. Thus, in our experiment,
we set M = 1, 500

80

accounts, who post that spammers’ hashtag. Finally, Hashtag Sampler outputs those

accounts as spam accounts, if they are sampled as suspicious hashtag followers with

the usage of multiple di↵erent hashtags, i.e., they are considered as suspicious hash-

tag followers with a high occurrence by using di↵erent hashtags.

Figure 5.9: Illustration of Hashtag Sampler.

5.3.3 Friend Sampler

5.3.3.1 Basic Intuition

Spammers tend to select famous accounts’ followers as their targets. In fact, those

Twitter accounts (especially famous accounts) followed by a user could also reveal this

user’s taste, which could be utilized by spammers to find their potential spamming

targets. According to this intuition, Friend Sampler is designed to preferentially

sample likely spam accounts through checking those accounts that excessively follow

multiple famous accounts’ followers, i.e., examining common followers of the followers

of some famous accounts.

5.3.3.2 Detailed Strategy

As illustrated in Figure 5.10, Friend Sampler first randomly selects M verified

(famous) accounts from those 400 verified accounts used in Section 5.2. Then, for

81

each account, Friend Sampler collects its N followers (if available), which could

be considered as spammers’ potential targets. Then, we further examine extracted

followers of those potential targets, and save them in a dataset with their numbers of

occurrences, denoted as suspicious account set.(For example, if an account follows two

potential targets, its number of occurrences is 2.) Finally, Friend Sampler outputs

Nfd accounts in the suspicious account set as spammers with the top numbers of

occurrences.

Figure 5.10: Illustration of Friends Sampler.

5.4 Evaluation of Samplers

In this section, we mainly describe our evaluation methodologies and evaluation

results for two samplers in selectively sampling likely spam accounts.

5.4.1 Ground Truth and Evaluation Metrics

5.4.1.1 Ground Truth

To evaluate the e↵ectiveness of two samplers, we require a ground truth for those

accounts collected by our samplers. However, as a common challenge for all OSN

data analysis work, it is di�cult to obtain perfect ground truth for a large-scale

dataset.

It is straightforward that an account can be considered as spam if it is sus-

82

pended by Twitter. However, only considering suspend accounts as spam accounts

will miss many other spam accounts, which have not been identified/suspended by

Twitter. Thus, for the rest unsuspended accounts output by our samplers, we rely

on a state-of-the-art machine-learning classifier to further examine whether they are

spam accounts. This classifier is implemented based on Random Forest and uses the

same feature set designed in [65]. Then, the classifier is trained by using 2,000 sus-

pended accounts and 20,000 normal accounts (none of them post malicious URLs).

The accuracy and false positive rate of this classifier is 99.2% and 0.97% respectively

based on the training datasets through 10-fold cross validation tests. Note that we

use the machine-learning technique to help to estimate the ground truth rather than

to detect spam accounts. Also, we acknowledge that any machine learning classi-

fier may not be absolutely accurate (especially it may induce some false positives).

However in our evaluation, we are mainly interested in getting the estimation of

the accuracy, instead of absolute values. Furthermore, such a strategy is a common

practice for similar studies on accuracy estimation of large scale unlabeled datasets

[124].

5.4.1.2 Evaluation Metrics

To measure the e↵ectiveness of sampling strategies with the goal of collecting

more likely spam accounts, two metrics are typically considered. The number of

collected spam accounts, denoted in our work as “Hit Count (Nhit)”; and the ratio of

Hit Count to the total number of sampled accounts (Nsample), denoted as “Hit Ratio

(Hr)”. Thus, a higher value of Hit Count and Hit Ratio indicates that we can catch

more spam accounts and more accurately, respectively. Motivated by the limitations

of traditional ways of collecting spam accounts as described in Section 5.3, our two

samplers are designed as lightweight, guided strategies to e�ciently and e↵ectively

83

prioritize the sampling of more likely spam accounts instead of(otherwise) analyzing

all accounts in the huge Twittersphere. Thus, our two samplers are not designed

to find/uncover all types of spam accounts, and thus should not be considered as

spammer detectors. Accordingly, we use those two evaluation metrics (Nhit, Hr)

instead of false positives/negatives in our evaluation. Particularly, many existing

studies [138, 55] similarly use these two metrics to measure the e↵ectiveness by

outputting the number of hits in a top list.

With such notions, if we denote the number of suspended accounts asNsus and the

number of spam accounts output by the machine-learning classifier as Nmal, we could

calculate Hit Count and Hit Ratio as follows6: Nhit = Nsus+Nmal; Hr = Nhit/Nsample.

5.4.2 Implementation

To implement Hashtag Sampler, we use 3,246 unique hashtags/keywords posted

by 278 identified spammers. For each hashtag, Hashtag Sampler outputs SF = 500

(if available) suspicious hashtag followers. By using each spam account’s hashtags,

Hashtag Sampler samples M = 500 suspicious hashtag followers (if available) with

the top occurrences as spammers. To implement Hashtag Sampler, we randomly

select M = 40 verified (famous) accounts (10 accounts for each of four topics).

For each verified account, we examine its N = 5, 000 followers, which are retrieved

by sending one “get-follower” request to Twitter. Then, for each follower, Friend

Sampler continues to examine its followers, and samples Nfd = 1, 000 top ranked

accounts as spam accounts. Using these implementation parameters, we run our two

samplers for four days to sample more likely spam accounts. After one month, we

further examine whether those sampled accounts are suspended by Twitter.

6Since we could not obtain ground truth for those protected and nonexistent accounts output by
our samplers, we do not count such accounts in Nsample.

84

5.4.3 E↵ectiveness of Hashtag Sampler

As seen in Table 5.2, Hashtag Sampler outputs 8,983 unique accounts to be likely

spam accounts. Among them, 262 accounts have been suspended, and 4,665 others

are output as spam accounts by the classifier. Thus, the hit count is 4,927 and the

hit ratio is 0.5489, which implies that Hashtag Sampler could correctly collect one

spam account by sampling less than two accounts.

Item Nsus Nmal Nhit Nsample Hr

Value 262 4,665 4,927 8,983 0.5489

Table 5.2: The e↵ectiveness of Hashtag Sampler.

Also, we further examine hit count and hit ratio by using each spammer’s hash-

tags. As seen in Figure 5.11(a), over 40% spam accounts’ hashtags can be used to

collect over 100 spam accounts by sampling 500 accounts. This observation shows

that Hashtag Sampler can e↵ectively collect spam accounts by focusing on spam-

mers’ tastes. Also, we find that around 30% spammers’ hashtags can not be used to

correctly collect spam accounts. The reason is mainly because Twitter Search does

not index every tweet, due to its resource constraints. According to our observation,

we could crawl very few (or even no) tweets by using those spammers’ hashtags.

As seen in Figure 5.11(b), Hashtag Sampler could obtain reasonable hit ratios

by using around 60% spammers’ hashtags, which are higher than 0.3 (sampling 3

accounts will correctly collect 1 spam account).

85

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Hit Count

E
m

p
ir

ic
al

 C
D

F

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Hit Ratio

E
m

p
ir

ic
al

 C
D

F

(a) Hit Count (b) Hit Ratio

Figure 5.11: Collection results of Hashtag Sampler by using individual spammers’
hashtags.

5.4.4 E↵ectiveness of Friend Sampler

As seen in Table 5.3, Friend Sampler outputs 21,686 unique accounts to be likely

spammers. Among these accounts, 4,000 have been suspended, and 9,781 others are

output as spam accounts by the classifier. Thus, the hit count is 13,781 and hit ratio

is 0.6355. According to our evaluation, over 50% famous accounts used by Friend

Sampler could achieve a hit ratio higher than 0.5.

Item Nsus Nmal Nhit Nsample Hr

Value 4,000 9,781 13,781 21,686 0.6355

Table 5.3: The e↵ectiveness of Friend Sampler.

5.4.5 Diversity and Complementarity

Next, we analyze the diversity and complementarity of using these two samplers.

Essentially, between these two algorithms, we examine the number of spam accounts

correctly sampled only by one algorithm, which can not be found by using the other

86

one. If this number of each algorithm is high, it implies that these two samplers

are very complementary. Thus they could be combined together to find more spam

accounts. Specifically, to measure the diversity, we design a metric, named “Exclusive

Ratio (Er)”, which is the ratio of the number of spam accounts that are exclusively

sampled by one sampler (not sampled by the other one) to the total number of spam

accounts sampled by this sampler.

As seen in Table 5.4, We can find that both two samplers can obtain relatively

high exclusive ratios (over 77%). The ratio for Friend Sampler is even higher than

90%. This observation shows that these two samplers are indeed complementary.

And thus, they can be used together to collect more (likely) spam accounts.

Algorithm Hashtag Sampler Friend Sampler

Exclusive Ratio 77.69% 90.57%

Table 5.4: Exclusive ratios between two samplers.

Particularly, as shown in Table 5.5, according to our collected dataset, the com-

bination usage of these two algorithms could correctly collect 17,416 spam accounts.

Item Nsus Nmal Nhit Nsample Hr

Value 4,249 13,936 18,185 29,239 0.6219

Table 5.5: Result of combining two algorithms.

Among them, 3,480 accounts have been suspended by Twitter, and 13,936 other

accounts are classified as spam accounts by our classifier. Thus, the hit ratio of

combining these two algorithms is 0.6023. Compared with the dataset used for the

87

purpose of building an e↵ective machine learning classifier [12], which contains 355

manually identified spam accounts from 8,207 randomly crawled accounts (i.e., a hit

ratio of only 0.04), this value of hit ratio is considerably high in terms of e↵ectively

crawling likely spam accounts.

5.4.6 Comparison with Existing Strategies

As the research motivation described in Section 5.3, we next compare the e�-

ciency and e↵ectiveness of using our two samplers with existing strategies to collect

spam accounts.

5.4.6.1 Our Samplers VS Collecting Suspended Accounts

To compare the strategy to collect spam accounts by collecting suspended ac-

counts from a pre-crawled dataset, we calculate the number of suspended accounts

from those 1.2 million accounts. Whether an account is suspended can be automat-

ically known by issuing a query to Twitter. Accordingly, we get 14,226 suspended

accounts from those 1.2 million accounts, and achieve a hit ratio at 1.19%, which is

the number of suspended accounts to the total number of crawled accounts. How-

ever, our two samplers have a much higher hit ratio of 14.53% in terms of suspended

accounts only (more than 10 times higher). In terms of the speed, it only takes about

four days for our samplers to collect 4,249 suspended accounts, while to collect 14,226

suspended accounts, it takes around 7 months to crawl the dataset (not to mention

the long time lag to wait for Twitter to suspend the accounts). The advantage of

our samplers in terms of e↵ectiveness and e�ciency is clear.

5.4.6.2 Our Samplers VS Social Honeypots

We next compare our samplers with two existing social honeypot studies. As

shown in Table 5.6, the honeypots used in [65] collected 500 spam accounts in one

88

month; the honeypots used in [102] collected 11,699 spam accounts in 11 months.

Strategy [65] [102] Samplers

Time 1 month 11 months 4 days

of Spammers 500 11,699 18,185

Table 5.6: Comparison with existing social honeypots.

Since di↵erent studies use di↵erent numbers of social honeypots, and collect spam

accounts at di↵erent time periods with di↵erent definitions of the spam account, we

do not intend to conclude which honeypots are better. However, we could easily see

that compared with the strategy of using (passive) social honeypots, our samplers

can actively collect likely spam accounts much more e�ciently.

5.5 Limitation

We acknowledge our manually identified spam accounts may contain some bias,

and our machine-learning classifier may not be absolutely accurate. However, it is

challenging to obtain a perfect ground truth, and our strategies have been widely

used in this line of studies [123, 27, 65, 124]. In addition, even though some values

may vary according to di↵erent datasets, we believe that our major findings and

insights are still valid independent of the datasets.

It is possible that our advanced honeypots may also attract a few benign accounts’

contacts. However, this highly depends on the goal of honeypots – trapping more

spam accounts or obtaining spam accounts only, for which we believe the former is

more important. According to our data collection results, our advanced honeypots

could trap significantly more spam accounts.

We note that our samplers are not designed to collect/cover all (types of) spam-

89

mers in Twittersphere. In addition, we note that the number of collected spam

accounts by our samplers is restricted by the number of inputs, e.g., hashtags and

famous accounts. Our result is also limited by Twitter Search API: one request could

only obtain the recent 1,500 search results, and not even to mention not all tweets

are indexed by Twitter Search. Thus, if our samplers are implemented by Twitter

(without many restrictions), they could find more spam accounts.

5.6 Summary

While spam accounts become more evasive and evolve to launch target attacks,

in this chapter, we performed a deep measurement study on how some Twitter spam-

mers choose their spamming targets, by building social honeypots with diverse social

behavioral patterns. We provided principled guidelines for building more e↵ective

(attractive) social honeypots, based on the intuitions that the accounts tend to at-

tract more spammers’ contact, if they post tweets related with specific topics, or

post tweets containing special keywords such as Trending topics, or follow famous

accounts related with specific areas. We designed two light-weight and e↵ective

samplers to guide the sampling of more likely Twitter spam accounts by reverse

engineering spammers’ tastes of finding their spamming targets. We reported an

experimental evaluation of our two samplers by actively crawling online data from

Twitter, and showed that our two samplers can be e↵ectively and complementarily

used to actively find spam accounts.

90

6. UNDERSTANDING ANDROID MALWARE ECOSYSTEM

Similar to the analysis of the cyber criminal ecosystem on OSN platform, to

better understand how Android malware authors spread malicious Android apps, this

chapter presents an in-depth analysis of the market-level and network-level behaviors

of the underground Android malware ecosystem.

We empirically perform the first comprehensive measurement study on analyzing

the market-level and network-level behaviors of the Android malware ecosystem. We

have crawled and analyzed over 82,000 Android apps1 and 28,000 Android market ac-

counts2 from multiple representative markets (including both o�cial GooglePlay [48]

and third-party ones such as SlideMe [100] from USA, Anzhi [70] from China, and

Tapp [104] from Russia). After further analysis, we obtain a dataset of over 9,700

malicious Android apps, and another dataset of over 3,500 malicious market accounts

that distribute at least one malicious app to the market. To facilitate the analysis of

the network-level behaviors, we extract networking attempts made by Android apps,

through running them in a customized Android runtime environment and developing

a UI fuzzing tool to add random UI events. In total, we obtain over 239,000 unique

URLs leading to over 25,000 unique remote servers.

In the phase of analyzing the market-level behaviors, we investigate whether

there are any special characteristics of those market accounts that distribute mal-

ware. We investigate whether specific metrics, such as the location of the market

and the popularity of the app, are e↵ective indications to the quality of Android

apps. In particular, we investigate whether malicious accounts have specific tempo-

ral behavioral patterns in submitting malware samples. In the phase of analyzing

1Each app is uniquely counted by its value of MD5.
2Each market account is uniquely counted by the author name registered in the Android market.

91

the network-level behaviors, we investigate whether there are any special networks

mainly utilized by Android malware authors to host their remote servers and whether

there are any large communities among Android malware.

We propose a lightweight algorithm to infer malicious apps based on our analysis

of the market-level and network-level behaviors of Android malware ecosystem. Our

inference algorithm is positioned as a complementary, lightweight strategy to quickly

find those more suspicious apps.

We make the following contributions:

• We present an in-depth look at the market-level and network-level behaviors

of the Android malware ecosystem, based on a detailed analysis of over 9,700

malicious apps, collected from a large corpus of over 82,000 Android apps from

multiple markets.

• Through analyzing themarket-level behaviors, we find that: (1) Neither the

location of the market nor the popularity of the apps has a strong correlation

with the quality of the apps; (2) The public Android anti-virus blacklist is too

slow at identifying new Android malware, allowing around 90% of malicious

apps submitted to the markets before they are seen by the blacklist; (3) The

same malware authors tend to submit multiple malicious apps, and within a

short time period. This represents an interesting spatial-temporal behavioral

pattern.

• Through analyzing the network-level behaviors, we find that: (1) There is

a strong provider locality property in the Android malware’s remote servers

hosting infrastructure; Android malware authors tend to use cloud vendors to

host remote servers to communicate with their malware samples; (2) Existing

IP/domain blacklists are not e↵ective to be used to find Android malware;

92

(3) A few malware communities (sharing common authors or remote servers)

contribute to a large portion of Android malware.

• We design a novel algorithm (AMIA) to infer more malicious apps by exploiting

their community relationships. AMIA is designed by exploiting the properties

of the community relationships among Android malware, which requires nei-

ther the disassembling of Android apps nor the deep domain knowledge of the

Android system. By using a small seed set of known malicious apps, AMIA

can e↵ectively find another extra 20 times of malicious apps, while maintaining

a considerable accuracy higher than 94%.

In Section 6.1, we introduce the problem background and the overview of our

analysis. In Section 6.2, we present our data collection methodology. We detail the

procedure of our analysis of market-level behaviors in Section 6.3 and network-level

behaviors in Section 6.4. In Section 6.5, we describe the design and evaluation results

of our inference algorithm to sample more likely malicious Android apps. We discuss

our limitation in Section 6.6.

6.1 Background and Overview

In this section, we first introduce the major actions taken by Android malware

authors to spread their malware to achieve malicious goals, and then describe the

overview of our analysis.

6.1.1 Background

Before the time when a victim accesses the Android market to install a malicious

Android app on his smartphone, an Android malware author typically need to take

a sequence of actions to underpin a successful download. We present the flow of

actions taken by Android malware authors to spread their malware in Figure 6.1.

93

The flow begins with Android malware authors developing Android malware (1�).

To achieve malicious goals such as compromising victims’ privacy and remotely high-

jacking victims’ phones, malware authors typically need to build remote servers (2�)

to communicate with (or control) their malware samples. Next, malware authors re-

quire to register Android market accounts (3�) to launch malware on specific Android

markets (4�). The registration of the market accounts typically requires developers

to use valid email accounts or even paying registration fee (e.g., in GooglePlay). Af-

ter successfully attracting victims’ attention and obtaining their trust, the malware

will be downloaded and further installed on victims’ smartphones (5�, 6�). Once

the victims’ phones are infected, the malware typically communicate with the re-

mote servers, to send out private/system information (7�), or even to further receive

instructions to communicate with other remote servers (8�). Once victims’ phones

are fully controlled by the malware, any variety of other malware can be installed.

Finally, malware authors obtain profits by selling victims’ sensitive data or stealthily

charging victims’ mobile bills (9�).

Throughout this process, we can clearly see that after developing malware, An-

droid malware authors typically require two types of behaviors to lure their victims

and obtain profits from the victims: utilizing Android markets to spread malware

and building remote servers to communicate with malware. Thus, our research goal

is to provide the first empirical analysis of the characteristics of the market-level and

network-level behaviors of the Android malware ecosystem, and provide new defense

insights against Android malware.

6.1.2 Analysis Overview

To achieve our research goals, as illustrated in Figure 6.2, our analysis procedure

contains three major steps: collecting data, empirically analyzing market-level and

94

Figure 6.1: The flow of actions taken by Android malware authors to spread Android
malware.

network-level behaviors, and generating defense insights.

In the data collection step, besides crawling Android apps, our crawler also col-

lects those apps’ corresponding market information (e.g., author, downloading num-

ber, and submission time) from the o�cial Android market (GooglePlay) and three

representative third-party Android markets (SlideMe, Anzhi, and Tapp). Then, we

identify Android malware from our crawled dataset, and extract the remote servers

(IP addresses and domains) visited by crawled Android apps.

In the phase of analyzing the market-level behaviors, we first uncover whether the

apps that are hosted in American markets or highly downloaded are more trustable;

we next measure the e↵ectiveness of using the Android malware blacklist to stop

malware authors submitting their malware samples to the markets; we also examine

which app categories Android malware tend to masquerade themselves to belong

95

to; we finally uncover the behavioral characteristics of those malicious accounts that

submit malware to the markets.

In the phase of analyzing the network-level behaviors, we mainly analyze the

IP address spaces, special networks, and cloud hosting services used by Android

malware; we also examine the e↵ectiveness of using existing IP/domain blacklists to

find Android malware; we finally extract and measure Android malware communities.

Finally, spurred by the above analysis, we design a new algorithm to infer more

malicious Android apps.

Figure 6.2: The analysis overview.

6.2 Data Collection

6.2.1 Crawling Android Apps

We crawled Android apps from four representative Android markets: the o�-

cial Android market (GooglePlay) announced in 2008 and three third-party Android

markets (SlideMe from USA created in 2008, Anzhi from China created in 2010, and

Tapp from Russia created in 2012). The crawling process for GooglePlay was har-

vested during a two-months period, from August 23rd, 2012 through October 23rd,

2012. The crawling process for those third-party markets was mainly achieved from

96

June 3rd, 2012 to June 15th, 2012. During the crawling process, besides download-

ing Android apps, our crawler also recorded those apps’ market information (e.g.,

author, submission time, downloading number, and app category). Our crawler

downloaded all free apps that were available in the third-party markets at the time

when the crawler was launched. Due to the crawling rate limit and the large amount

of apps in GooglePlay, our dataset of o�cial apps were randomly sampled from all

33 app categories in GooglePlay. As summarized in Table 6.1, in total, we collected

82,966 free Android apps, where around 22% of the apps (18,751) were collected

from GooglePlay, and the remaining 78% (65,232) were harvested from the third-

party markets.

GooglePlay SlideMe Anzhi Tapp

Location U.S.A U.S.A China Russia

Creation Time 2008 2008 2010 2012

Number of Unique Apps 18,751 15,109 38,458 11,822

Total (Unique)
18,751 (22%) 65,232 (78%)

82,966

Table 6.1: Summary of crawling Android apps.

6.2.2 Identifying Android Malware

Next, we identified malicious apps from our Android app corpus by searching

their values of MD5 to VirusTotal [114], which is a free anti-virus blacklist service

providing the scanning reports from over 40 di↵erent anti-virus products. For each

app, if it has been seen by VirusTotal, we obtained its full scanning report, which

includes the first and the last time the app was seen, as well as the results from

each individual virus scan. We consider an app to be malicious, if it is labeled as

97

malware by at lease one anti-virus product. It is also worth noting that we searched

our crawled apps’ reports from VirusTotal on Oct. 11th, 2013, over one year after we

finished crawling those apps, in order to give enough time for those commercial anti-

virus tools to have updated signatures and achieve more accurate scanning results

of those apps.

As seen in Table 6.2, we finally obtained 9,712 unique malicious apps, where

around 16% of them (1,593) were collected from GooglePlay, and around 84% (8,229)

were harvested from three third-party markets. We term this dataset of malicious

apps as MalApps. Apart from the dataset of 9,956 adware (AdwareApps), we term

the dataset of the rest 63,298 apps as RestApps. Note that since a few antivirus

tools consider those non-malicious apps that use certain advertisement libraries as

adware, to better guarantee the accuracy of our measurement results, we distinguish

the adware from those truly malicious apps.

GooglePlay SlideMe Anzhi Tapp

MalApps 1,593 1,946 4,840 1,450

Total(Unique)
1,593 (16%) 8,229 (84%)

9,712

AdwareApps 1,037 1,247 6,764 994

Total(Unique)
1,037 (12%) 8,977 (88%)

9,956

RestApps 16,121 11,916 26,854 9,378

Total(Unique)
16,121 (29%) 38,726(71%)

63,298

Table 6.2: Summary of collecting Android malware.

Similar to other measurement studies, our analyzed dataset may contain some

bias or noise. For example, there could be sampling bias in our crawling. To reduce

98

possible data sampling bias, we have crawled several representative large Android

app markets (instead of one) in di�cult countries, and we crawled all the apps that

are hosted in the third-party markets and randomly sample apps from all 33 app

categories in GooglePlay. It is also true that even we use VirusTotal, a state-of-the-

art anti-virus service that combines the scanning reports from over 40 commercial

Anti-Virus products, it is still possible that a small number of apps in MalApps

might be actually benign, and RestApps might still contain a few malicious apps.

Essentially, it is extremely challenging to obtain an ideal, unbiased dataset with

perfect ground truth for a large-scale dataset of Android apps. We believe that even

though the exact values of some metrics reported in our work may vary a little bit

when using di↵erent sample datasets or ground truths, our major conclusions and

insights obtained in our analysis will likely still hold.

6.3 Analyzing Market-level Behaviors

Di↵erent from desktop malware authors, who typically have to build their own

platforms/websites to spread malware, Android malware authors can spread mal-

ware more e↵ectively by utilizing popular Android markets. However, no existing

studies have been done to deeply analyze how malware authors utilize those Android

markets. In this section, we first describe our results of collecting market accounts,

and then provide our detailed analysis of the market-level behaviors in a question-

and-answer fashion.

6.3.1 Collecting Market Accounts

To facilitate the analysis of the market-level behaviors, we collected market ac-

counts (uniquely identified by the author name) from those three representative

markets. Next, we extracted malicious accounts that at least submitted one mali-

cious app. As seen in Table 6.3, we collected 28,496 market accounts, where 35%

99

of the accounts (10,064) were collected from GooglePlay, and the remaining 65%

(18,432) were harvested from three third-party markets; 3,517 of those 28,496 mar-

ket accounts are identified as malicious, where 25% of the accounts (883) were from

GooglePlay, and the remaining 75% (2,634) were from three third-party markets.

GooglePlay SlideMe Anzhi Tapp

of Accounts 10,064 3,896 9,665 4,871

Total (Unique)
10,064 (35%) 18,432 (65%)

28,496

of Malicoius Accounts 883 432 1,493 709

Total(Unique)
883 (25%) 2,634 (75%)

3,517

Table 6.3: Summary of collecting market accounts.

6.3.2 Detailed Analysis

Since the o�cial market (GooglePlay) is located in America, many users prefer

to choose apps from GooglePlay or other American markets. Accordingly, our first

market-level analysis is to examine the relationship between the app quality and the

app market.

6.3.2.1 App Quality VS App Market

Question 1: Are the apps from American markets more trustable? Our Empirical

Answer: No. The quality of the American third-party market is not better than that

of the Chinese one, where malicious apps have been reported to be widely hosted

in. Also, although the quality of the o�cial market is a little better than those

third-party markets as we expect, it still has much room to improve.

To answer this question, for each market, we calculate its percentage of malicious

100

apps in the total apps crawled from the market, termed as Market Malicious Ratio.

Accordingly, the lower ratio one market has, the better quality it is. As seen in Table

6.4, the ratio of GooglePlay, which is around 8.5%, is lower than that of all three

third-party markets, which are 12.87%, 12.58%, and 12.27%, respectively.

GooglePlay SlideMe Anzhi Tapp

Location U.S.A U.S.A China Russian

Market Malicious Ratio 8.50% 12.87% 12.58% 12.27%

Table 6.4: The comparsion of market quality.

This observation is mainly because the o�cial market has more strict security

rules (e.g., Google Bouncer [71]) to better guarantee the quality of the apps than

those third-party markets, as we expect. However, the di↵erence of the ratio between

GooglePlay and those third-party markets is not that significant. This observation

implies that there is still a large space for both the o�cial market and third-party

markets to improve their quality.

In addition, the ratio for the American third-party market (SlideMe) is even

slightly higher than that of the Chinese one (Anzhi). Although the quality of the

Chinese market is not that good due to the fact that Chinese customers can not

access GooglePlay and have to rely on third-party markets to download Android

apps, which motivates many malware authors to spread Android malware in Chinese

markets, the quality of the American third-party market is not necessarily better.

This observation implies that apps that are hosted in the American markets are not

necessarily more trustable.

101

6.3.2.2 E↵ectiveness of Android Antivirus Blacklist

As an important security aspect, besides analyzing the detection rate of the

blacklists [68, 141], existing studies have also analyzed the detection timelag of the

blacklists in di↵erent security scenarios (e.g., social network spam study [51] and X86

malware study [30]). Similar to these studies, we next examine the detection timelag

in the Android malware scenario.

Question 2: Is it e↵ective to use the Android anti-virus blacklist to filter Android

malware, before they are submitted to Android markets? Our Empirical Answer: No.

The public Android anti-virus blacklist is too slow at stopping malware authors from

submitting Android malware to the market.

To answer this question, we use one of the most well-known (representative) An-

droid anti-virus blacklists (VirusTotal) as the case study. VirusTotal automatically

retrieves the scanning reports (alerts) for Android apps from over commercial 40

anti-virus products. In the report, it will show the malware categories of the mal-

ware sample labeled by each anti-virus product, as well as the dates when the sample

is seen for the first time and the last time. Accordingly, using historical data from

VirusTotal, we can measure the blacklist lag period, which is the time period delay

between one malicious app’s submission to the market (submission date) and its first

appearance on VirusTotal (the firstly-seen date). (Note that when one malware sam-

ple is firstly seen by VirusTotal, it may not be successfully identified as malicious by

those anti-virus products. Thus, our measured blacklist lag period is only the lower

bound of the actual detection lag period)

For cases where malicious apps seen by the VirusTotal prior to appearing on

the markets, we say that the blacklist of VirusTotal leads the markets. Conversely,

VirusTotal lags the markets if malicious apps are submitted to the markets before

102

becoming examined by VirusTotal. Lead and lag times can indicate the e�ciency

of using the VirusTotal blacklist to stop malware authors submitting their malware

samples to the markets.

We begin measuring blacklist delay by gathering the timestamps for each Android

malicious app that is submitted to the market and that is firstly seen by VirusTotal.

For each malware sample submitted by multiple accounts (or in multiple markets,

or at di↵erent timestamps), we consider each submission as a unique, independent

event. Due to the fact that GooglePlay does not provide the exact time when the

app is firstly uploaded, we test this experiment based on the malware crawled from

those three third-party markets.

Figure 6.3(a) shows the lead and lag periods for Android malware, where we see

that around 90% of collected malware samples appear on markets prior to being seen

by VirusTotal. More specifically, over 99% malware samples from Anzhi and 93%

from SlideMe appear on markets prior to being being seen by VirusTotal. Although

the Russian market (Tapp) is founded much later and much less active than Anzhi

and SlideMe, around 40% of malware samples from it can not be identified by the

blacklist before their appear on the market. In addition, the average lag period is over

167 days, which is much longer than that (from 2 to 27 days) for detecting desktop

malware by using existing anti-virus products as stated in one recent study[30]. A

more extensive presentation of blacklist lag days can be seen in Figure 6.3(b), showing

the volume of malware samples per lead and lag day. Through this observation, we

find that the Android anti-virus blacklist in fact lags behind Android malware’s

appearance on the markets.

103

−100 0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Days

E
m

p
ir

ic
a
l
C

D
F

The Distribution of Lead and Lag Days

SlideMe

Anzhi

Tapp

Total

−200 −100 0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

Lag and Lead Days

#
 o

f
A

p
p

s

(a) Distribution of Lag Period (b) Volume per Lead and Lag Day

Figure 6.3: Lag period between the submission date and the firstly-seen date.

Rank GooglePlay SlideMe

1 Personalization 357 (22.41%) Game 788 (40.51%)

2 Entertainment 249 (15.63%) Wallpapers 271 (13.93%)

3 Arcade and Action 97 (6.09%) Entertainment 265 (13.62%)

Total 703 (44.13%) 1,324 (68.07%)

Rank Anzhi Tapp

1 Entertainment 2830 (58.47%) Game 713 (49.17%)

2 Lifestyle 508 (10.50%) Wallpapers 362 (24.97%)

3 Wallpapers 398 (8.23%) Entertainment 149 (10.28%)

Total 3,736 (77.19%) 1,224 (84.41%)

Table 6.5: The categories of apps tend to be malicious.

6.3.2.3 Common Behaviors Among Malicious Accounts

Question 3: Are there any common behavioral characteristics among malicious

market accounts? Our Empirical Answer: Yes. There is a spatial and temporal

locality property in terms of malware authors’ submissions of their malware samples.

Malicious authors tend to repeatedly use the same market accounts to post multiple

malicious apps, and within a short time period.

To answer this question, for each of 3,517 malicious market accounts, we first

104

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Malicious Account Ratio

F
ra

c
ti

o
n

 o
f

M
a
li
c
io

u
s
 A

c
c
o

u
n

ts

Third−party Markets

GooglePlay

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Interval (Days)

F
ra

c
ti

o
n

 o
f

In
te

rv
a

ls

(a) Account Malicious Ratio (b) Time Interval

Figure 6.4: The distribution of account malicious ratios, and the time intevals be-
tween two consequent malware submissions from the same malicious account.

calculate its account malicious ratio, which is the percentage of malware samples in

all of its submitted apps. As seen in Figure 6.4(a), around 50% of malicious accounts

from third-party markets and around 70% of malicious accounts from GooglePlay

have a malicious ratio higher than 0.5 (i.e., at least one malicious app in two submis-

sions). This observation indicates that malware authors tend to repeatedly use the

same malicious accounts to submit malicious apps. Also, we can find that malicious

accounts in GooglePlay typically have a higher ration than those malicious accounts

in the third-party markets. That might because GooglePlay requires higher cost for

registering market accounts (e.g., valid Google accounts and registration fee). Thus,

it will bring a much higher cost for malware authors to create a large number of

GooglePlay accounts to spread malware.

We also examine the time interval (in days) between two consequent submissions

of malicious apps for the same malicious accounts. As seen in Figure 6.4(b), over 60%

of time intervals are zero (i.e., those two consequent submissions happened in the

same day), and around 80% of time intervals are less than 5 days. This observation

105

indicates that malware authors tend to submit multiple malware samples within a

short time period, an interesting spatial and temporal locality property. Utilizing

this property, we could find more malicious apps by checking those apps whose author

names are the same with known malicious ones’, especially when they are submitted

within a short time period.

6.3.2.4 App Quality VS App Popularity

Without a deep knowledge about Android app security, many users prefer to

trust those popular apps with high downloading numbers. Question 4: Are those

apps with higher downloading numbers more safer? Empirical Answer: No. An

app’s downloading number has not necessarily a strong correlation with its quality.

Many malicious apps have also been downloaded for a great number of times. To

answer this question, we need to calculate our crawled apps’ downloading numbers.

In particular, unlike third-party markets, which provide the accurate value of each

app’s downloading number, GooglePlay only provides the interval of the downloading

number (e.g., 5,000-10,000). Also, once the downloading number is higher than

250,000, GooglePlay only shows the interval as “> 250, 000”. Thus, we use an

approximate way to count the downloading number for the apps in GooglePlay.

More specifically, if the number is smaller than 250,000, we use the median value of

the interval; otherwise, we directly use 250,000. Then, we compare the downloading

numbers between the dataset of MalApps and RestApps for third-party markets and

GooglePlay, respectively.

As seen in Figure 6.5, in both third-party markets and GooglePlay, we can find

that the distributions of the downloading number between MalApps and RestApps

are similar. Specifically, in the third-party markets, we can find that the percent-

age of the apps in MalApps that have been downloaded more than 10,000 times is

106

around 12%, which is even slightly larger than that (10%) in RestApps. Also, we can

find that around 20% of apps in MalApps have been downloaded more than 5,000

times, whereas around 80% of apps in RestApps have been downloaded less than

5,000 times. Similarly, in GooglePlay, around 45% of apps in MalApps have been

downloaded more than 150,000 times, whereas around 50% of apps in RestApps

have been downloaded less than 150,000 times. Thus, this observation indicates that

many popular apps with high downloading numbers are still malicious, i.e., an app’s

popularity is not an e↵ective indication to its quality.

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Download Number

F
ra

c
ti

o
n

 o
f

A
p

p
s

MalApps

RestApps

0 0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Download Number

F
ra

c
ti

o
n

 o
f

A
p

p
s

MalApps

RestApps

(a) Third-party Markets (b) GooglePlay

Figure 6.5: The comparison of the downloading numbers for MalApps and RestApps
in the third-party markets and GooglePlay.

6.3.2.5 Common App Categories Among Malicious Apps

Question 5: Are there any specific app categories that Android malware authors

tend to masquerade their malware samples to belong to? Our Empirical Answer: Yes.

Malware authors tend to register their malware samples into a few specific categories

(e.g., Game, Entertainment, and Wallpapers).

107

To answer this question, in each market, we rank its app categories according

to the number of malware samples belonged to them. Table 6.5 lists the top three

categories for each market.

From this table, we can find that the majority of the malicious apps belong to

a few categories (e.g., Game, Entertainment, Wallpapers.). More specifically, the

categories of Entertainment and Game ranks in the top three in all these three

markets. (Note that in GooglePlay, the apps belonged to“Arcade and Action” are

mainly action games, which are typically categorized as “Game” in the third-party

markets; in the market of Anzhi, game apps are registered with the category of

Entertainment instead of “Game”.) In addition, in all three third-party markets,

top three categories are used by more than over 60% of malware samples. Even

in GooglePlay, which categorizes apps in a more fine-grained way (i.e., apps are

registered into multiple more fine-grained categories), the top three categories covers

more than 40% of malware samples.

This observation indicates that some categories are highly used by malware au-

thors. This phenomenon might because malicious apps may obtain more users’ at-

tention, when they are registered to belong to those hot categories such as “Enter-

tainment” and “Game”. The apps belong to those hot categories typically have a

large downloading number. In addition, since the programming logic of those benign

Wallpaper apps is typically simple, compared with developing completely new ma-

licious apps, it is easier for malware authors to develop malicious apps by inserting

malicious payloads into those benign Wallpaper apps.

108

6.4 Analyzing Network-level Behaviors

6.4.1 Extracting Remote Servers

To facilitate the analysis of the network-level behaviors, we need to extract remote

servers (domain names and IP addresses) communicated by Android malware, i.e.,

we need to extract the URLs, domain names and IP addresses that are visited by

Android malware.

A naive approach is to extract those URLs that are hard-coded in the apps by

using existing Android app static analysis tools (e.g., [45]). However, this approach

is not e↵ective, due to the fact that many malicious Android apps use diverse tech-

niques to hide visited URLs instead of hard-coding them as constant strings to evade

detection. Such techniques range from string encoding, string encryption, string ob-

fuscation, splitting string into segments, to saving URL string segments into XML

files used in the apps. Thus, this strategy can not be used to e↵ectively extract

remote servers.

To avoid such a limitation, we extract remote servers by running apps in a cus-

tomized Android runtime environment (Android phone emulator). Before analyzing

each app, the emulator will start from a clean snapshot that is saved at the starting

point to avoid possible e↵ects (e.g., the changes of SD card) generated by other apps.

To trigger an app to execute more networking connections, we also design an Android

app UI fuzzing tool to simulate real users’ usage of the app by adding random UI

events (e.g., click buttons, stretch the views, and type characters).

While running each app, our environment will record its networking attempts

by using Android TCPDump[46]. Unlike traditional TCPDump, Android TCPDump

will only save the networking packets made by the emulator instead of the host. In

addition, we also record networking attempts saved in the emulator’s runtime log file

109

by using Android Logcat[46]. Android Logcat will both record some sensitive net-

working attempts (e.g., the links of the advertisements for other Android apps), and

those failed networking attempts due to some networking exceptions (e.g., Once the

remote server is no longer alive, Logcat will record those failed networking attempts

to the remote server with the exception of “java.net.UnknownHostException”.) that

are not captured in the Android TCPDump. Finally, a parser is developed to au-

tomatically extract those networking attempts. To facilitate the following analysis,

for each URL, the parser will also extract its domain name; for each IP address, the

parser will reverse lookup its domain name, if available.

As seen in Table3 6.6, we finally collect 239,582 unique URLs leading to 25,099

unique servers4 (including 19,342 unique domain names and 5,755 unique IP ad-

dresses). More specifically, by running 9,712 malicious apps in the dataset of MalApps,

we collect a dataset of 34,176 unique URLs and 5,142 remote servers (including 3,980

unique domain names and 1,162 IP unique addresses), named as MalServers.

Type URLs Domains IPs Servers

MalServers 34,176 3,980 1,162 5,142

AdwareServer 35,267 3,112 1,057 4,169

RestServers 176,949 16,580 5,125 21,707

Total 239,582 19,342 5,755 25,099

Table 6.6: The summary of extracting remote servers.

3The datasets of MalServers, AdwareServers and RestServers in the table represent the servers
extracted from the apps in the dataset of MalApps, AdwareApps and RestApps, respectively.

4Each remote server is counted by one of its valid domain names, if aviable. Otherwise, the server
is counted by its IP address.

110

6.4.2 Filtering Benign Servers

Since our goal is to analyze the network-level behaviors of Android malware au-

thors by analyzing the characteristics of the remote servers uniquely used by malware,

a data filtering step is required to filter benign servers that are also visited by Android

malware. In another word, we need to filter benign servers saved in the dataset of

MalServers in Table 6.6). We first filter top 10,000 Alexa [2] domain names. Then,

we use two conservative strategies to further filter benign servers: (1) filtering all

the servers visited by the apps in the RestApps, and (2) filtering top frequently used

servers by the apps in the RestApps.

More specifically, in the former strategy, we generated a filtered dataset named

as FAMalServers by filtering all the servers in RestServers from MalServers. In

this way, FAMalServers contains 2,288 unique servers. Note that due to the pos-

sibility that a small portion of apps in RestApps might still be malicious (i.e., the

false negatives of those AV products), some servers in RestServers might still be

uniquely visited by Android malware. Accordingly, this strategy may filter more

remote servers that are uniquely visited by Android malware. However, this strict

strategy could guarantee nearly all of the servers left in FAMalServers are unique

for malware, especially when the dataset of RestServers is su�ciently large.

As a supplement, in the latter strategy, instead of filtering all servers in RestServers,

we only filter those servers that are highly visited by the apps in RestApps. More

specifically, we first rank the servers in RestServers according to the number of

unique apps in RestApps that visit them. Then, we empirically filter the top

N = 1, 000 servers5 from MalServers and generate another filtered dataset named

5According to our empirical observation, N = 1, 000 is a proper value for filtering known benign
servers while keeping unknown servers. However, this value could still be tuned with the tradeo↵
between filtering more truly benign servers and keeping more servers uniquely used by malware.

111

FTMalServers, which contains 4,379 servers. To facilitate the later comparison, we

name the dataset of the rest of 20,707 servers as FTRestServers by filtering those

top 1,000 servers from RestServers, as seen in Table 6.7.

Dataset FAMalServers FTMalServers FTRestServers

of Servers (Unique) 2,288 4,379 20,707

Table 6.7: The number of servers in each filtered dataset.

Due to the lack of the perfect ground truth, we clearly acknowledge that even

these two filtered datasets (FAMalServers and FTMalServers) may still contain some

benign servers, and miss some malware servers. However, note that these two strate-

gies are essentially complementary and we mainly use these two filtered datasets to

compare the network-level behaviors between malicious apps and other apps. If our

conclusions could hold under the usage of both two datasets, we believe that the

same conclusions will also likely hold under the usage of another real dataset, even

though the actual values of specific metrics may vary a little bit.

6.4.3 Detailed Analysis

Similar to the analysis of the market-level behaviors, we next perform our detailed

analysis of the network-level analysis in a question-and-answer fashion.

To determine which IP address and network spaces are mainly used by malware

authors to create their remote servers, our first network-level analysis focuses on

examining the network addresses visited by Android malware.

112

6.4.3.1 Usage of Network Space

Question 1: Is the distribution of remote servers’ IP address space visited by

Android malware di↵erent from those visited by other apps? And are there any

special networks that are mainly utilized by Android malware authors? Our Empirical

Answer: Yes. We find that a few concentrated portion of IP address spaces are highly

visited by malware samples rather than other apps.

We compare the ASes visited by malicious apps and other apps. More specif-

ically, for each remote server, we extract the AS it belongs to. Then, in each

dataset, we rank the ASes according to the number of unique apps that visit them.

We extract the IP addresses of the remote servers in each of the four datasets

(RestServers, MalServers, FTMalServers and FAMalServers). In each of the four

datasets, for each individual IP network prefix (i.e., each /8 subnet from 0.0.0.0/8

to 255.0.0.0/8), we calculate the number of the unique apps (Nsubnet) that visit

the subnet. Then, for each subnet, we calculate the ratio of Nsubnet to the total

number of the malware samples in the dataset, termed as Subnet Malicious Ratio.

Accordingly, a higher ratio for a subnet implies that the subnet is visited by more

malicious apps.

As seen in Figure 6.6, although most IP address ranges that are used by a signif-

icant amount of malware also used by a lot of other apps, a few subnets are signifi-

cantly used by more malware than other apps. For example, in terms of the subnets of

23.0.0.0/8 and 54.0.0.0/8, the ratios of all three malware datasets (MalServers,

FTMalServers and FAMalServers) are much higher than that of RestAppServers.

This characteristic implies that malware authors may tend to utilize a few special

subnets to host remote servers to communicate with their malware. To further ana-

lyze the usage of ASes and domains for malware, we also compare the top ten ASes

113

for RestServers, MalServers, and FAMalServers as seen in Table 6.8, and show

the top ten domain names for FTMalServers and FAMalServers as seen in Table

6.9.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

IP Network Prefix (/8 Subnet)

S
u

b
n

e
t

M
a

li
c

io
u

s
 R

a
ti

o

RestAppServers
MalAppServers
FTMalAppServers
FAMalAppServers

5423

Figure 6.6: The comparision of the distribution of the usage of IP address between
malicious apps and other apps.

Table 6.8 shows the top ten most frequently visited ASes in the datasets of

RestServers and MalServers. From this table, we can find that in RestServers,

only one of the top ten ASes belongs to the cloud vendor and it ranks the sixth.

However, in MalServers, four of the top ten ASes belong to cloud vendors.

Next, we show the top ten most used domain names by malware samples in the

datasets of FTMalServers and FAMalServers. As seen in Table 6.9 and 6.10, we can

find that in the dataset of FTMalServers, seven of the top ten most used domain

114

RestServers MalServers

Rank AS Number AS Name AS Number AS Name

1 AS15169 Google AS9308 Abitcool

2 AS4134 Chinanet AS4134 Chinanet

3 AS9308 Abitcool AS15169 Google

4 AS4808 China169 Beijing AS17964 Beijing Dian-Xin-Tong (Cloud)

5 AS24400 Shanghai Mobile AS23724 IDC, China (Cloud)

6 AS14618 Amazon (Cloud) AS14618 Amazon (Cloud)

7 AS22577 Google AS24400 Shanghai Mobile

8 AS4837 China169 Backbone AS17431 Beijing TONEK

9 AS17431 Beijing TONEK AS3549 Global Crossing

10 AS20645 PurePeak Limited AS33494 IHNetworks(Cloud)

Table 6.8: The top ten ASes for RestApps.

names belong to the cloud vendors; one domain name is mainly used as C&C Servers

to receive victims’ private information; the other two domain names are used for the

abusive mobile advertisement. Also, in the dataset of FTMalServers, all of the top

ten domain names belong to the cloud vendors.

FTMalServers

Rank Domain Names Usage

1 ad.leadboltapps.net Abusive Advertisement

2 d36hc9ptsltjmz.cloudfront.net Cloud

3 m.airpush.com Abusive Advertisement

4 ec2-54-225-174-248.compute-1.amazonaws.com Cloud

5 client.139vps.com C&C Server

6 ec2-23-21-95-12.compute-1.amazonaws.com Cloud

7 ec2-54-225-131-82.compute-1.amazonaws.com Cloud

8 ec2-54-235-138-219.compute-1.amazonaws.com Cloud

9 ec2-204-236-218-179.compute-1.amazonaws.com Cloud

10 ec2-54-243-171-43.compute-1.amazonaws.com Cloud

Table 6.9: The top ten most frequently used in FTMalServers.

115

FAMalServers

Rank Domain Names Usage

1 ec2-54-225-174-248.compute-1.amazonaws.com Cloud

2 aec2-204-236-218-179.compute-1.amazonaws.com Cloud

3 ec2-54-243-171-43.compute-1.amazonaws.com Cloud

4 ec2-23-21-67-42.compute-1.amazonaws.com Cloud

5 ec2-174-129-232-156.compute-1.amazonaws.com Cloud

6 208.43.117.142-static.reverse.softlayer.com Cloud

7 ec2-23-21-51-117.compute-1.amazonaws.com Cloud

8 ec2-23-21-251-51.compute-1.amazonaws.com Cloud

9 ec2-54-243-36-7.compute-1.amazonaws.com Cloud

10 ec2-50-112-100-234.us-west-2.compute.amazonaws.com Cloud

Table 6.10: The top ten most frequently used in FAMalServers.

Also, in the dataset of FAMalServers, the IP addresses of three cloud hosts (the

first, third and ninth) belong to the subnet of 54.0.0.0/8; the IP addresses of three

cloud hosts (the fourth, seventh and eighth) belong to the subnet of 23.0.0.0/8. This

observation also explains why these two subnets are highly used by Android malware

as discussed in the previous question.

From the above analysis, we can find that Android malware authors tend to host

their remote servers in the cloud vendors. Motivated by this observation, we further

analyze the common characteristics among malware samples, which communicate

with those servers hosted in the cloud vendors.

6.4.3.2 Usage of Cloud Vendors

Question 2: Are there any common charaterisitcs of Android malware samples,

which communicate with the servers hotsed in the cloud vendors? Empirical Answer:

Yes. Malicious Android apps, which communicate with the same cloud server/subnet,

are very likely to belong to the same malware families.

To answer this question, we use the popular cloud vendor (AmazonEC2) as the

116

case study. We first extract AmazonEC2 servers6, termed as MalEC2Servers, visited

by malicious apps. Then, for each MalEC2Server, we extract its MalEC2Families,

which are the malware families of the malware samples that visit MalEC2Server7.

We first analyze the variation of the malware families in the MalEC2Servers.

More specifically, we first extract 92 di↵erent MalEC2Servers that have more than

two MalEC2Families. Figure 6.7(a) shows the distribution of the number of unique

apps in those 92 MalEC2Servers. From this figure, we can find that around 58% of

those MalEC2Servers are visited by more than 10 di↵erent malicious apps (i.e., these

MalEC2Serverstend to be visited by multiple malicious apps.).

Then, for each MalEC2Familiy in each MalEC2Server, we calculate its value of

FamilyCoverage, which is the percentage (coverage) of the malware samples belonged

to the MalEC2Family in all malware samples that visit that MalEC2Server. Next, in

each MalEC2Server, we rank its MalEC2Families according to their values of Fam-

ilyCoverage. Figure 6.7(b) shows the distribution of the FamilyCoverage of the top

MalEC2Family, and the sum of the top two MalEC2Families’ values of FamilyCover-

age, among those 92 MalEC2Servers. From this figure, we can find that in over 90%

of MalEC2Servers, the top MalEC2Family’s FamilyCoverage is higher than 0.5 (i.e.,

in over 90% of MalEC2Servers, more than half malware samples belong to the same

family.). While considering the sum of the top two families, the coverage is increased

to 0.85 (i.e., in over 90% of MalEC2Servers, the top two families coverages over 85%

of malware samples.) Also, we can see that in over 50% of MalEC2Servers, the sum

of the top two families is 1.0 (i.e., in over half of MalEC2Servers, there are only two

di↵erent families.). These observations imply that the malware samples that visit

the same AmazonEC2 server tend to belong to the same family.

6These servers are identified by their domain names, which start with “ec2” and end with “ama-
zonaws.com”

7This is achieved by analzying each malware sample’s scanning report received from VirusTotal.

117

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Malicious Apps

F
ra

c
ti

o
n

 o
f

M
a
lE

C
2
 S

e
rv

e
rs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FamilyCoverage

F
ra

c
ti

o
n

 o
f

M
a
lE

C
2
 S

e
rv

e
rs

Top One Family
Top Two Families

(a) Number of Malicious Apps (b) FamilyCoverage

Figure 6.7: The distributions of the number of malicious apps, and the famliy cov-
erages among MalEC2Servers.

Next, we group MalEC2Servers into 12 di↵erent /8 subnets according to their

IP addresses. We name these subnets as MalEC2Subnets, and further examine the

variation of malware families in these subnets. Figure 6.8(a) shows the number of

unique malware samples in each MalEC2Subnet. Similar to the above experiment,

for each MalEC2Family in each MalEC2Subnet, we calculate its value of Family-

Coverage, which is the percentage (coverage) of the malware samples belonged to

the MalEC2Family in all malware samples that visit the severs belonged to that

MalEC2Subnet.

Figure 6.8(b) shows the FamilyCoverage of the top family and the sum of the

top two values of FamilyCoverage for all MalEC2Subnets. From this figure, we can

find that the FamilyCoverage of the top family in all MalEC2Subnets are higher

than 0.5 (i.e., for each MalEC2Subnet, over 50% malware samples that visit that

MalEC2Subnet belong to the same family.) Also, this value increases to 0.8, while

considering the top two families (i.e., for each MalEC2Subnet, over 80% malware

samples that visit that MalEC2Subnet belong to two families.) This observation

118

implies that malware samples that visit the same MalEC2Subnet are very likely to

belong to the same malware family.

23 46 50 54 75 79 107 122 174 175 184 204
0

100

200

300

400

500

600

700

MalEC2Subnet (/8 Subnet)

N
u

m
b

e
r

o
f

M
a
li
c
io

u
s
 A

p
p

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SubnetCoverage

F
ra

c
ti

o
n

 o
f

M
a
lE

C
2
S

u
b

n
e
ts

Top One Family
Top Two Families

(a) Number of Malicious Apps (b) FamilyCoverage

Figure 6.8: The distributions of the number of malicious apps, and the famliy cov-
erages among MalEC2Subnets.

From the above experiments, we can find that malware samples that visit the

same cloud server/subnet are very likely to belong to the same malware family. This

server vendor locality property (i.e., malware authors tend to rent servers from the

same cloud vendor) is interesting. This shows that with the popularity of cloud

hosting services, malware authors begin to use cloud machines as remote servers.

That is mainly because comparing with deploying personal servers, it will cost less

time/money to use a cloud vendor, and the anonymity is also better preserved. From

defense point of view, once we find specific cloud servers that are used by malware

authors to communicate with their malware samples, we may likely to find more such

servers in the same cloud hosting network that belong to the same malware authors.

119

6.4.3.3 E↵ectiveness of IP/Domain Blacklists

Since malware samples tend to use specific IP addresses and networks, we raise

the following question. Question: Is that e↵ective to use existing IP (or domain

name) blacklists to find Android malware? Empirical Answer: Not very e↵ective.

Even after the malware samples in our dataset are submitted to the market for a

long time (more than one year), existing IP (or domain name) blacklists can still

only find a small portion of them.

In this experiment, we extract the servers in MalServers that are labeled as

malicious by using the following four popular domain name and IP blacklists: Virus-

Total [114] (VT), WhatIsMyIPAddress [122] (IPB), Malware Domain List [73] (MDL)

and Malware Domain Blocklist [33] (MDB). More specifically, VirusTotal can also be

used to check malicious IP addresses and domain names. WhatIsMyIPAddress is

a powerful IP blacklist, which integrates results from 78 di↵erent blacklist servers.

Both Malware Domain List and Malware Domain Blocklist are blacklists for identi-

fying malicious domains. Table 6.11 shows the number of identified unique remote

servers and the number of a↵ected apps (malicious apps) by using each blacklist.

BlackList VT IPB MDL MDB

Remote Servers 213 510 5 4

Total 659

A↵ected Apps 735 2,718 22 7

Total 3,210

Table 6.11: The number of identified remote servers and a↵ected malicious apps.

From this table, we can find that both MDL and MDB can only find a very small

number (less than 25) of malicious apps from the dataset of 9,712 malicious apps.

120

Also, even though our malicious apps are collected with the usage of VirusTotal, the

IP/domain name blacklist from VirusTotal can only be used to find 735 (around 7%)

malicious apps. Even combining those four popular blacklists, we can identify only

3,210 (around 33%) malicious apps, not even considering the long time lag of these

IP/domain blacklists. This observation implies that although existing IP/domain

blacklists can be used to facilitate finding malicious apps, this strategy is neither

e�cient nor e↵ective to catch a high coverage of the malware.

6.4.3.4 Malware Community

Due to the observation that malware samples frequently share the same authors

and remote servers, we next analyze whether the submissions of the malicious apps

are more likely to be organized activities or isolated actions. Question 4: Are there

any Android malware communities? Our Empirical Answer: Yes. A few large mal-

ware communities contribute to a great amount of malicious apps.

In this experiment, we cluster malicious apps into communities according to their

community relationships. More specifically, we consider there is a community rela-

tionship between two malicious apps, if they share the same author name or at least

one malicious server. The intuition behind this is that if two apps share the same

author name (market account), they essentially belong to the same author, thus be-

long to same organization (community). If two apps share the same remote servers,

they are also very likely to belong to the same organization, who use those remote

servers to achieve their malicious goals.

To model such community relationships among malicious apps, we build a com-

munity relationship graph G = (V,E). In this graph, each node (vi) is represented

as a two-tuple (app, author name), in which the author name is the concatenation

of the account name and the market name. There is an edge eij between node vi

121

and vj, if these two nodes share the same app (i.e., the same value of MD5) or the

same author name, or at least one malicious server in the dataset of FTMalServers.

Accordingly, our relationship graph contains 9,850 nodes and 621,166 edges, as visu-

alized in Figure 6.9.

Figure 6.9: The visulazation of the community graph for malicious Android apps.

From this figure, we can clearly find that the majority (80.67%) of the nodes

are connected with other nodes. Also, there are a few large subgraphs that are well

connected. This observation implies that there are some large malware communities.

We next examine the percentage of the malware samples covered by those large

communities in all malware samples. More specifically, we consider each connected

subgraph as one community, and thus obtain 847 communities. We next rank those

122

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rank (N)

C
u

m
u

la
ti

v
e
 C

o
v
e
ra

g
e

10

Figure 6.10: The distribution of the cumulative community coverage under di↵erent
ranks.

communities based on their size. For each community, we calculate its coverage (ci),

which is the percentage of its malware samples in all malware samples. Then, sum-

ming up the coverages from the top community to the nth community, we calculate

the cumulative coverage as Cn =
Pn

i=1 ci. Figure 6.10 shows the distribution of the

cumulative coverage with the value of n.

From this figure, we can find that the top 10 communities covers over 35% of

all malware samples, and the top 100 communities covers covers over 55% of all

malware samples. This observation implies that a few communities contribute to a

large number of malware samples.

We next make an in-depth analysis of the top three communities. More specif-

ically, we term one app’s duration as the time period (in days) between the app’s

submission time and the date when we crawled it; we term one apps’ infection rate

as the ratio of its downloading numbers to its duration. Then, we measure those

five communities’ size, average downloading number, average duration, and average

123

infection rate (see Table 6.12).

Rank Size Downloading Number Duration Infection Rate

1 1,895 7,551 117 180

2 1,031 453 152 3.75

3 85 569 99 5.77

Table 6.12: In-depth analysis of the top three communities.

From this table, we can see that the malware samples in all these three commu-

nities have been downloaded many times, and last for a long time. More specifically,

the average downloading number for the top community is even higher than 7,500;

the average duration of all the communities are longer than three months. On each

day, the malware samples in all these three communities are downloaded more than

3 times, especially this number increases to 180 in terms of the top community.

We further analyze the inner community properties of these three communities.

In the top community, the most frequently used server is “217.65.36.4”, shared by

527 malicious apps. Once directly visiting this server by using its IP address, it

shows a “404” error. However, this server is one C&C server, located in Israel, used

for communicating malware samples belonged to the family of Plankton.P. Once

victims install this type of malware, the malware will download actual malicious

payloads from the C&C server instead of directly executing malicious behaviors.

Thus, this type of malware is more stealthy and di�cult to detect than other types

of malware. That might be one of the reasons why this community of malware could

allure a great number of downloads. In this community, we also find one malicious

GooglePlay account, named “Antonio Tonev”, shared by 30 malicious apps. In fact,

this developer has been reported as an notorious malware author to submit multiple

124

malicious apps in GooglePlay [82].

In both the second and third communities, those apps are connected due to the

abusive usage of the Android market by one malicious market account. In the second

community, one malicious account named “hongxiutianxiang” submitted 1,024 mali-

cious apps to the market of Anzhi. This malicious account mainly inserted malicious

payloads into benign WallPaper apps and E-book apps. In the third community, one

malicious account named “phoneliving” submitted 85 malicious apps to the market of

SlideMe. These malicious apps are developed mainly by inserting malicious payloads

(including malware downloaders and abusive advertisements) into game apps.

From the above observation, we can find that some malicious apps have strong

community relationships. This implies that if we can find a few malicious apps in

particular malware communities, we could find more malicious apps belonged to the

same communities.

6.5 Combating Malicious Apps

We next discuss a defensive technique that can be used to e�ciently catch more

malicious apps, as well as to further verify the correctness of the defense insights

obtained from the previous analysis.

Considering that there are a large number of submissions to Android markets, not

all Android markets have su�cient time/resource/capability to make a deep security

analysis of their apps. In fact, due to those practical restrictions, most of current

third-party Android markets do not apply any vetting process to examine the quality

of their apps. Thus, a lightweight inference algorithm, to guide quickly identifying

more suspicious apps instead of analyzing all apps given limited resources or time, is

indeed needed, especially for those third-party markets. In this section, we propose

a lightweight algorithm (AMIA) to infer malicious apps based on our analysis of

125

the market-level and network-level behaviors of Android malware ecosystem. Note

that our inference algorithm is positioned as a complementary, lightweight strategy

to quickly find those more suspicious apps. The limitation of our approach will be

discussed in Section 6.5.3. In practice, we envision AMIA could be combined with

existing detection approaches (e.g., the permission and API used by the apps) for

more complete protection of the Android market.

6.5.1 Design of Inference Algorithm

In brief, our inference algorithm (AMIA) propagates malicious scores from a

seed set of known malicious apps to other apps according to the closeness of their

community relationships. If an app accumulates a su�cient malicious score, it is

more likely to be a malicious app.

The intuition is based on the two observations found in our previous analysis

of the market-level and network-level behaviors: (1) Malware authors tend to use

the same market accounts to spread multiple malware samples, and within a short

time period. Thus, an app sharing the same author names (market accounts) with

known malicious apps are more suspicious, especially when their submission times are

close; (2) A few Android malware communities contribute a large portion of Android

malware. Thus, by propagating malicious scores from the seed malware samples,

we can find out more unknown malware samples with close community relationships

with those seeds.

With the above intuitions, we then describe the design of AMIA in details. To

infer malicious apps from a set of U unknown apps8 by starting from a known seed set

of M malicious apps, similar to the way of obtaining malware communities, we build

a Malicious Relevance Graph by using these (M + U) apps, denoted as G = (V,E).

8In our preliminary experiment, we use all collected malicious apps from GooglePlay, SlideMe and
Anzhi.

126

In this graph, each node (vi) is represented as a two-tuple (app, author name). There

is an edge eij between node vi and vj, if these two nodes has the same app (i.e., the

same value of MD5) or the same author name, or their apps share at least one remote

server9.

Then, to model the closeness of their community relationships, we assign a weight

wij 2 E for each edge eij 2 E. As shown in Table 6.13, if two nodes share the same

value of MD5 or author name, the weight of the edge will be added 1.0, respectively.

If two nodes share n remote servers, then the weight will be added based on the

Gaussian Error Function [126] f(n) = 1
2(1 + erf(n�µ

�
)), which can normalize the

weight into the interval of [0, 1]. If the time interval between two nodes’ submission

times is � days, then a value of g(�) = 1.0/(1.0 + �) will be added to the weight10.

Feature MD5 Author Remote Servers Submission Time

Weight 1.0 1.0 f(n) g(�)

Table 6.13: Weights used to build the malicious relevance graph.

Then, for each node whose app is malicious, we assign a non-zero malicious score

and propagate this score to other nodes according to the weights of the edges between

them by using the PageRank algorithm [128]. When the score vector converges after

several propagation steps, we infer the apps in those nodes with high malicious scores

as malicious apps.

9In our preliminary evaluation, we filter out the top 1,000 frequently visited servers by those (M+U)
apps.

10The weight functions used in our empirical exmpriment could be further tuned to achieve better
performance based on di↵erent types of datasets.

127

6.5.2 Evaluation

Since the goal of our propagation-based algorithm is not to cover all malware

samples in the market, an evaluation metric like false negative rate is probably not

appropriate in our scenario. Instead, to evaluate the e↵ectiveness of our inference

algorithm, we consider both the number of correctly inferred malicious apps, termed

as “Hit Number”, and the ratio of Hit Number to the total number of inferred apps,

termed as “Hit Rate”. Thus, a higher Hit Number indicates the algorithm can

catch more malicious apps; and a higher Hit Rate indicates the algorithm can infer

malicious apps more accurately.

These two metrics have been similarly used in several existing inference-based

algorithms (e.g., [138, 137]), where Hit Rate is more reasonable to be used to measure

the accuracy than the false positive rate. Next, we provide our evaluation results by

varying di↵erent selection sizes (i.e., the number of apps inferred in the top list), and

di↵erent seed sizes.

6.5.2.1 Varying Selection Size

As seen in Figure 6.11(a), while increasing the selection size, more malicious

apps could be identified by AMIA. More specifically, starting from 200 seeds and

selecting 5,000 apps from the corpus of over 82,000 apps, our inference algorithm

could correctly find out 3,070 malicious apps. This implies that our lightweight

algorithm can be e↵ectively used to infer more malicious apps. Also, as seen in

Figure 6.11(b), the Hit Rate decreases with the increase of the selection size. That is

mainly because the apps with higher malicious scores are more likely to be malicious.

128

6.5.2.2 Varying Seed Size

As in seen in Figure 6.11(a) and (b), the more seeds we use, the higher Hit

Number and Hit Rate we can achieve by selecting the same size of apps. This

is because when we use more malicious seeds, we have more knowledge about the

community relationships among malicious apps. Thus, the performance of AMIA

could be further improved, when we have more known seed malicious apps. Also, as

shown in Figure 6.11(a), starting from 50 known malware samples, AIMA can find

over 2,000 malicious apps, many of which do not share the same family(type) with

those seeds. This implies although as a complementary and lightweight strategy to

quickly find those more suspicious apps, AMIA is not designed to find all malware

in the markets, it can still be used to find new types of malware.

100 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

Selection Size

H
it

 N
u

m
b

e
r

Seed=50

Seed=100

Seed=200

100 1000 2000 3000 4000 5000

0.4

0.5

0.6

0.7

0.8

0.9

1

Selection Size

H
it

 R
a

te

Seed=50

Seed=100

Seed=200

(a) Hit Number (b) Hit Rate

Figure 6.11: The hit number and hit rate based on VirusTotal.

6.5.2.3 Further Analysis

We further manually analyze those inferred apps that are not labeled as malicious

by VirusTotal blacklist. More specifically, while K = 1, 000, we manually scan the

129

APK files of those apps, with the usage of multiple most recent Android Anti-Virus

tools11. By using three di↵erent sets of seeds (size=50, 100, 200), 266, 217 and 179

inferred apps that are not identified by VirusTotal blacklist are reported as malicious

by other Android anti-virus tools, respectively. This observation also implies that the

Hit Number and Hit Rate showed in Figure 6.11 are only the lower bound achieved

by our inference algorithm. While K = 1, 000, by adding the numbers of malicious

apps identified by VirusTotal (VT) and reported by other Android anti-virus tools,

the actual Hit Number (Actual) can be seen in Table 6.14.

Seed Size 50 100 200

VT Actual VT Actual VT Actual

Hit Number 677 943 732 949 771 950

Table 6.14: The actual hit number by using three di↵erent sets of seeds.

From this table, we can see that our inference algorithm is also a good complement

to existing Android malware blacklist service, (i.e., it can quickly find out more

malicious apps missed by the blacklist). Also, by using three di↵erent sets of seeds,

AMIA can all correctly infer more than 940 malicious apps, while selecting 1,000

apps (i.e., the Hit Rate is higher than 0.94).

6.5.3 Possible Evasions

Malware authors could try to evade our inference algorithms by only submitting

a very small number (e.g., only one) of malicious sample per account. However, this

strategy will significantly limit the e↵ectiveness of distributing malware. Thus, they

may try to create a large number of market accounts and use each account to submit

11This is very time-consuming and tedious work. Thus, it is not practical to use this strategy to
identify malware from a large-scale (e.g., over 70,000) corpus of apps in our data collection phase.

130

one malicious app. However, in many Android markets, it will bring a significant

cost to register a great amount of market accounts. For example, in GooglePlay,

registering each market account requires one valid Google account and paying 25

dollars registration fee. Also, as long as the malware authors use the same groups of

remote servers to communicate with their malware samples, they may still be caught

due to their shared remote servers.

Malware authors may try to increase the false positives of our inference algorithms

by submitting benign apps on the same day when they submit their malware samples.

However, we can use a more strict strategy to filter those benign apps, due to the

fact that those benign apps do not communicate with those remote servers used by

malware.

6.6 Limitation

We note that the number of remote servers extracted by running malware samples

in an emulated Android platform environment is restricted by the coverage of the

execution paths (i.e, whether the apps meet specific conditions to execute the paths

to communicate with remote servers.), a common limitation for all dynamic analysis

based approaches. More specifically, it is challenging to trigger the apps to execute all

networking connections, even with the usage of the current static/dynamic analysis

tools. In our current work, to increase the coverage, we have implemented a UI

fuzzing tool to simulate real users’ usage of the apps, and inserted hundreds of UI

events.

6.7 Summary

Similar to the measurement of the malicious OSN accounts’ ecosystem, in this

chapter, we described an in-depth empirical analysis of the market-level and network-

level behaviors of the Android malware ecosystem. We observed find that neither

131

existing Android malware blacklists nor IP/domain blacklists are e↵ective to stop

malware authors from submitting malicious apps to Android markets. We also ob-

served that malware authors tend to submit multiple malware samples within a short

time period, and discovered a few communities that are in charge of a large portion

of Android malware. We further proposed an e↵ective algorithm to infer more ma-

licious apps by starting from a seed set of known malicious ones and exploiting the

properties of their community relationships. This approach is promising because it

requires the disassembling of Android apps nor the deep domain knowledge of the

Android system.

132

7. AUTOMATED MINING MALICIOUS BEHAVIORS IN ANDROID

APPLICATIONS

Besides providing an inference-based algorithm to find more malicious Android

apps, this chapter further presents a more complete detection scheme by dissem-

bling Android apps and deeply analyzing the programming procedure used in known

Android malware.

We introduce DroidMiner, a new approach to salably detect and characterize

Android malware through robust and automated learning of fine-grained program-

ming logic and patterns in known malware. Specifically, DroidMiner extends tradi-

tional static analysis techniques to map the functionalities of an Android app into a

two-tiered behavior graph. This two-tiered behavior graph is specialized for model-

ing the complex, multi-entity interactions that are typical for Android applications.

Within this behavior graph, DroidMiner automatically identifies modalities, i.e., pro-

gramming logic segments in the graph that correspond to known suspicious behavior.

The set of identified modalities is then used to define a modality vector. DroidMiner

then uses common modality vectors to o↵er a more robust classification scheme, in

which variant applications can be grouped together based on their shared patterns

of suspicious logic.

We present and implement a prototype of DroidMiner for discovering and auto-

matically extracting malware modalities. While our e↵orts are primarily focused on

identifying and then characterizing malware behavior, aspects of our methodology

are also directly applicable to automated characterization of a broad class of Android

application behaviors, including the detection of shared security vulnerabilities [22].

We evaluate DroidMiner using 2,466 malicious apps, identified from a corpus of over

133

67,000 third-party market Android apps, plus an additional set of over 10,000 o�cial

market Android apps from GooglePlay [48]. Specifically, we measure the utility of

DroidMiner modalities with respect to three specific use cases: (i) malware detection,

(ii) malware family classification, and (iii) malware behavioral characterization. Our

results validate that DroidMiner modalities are useful for classification and capable

of isolating a wide range of suspicious behavioral traits embedded within parasitic

Android applications. Furthermore, the composite of these traits enables a unique

means by which Android malware can be identified with a high degree of accuracy.

We make the following contributions:

• A description of our new two-tiered behavioral graph model for characteriz-

ing Android application behavior, and labeling its logical paths within known

malicious apps as malicious modalities.

• The design and implementation of DroidMiner, a novel system for automated

extraction of Android app modalities, and using machine learning strategies to

classify a given app under the modality pattern of a known malware family.

• An in-depth evaluation of DroidMiner with respect to its run-time performance

and e�cacy in malware detection, family classification, and behavioral charac-

terization.

7.1 Motivation and System Goals

Program analysis techniques (e.g., data flow analysis and control flow analysis)

have been widely used to analyze and detect traditional malware. Kolbitsch et

al. proposed to detect host-based malware by extracting malware’s behavior graph

through analyzing the function-call flow [60]. Fredrikson et al. proposed to utilize

control flow to extract discriminating specifications to identify a class of malware

134

[41]. Christodorescu et al. proposed to mine specific malicious behavioral patterns

(such as decryption loops) from tracking the data flow and control flow of malware

[26, 25].

7.1.1 Case Study

We motivate our system design by introducing the inner working of a real-

world malicious Android application. This malware sample (MD5: c05c25b769919f

d7f1b12b4800e374b5) belongs to the family of ADRD (a.k.a HongTouTou). It at-

tempts to perform the following malicious behaviors in the background after the

phone is booted: stealing users’ personal sensitive information (e.g., IMEI and IMSI)

and sending them to remote servers, sending and deleting SMS messages, download-

ing unsolicited apps, and issuing HTTP search requests to increase websites’ search

rankings on the search engine.

Figure 7.1: Capabilities embedded in malware from the ADRD family.

As illustrated in Figure 7.1, HongTouTou registers a receiver (named “MyBoolSer-

vice”) to receive the boot intent BOOT COMPLETED message. Once the phone is

booted, the receiver will send out an alarm every two minutes and trigger another

135

receiver (named “MyAlarmReceiver”) by using three API calls: AlarmManager(),

getServiceSystem(), and getBroadcast(). Then, MyAlarmReceiver starts a back-

ground service (named “MyService”) by calling startService() in its lifecycle call

onReceive(). Once the service is triggered through onCreate() or onStart()1, it

will read the device ID (getDeviceId()) and subscriber ID (getSubscriberId())

in the phone, and register an object handler to access the short message database

content://sms/)). Before sending out sensitive information and communicating

with the C&C server, the service obtains network information (e.g., network types

such as “CMWAP”, “UNIWAP” and “wifi”) by invoking two Framework API calls:

ConnectivityManager() and getActiveNetworkInfo(), and reading the content

provider content://telephony/carriers/preferapn. It then encrypts personal in-

formation by using Cipher.getInstance(), Cipher.init() and Cipher.doFinal(),

and exfiltrates encrypted data through SMS by using SmsManager.getDefault()

and sendTextMessage(), and issuing HTTP requests. Meanwhile, the service mon-

itors the changes to the SMS Inbox database by calling onChange() and deleting

particular messages using delete(). Finally, it also attempts to download unso-

licited APK files (e.g., “myupdate.apk”), to receive C&C commands and data, and

to visit search engines by issuing HTTP requests.

The above description motivates an important design premise that when malware

authors design malicious apps to achieve specific malicious behaviors, they typically

require the use of sets of framework API calls and specific resources (e.g., content

providers). More specifically, although attackers may attempt to launch malicious

behaviors in a more surreptitious way, they would still have to use those framework

APIs or access those important resources.

1If the service is triggered as the first time, it will call onCreate and onStart; otherwise, it will only
call onStart.

136

7.1.2 Goals and Assumptions

The goal of DroidMiner is to automatically, e↵ectively and e�ciently mine An-

droid apps and interrogate them for potentially malicious behaviors. Given an un-

known Android app, DroidMiner should be able to determine whether or not it is

malicious. Going beyond just providing a yes or no answer, our system should be

able to provide further evidence as to why the app is considered as malicious by

including a concise description of identified malicious behaviors. This kind of infor-

mation is typically considered the hallmark of a good malware detection system. For

example, DroidMiner can inform us that a given app is malicious, and that it con-

tains behaviors such as sending SMS messages and blocking certain incoming SMS

messages. With such information, an informed analyst could further infer that this

is probably a money-stealing app that uses SMS to register for a premium service,

spends money, and then suppresses the end-user notification.

The input into our system is an Android application developed with the Android

SDK. Currently, we do not analyze native Android applications implemented using

the Android Native Develop Kit (Android NDK). According to our observations, an

overwhelming majority of Android applications today are developed using the An-

droid SDK. Furthermore, the vast majority of malicious behaviors in Android apps

are achieved by using Android SDK rather than Android NDK. Even for those ma-

licious apps that use the NDK to achieve some malicious behaviors, they typically

also use certain Android Framework APIs to obtain some auxiliary information. For

example, “rooting” malware (e.g., samples in the family of DroidKungFu), which uti-

lizes native code to achieve privilege escalation, still needs to use specific Framework

APIs to obtain auxiliary information (e.g., the version of the operating system) to

successfully root the phone. Hence, the presence of such APIs in the Dalvik bytecode

137

!"#"#$% &'(#)*+,)-#%

./(%0,/(/%

!,12,3(%4(5(+)-#%

6(7,8"-3%07,3,+5(3"9,)-#%

!,12,3(%:,;"1<%
01,//"*+,)-#%

=(#/")8(%
>-'(/%

:,;%?%
:,;%@%
:,;%A%
B%
:,;%>%

:C#+)-#%
!-',1")(/%

D(/-C3+(%
!-',1")(/%

6(7,8"-3%E3,F7/%

6(7,8"-3%E3,F7/%

!,1"+"-C/%,#'%6(#"$#%
G#'3-"'%,FF/%H-3%;"#"#$%

!-',1"5<%%
E(#(3,)-#%

6(7,8"-3%
E3,F7%
E(#(3,)-#%

=(#/")8(%
>-'(%
IJ53,+)-#%

!-',1"5<%K(+5-3/%

LMN?N?NMN?NMO%
LMN?N?NMN?NMO%
LMN?N?NMN?NMO%
LMN?N?NMN?NMO%

6(7,8"-3%
E3,F7%
E(#(3,)-#%

!-',1"5<%%
K(+5-3%
E(#(3,)-#%

0,#'"',5(%G#'3-"'%,FF%

Figure 7.2: DroidMiner System Architecture

could still provide hints for detecting such malware. Extending our system to include

complete analysis of native code in Android applications is future work and outside

the scope of this dissertation.

7.2 System Design

DroidMiner contains two phases: Mining and Identification. As illustrated in

Figure 7.2, in the mining phase, DroidMiner takes both benign and malicious Android

apps as input data and automatically mines malicious behavior patterns or models,

which we call modalities. In the identification phase, our system takes an unknown

app as input, extracts a Modality Vector (MV) based on our trained modalities, and

outputs whether or not it it is malicious, and which family it belongs to. In addition

to a simple yes/no answer, our system can also characterize the behaviors of the app

given the Modality Vector representation.

An important component in our system is the Behavior Graph Generator, which

takes an app as input and outputs a behavior graph representation. As the anal-

ysis of a real-world malicious app shown in Figure 7.1, although Android malware

138

authors have significant flexibility in constructing malicious code, they must obey

certain specific rules, pre-defined by the Android platform, to realize malware func-

tionality (e.g., using particular Android framework APIs and accessing particular

content providers). These framework APIs and sensitive content providers capture

the interactions of Android apps with Android framework software or phone hard-

ware, which could be used to model Android apps’ behaviors. With this intuition,

DroidMiner builds a behavior graph based on the analysis of Android framework

APIs and content providers used in apps’ bytecode.

In the Mining phase, DroidMiner will attempt to automatically learn the ma-

licious behaviors/patterns from a training set of malicious applications. The basic

intuition is that malicious apps in the same family will typically share similar func-

tionalities and behaviors. DroidMiner will examine the similarities from the behavior

graphs of these malicious apps and automatically extract common subsets of suspi-

cious behavior specifications, which we call modalities. From an intrusion detection

perspective, these modalities are essentially micro detection models that character-

ize various suspicious behaviors found in malicious apps. We provide more detailed

descriptions in Section 7.2.2.

In the Identification phase, DroidMiner will transform an unknown malicious

application into its behavior graph representation (using Behavior Graph Extrac-

tor) and extract a Modality Vector (based on all trained modalities), described in

Section 7.2.3. Then, DroidMiner can apply machine-learning techniques to detect

whether or not the app is malicious. DroidMiner also has a data-mining module that

implements Association Rule Mining to automatically learn the behavior character-

ization of a given Modality Vector, described in Section 7.2.4.

139

7.2.1 Behavior Graph and Modality

7.2.1.1 Behavior Graph

DroidMiner detects malware by analyzing the program logic of sensitive Android

and Java framework API functions and sensitive Android resources. To represent

such logic, we use a two-tiered graphical model. As shown in Figure 7.3, at upper

tier, the behaviors (functionalities) of each Android app could be viewed as the in-

teraction among four types of components (Activities, Services, Broadcast Receivers,

and Content Observers). We represent this tier using a Component Dependency

Graph (CDG). At the lower tier, each component has its own semantic functionali-

ties and a relatively independent behavior logic during its lifetime. Here, we represent

this independent logic using Component Behavior Graphs (CBG).

Figure 7.3: Two-tier behavior graph.

The Component Dependency Graph (CDG) (upper tier of Figure 7.3) rep-

resents the interaction relationships among all components in an app. In particular,

each node in the CDG is a component (Activity, Service, or Broadcast Receiver).

(Note that multiple nodes could belong to the same type of component.) There is

140

an edge from one node vi to another node vj, if the component vi could activate

the start of component vj’s lifecycle. For example, in terms of the malware sample

illustrated in Figure 7.1, since MyAlarmReceiver could activate MyService by using

startService(), its CDG has an edge from a broadcast receiver node MyAlarmRe-

ceiver to a service node MyService.

The Component Behavior Graphs (CBG) (lower tier of Figure 7.3) rep-

resents each component’s lifetime 2 behavior logic (functionalities), i.e., each CBG

represents the control-flow logic of those permission-related Android and Java API

functions, and actions performed on particular resources of each component. Specif-

ically, as illustrated in Figure 7.3, a CBG contains four types of node:

• A root note (vroot), denoting the component itself (e.g., one Activity or one

Service).

• Lifecycle functions (Vlcf), used to achieve the runtime logic of specific type of

component (e.g., onCreate() in an activity, onReceive() in a receiver, and

onStart() in a service).

• Permission-related API functions (Vpf), representing those permission-related

(Android SDK or Java SDK) API functions (e.g., Java API Runtime.execute()

or Android API sendTextMessage()). For simplicity, in the rest of this chap-

ter, we refer both lifecycle functions and API functions as framework API

functions.

• Sensitive resource (Vres), i.e., sensitive data (files or databases) that are ac-

cessed by the component. In this dissertation, we consider resources as con-

tent providers (e.g., content://sms/inbox/), which could be extended to any

2Lifetime, as defined by the Android, is time between the moment when the Android OS considers
a component to be constructed and the moment when the Android OS considers the component
to be destroyed.

141

other type of sensitive data. The usage of framework API functions and sen-

sitive resources in an app essentially captures the interactions of an app with

the Android platform hardware and sensitive data. Hence, the control-flow

logic of framework API functions and the actions performed on those sensitive

resources reflect an application’s range of capabilities.

The edges in CBG represent the control-flow logic of framework API functions

and sensitive resources. In terms of framework API functions, we consider that there

is a direct edge from function node vi to vj in the CBG, if (1) when vi and vj are

in the same control-flow block, vj is executed just after vi with no other functions

executed between them; or (2) when vi and vj are in two continuous control-flow

blocks Bi and Bj respectively (i.e., Bj follows Bi), vi is the last function node in Bi

and vj is the first node in Bj. Then, we call vj “is a successor of” vi. For example,

in terms of the malware sample illustrated in Figure 7.1, there is an edge from

smsManager.getDefault() to sendTextMessage(). In terms of sensitive resources,

since our work mainly focuses on analyzing the control-flow of sensitive functions

rather than the data flow of sensitive data, we simply consider that there is an edge

from the root to the resource vr, if the component uses that sensitive resource3.

7.2.1.2 Modality

We use the term, modalities to refer to malicious behavior patterns that are

mined from behavior graphs of Android malware. More specifically, each modality is

an ordered sequence of framework API functions (function modality) or a set of sen-

sitive resources (resource modality) in commonly shared in malicious apps’ behavior

graphs4, which could be used to implement suspicious activities (e.g., sending SMS

3We could also choose to build an edge from a framework API function (that uses that resource)
to the resource, which relies on the data flow analysis.

4Although modalities described in this dissertation are localized within a CBG, our work could be
extended to include cross CBG modalities with the usage of CDG.

142

messages to premium-rate numbers or stealing sensitive information). As an exam-

ple, the malware sample illustrated in Figure 7.1 relies on a function modality with

an ordered sequence of two framework functions (onChange() ! ContentResolver-

.delete()), and a resource modality (content://sms/inbox/) to partially achieve

the malicious behavior of deleting messages in the SMS inbox.

7.2.2 Mining Modalities

Our desire to conduct e�cient mining of modalities from large malware corpora

calls for an automated approach to mining malicious patterns. We now describe

the details of our modality mining process, which involves the following three steps:

Behavior Graph Generation, Sensitive Node Extraction, and Modality Generation.

7.2.2.1 Behavior Graph Generation

The generation of the behavior graph of an app contains two phases: generating

CDG and generating CBG. The generation of CDG is relatively straightforward. The

nodes in an app’s CDG are acquired by analyzing activities, receivers, and services

registered in its manifest file (“AndroidManifest.xml”). As a special case, Droid-

Miner extracts runtime the Broadcast Receiver by analyzing instances of Context

.registerReceiver() instead of parsing the manifest file. Much like [139], Droid-

Miner acquires the edges of an app’s CDG by analyzing the usage of intents in each

component. For example, an intent used in startActivity(Intent) can activate an

activity; an intent used in startService(Intent) can start a background service.

Since Android is component driven, and each component has its own lifetime ex-

ecution logic, the extraction of control-flow logic of framework API functions (rather

than the control-flow logic of methods in traditional program analysis) described in

the model of our CBG is more complex, which involves the following three steps: Gen-

erate Method Call Graph, Generate Control-Flow Graph, and Replace User-Defined

143

(a) MCG (b) CFG

(c) Transformed CFG (d) CBG with API functions

Figure 7.4: Illustration of generating a CBG with framework API functions.

Methods:

• Step 1: Generate Method Call Graph. For each component, our system

generates a method call graph (MCG) containing two types of nodes: Android

lifecycle functions and user-defined methods. Since each type of component has

fixed lifecycle functions (e.g., onCreate() in an Activity), DroidMiner extracts

lifecycle functions by analyzing method names in the component according to

the type. Those user-defined methods could be identified by using a static

analysis tool. As illustrated in Figure 7.4(a), there is a directed edge from

method M0 to M1, which implies M0 calls M1.

• Step 2: Generate Control-Flow Graph. To extract the programming

logical usage of framework API calls, DroidMiner first extract each method’s

control-flow graph (CFG) via identifying branch-jump instructions in the method’s

144

bytecode (e.g., if-nez or packed-switch). Each node is a block of Dalvik

bytecode without any jump-branch instructions. For example, M0 with five

blocks is illustrated in Figure 7.4(b). There is a directed edge from block B0

to B1, if B1 is a successor block of B0. Then, each block is represented as or-

dered sequence of framework API functions and user-defined methods, which

are extracted from the Dalvik bytecode with function call instructions (e.g.,

invoke-direct). We label a block as “null”, if it does not contain any func-

tion call instructions . For example, in the method M0, if (1) B0 contains two

API functions and user-defined method M1, with the execution order of f01,

M1 and f02; (2) B1 and B3 do not contain any function calls; (3)B2 contains

method M2 and one API function f21; (4) B3 contains one API function f41,

then the control-flow graph of M0 could be formed as Figure 7.4(c).

• Step 3: Replace User-Defined Methods. As illustrated in Figure 7.4(c),

since each leaf in the method-call graph does not call any other user-defined

method, the leaf either contains a subgraph of framework API functions or

is “null”. Then, our approach replaces its position in its parents’ control-flow

graphs with that subgraph. This process is recursively performed, until all user-

defined methods are replaced with framework API functions. For example, if

(1) M1 contains three framework API functions (fm1, fm3, and fm4) and one

“null” node after replacing its children methods M3 and M4 as illustrated in

the middle of Figure 7.4(d), and M2 does not contain any function nodes, then

after replacing its children methods M5 and M6, the graph will be transformed

to Figure 7.4(d). Finally, the CBG will be generated by removing those leaves

that are “null”. After the above three steps, each app’s CBG could be generated

that represents the control flow of its framework API calls.

145

7.2.2.2 Sensitive Node Extraction

A modality is essentially an ordered sequence of framework API functions and a

set of sensitive resources that are commonly observed in malicious apps behavioral

graphs. We denote those framework API functions and sensitive resources as sensitive

nodes (the former are called sensitive function nodes, while the latter are called

sensitive resource nodes).

We use two strategies to automatically extract sensitive nodes. The first strategy

is based on the observation that malware samples belonging to the same family

tend to share similar malicious logic. Such an observation has been validated by a

recent study, which reports that Android malware in the same family tends to hide

in multiple categories of fake versions of popular apps. Based on this intuition, we

group known malware samples according to their families. (Note that the process of

deriving the family label for known malware is only used in the mining phase and

depends on the way of collecting malware. DroidMiner automatically acquires the

malware’s family label by parsing antivirus reports. More details are provided in

Section 7.3.2).

Then, for each malware family, we extract function nodes and resource nodes

that are commonly shared by at least ✓% members in this family 5.

Our second strategy is based on the observation that malware samples hosted on

third-party market websites tend to be parasitic, i.e., they masquerade as popular

benign apps by injecting malicious payloads into original benign apps. Based on

this intuition, we automatically extract sensitive nodes by calculating the (�), i.e.,

additional bytecode between the known malicious app and o�cial Android apps

sharing similar application names. The o�cial apps are acquired by automatically

5In our preliminary experiments, we set the threshold as 30%.

146

searching for known malicious app names in GooglePlay. (We skip this process for

known malware whose names are not registered in GooglePlay.)

In practice, our two strategies can be complementary. To detect malicious apps,

our approach relies on the control-flow logic of these sensitive nodes. Also, the

e↵ect of those false positive sensitive nodes could be further decreased when we add

benign apps in training the detection model to decrease the weight of those benign

patterns. In terms of the false negatives induced by the second strategy, although

not all apps from the GooglePlay are benign, this market is still the only o�cial one

with the best reputation for Android apps. Also, if the known malware family set

contains su�cient malware samples, those missed patterns through the comparison

with o�cial apps could still be found by using the first strategy.

7.2.2.3 Modality Generation

As defined in Section 7.2.1, we now detail how we automatically generate function

modalities and resource modalities.

Intuitively, our system generates function modalities by mining an ordered se-

quence (path) of sensitive function nodes from known malware samples’ behavior

graphs, as illustrated in Figure 7.2. In particular, for each path of each known mal-

ware’s CBG, we denote a subpath of it as a sensitive path, if it starts from one

sensitive function node and ends with another sensitive function node. Then, after

removing those non-sensitive nodes sitting in the middle of the sensitive path, we

generate function modalities from the transformed sensitive path by extracting all

of its subsequences. Generating function modalities involves the following two steps:

Extract Sensitive Path and Extract All Subsequences.

• Step 1: Extract Sensitive Path. For each pair of sensitive nodes Si and

Sj, we extract sensitive paths Pij of framework API functions from all known

147

malware samples’ CBGs, if Pij starts from Si and ends with Sj. In particular,

for each path in the malware’s CBG, we generate modalities from the longest

sensitive path, which will cover the results extracted from those shorter sensi-

tive paths. As an illustrative example in Figure 7.4(d), if f01, fm4 and f02 are

sensitive nodes, the longest sensitive path could be illustrated as Figure 7.5(a).

Then, we could generate a transformed path of function nodes, through remov-

ing non-sensitive nodes in the middle. In the previous example, a transformed

sensitive path f01 ! fm4 ! f02 can be extracted by removing two non-sensitive

nodes fm1 and “null” in the middle.

• Step 2: Extract All Subsequences. We generate function modalities by

extracting all order-preserving6 subsequences of the transformed path of sensi-

tive function nodes. Accordingly, we could mine four function modalities from

the previous example (see Figure 7.5(b)). Since DroidMiner utilizes all sub-

sequences to generate the modalities instead of using the original single long

sequence/path, DroidMiner is resilient to many evasion attempts by malware,

e.g., insertion of loop framework API calls in the middle that serve no purpose

other than adding noise. Hence, our modalities are a more robust representa-

tion of specific malware programming logic than using simple call sequences or

frequencies.

7.2.3 Identification of Modalities

After mining modalities, the second phase of DroidMiner involves the identifica-

tion of modalities in unknown apps (i.e., determine which modalities are contained

in unknown apps). As illustrated in Figure 7.2, for each unknown app, DroidMiner

6This implies that the order of two function nodes in the subsequece remains the same as in the
original path.

148

f01� fm1� null� fm4� f02�
(a) Extract Sensitive Path

f01� fm4� f01� f02�

(1) Modality 1 (2) Modality 2

fm4� f02� fm4� f02�f01�

(3) Modality 3 (4) Modality 4
(b) Extract All Subsequences

Figure 7.5: An illustration of function modality generation.

identifies its modalities by extracting its behavior graph and generating a Modality

Vector, specifying the presence of mined modalities.

More specifically, for each unknown app, DroidMiner generates its behavior graph

and extracts sensitive paths from the graph. Then, DroidMiner obtains all potential

sub-paths by generalizing those sensitive paths. For each sub-path, if it is a modality

(belonging to the mined modality set), we consider this app to contain this modality.

This process of modality extraction is highly e�cient due to the limited number of

sensitive nodes present in each app.

In this way, once M di↵erent modalities are mined from known malware samples,

each app could be transformed into a boolean vector (X1, X2, . . . , XM), denoted as a

“Modality Vector”: Xi = 1, if the app contains the modality Mi; otherwise, Xi = 0.

In this way, an app’s Modality Vector could represent its spectrum of potentially

malicious behaviors.

7.2.4 Modality Use Cases

We introduce how to use an Android app’s Modality Vector to address the fol-

lowing three use-case scenarios: Malware Detection, Malware Family Classification,

and Malicious Behavior Characterization.

149

7.2.4.1 Malware Detection

The first use case involves simply determining whether or not an Android app is

malicious. In fact, it is challenging to make a confirmative decision. For example,

although some sensitive behaviors (e.g., sending network packets or SMS messages

to remote identities) are commonly seen in malware, without a deep analysis about

such behaviors (e.g., the analysis of the reputation of those remote identities), we

cannot blindly declare all apps with such behaviors to be malware. However, as

seen in Table 7.6, Android malware typically needs to use multiple sensitive func-

tions (or modalities) to achieve its objectives: e.g., (i) sending SMS AND blocking

notifications or (ii) rooting the phone AND installing new apps.

According to this observation, DroidMiner considers an app to be malicious only

if the cumulative malware indication from all of its modalities exceeds a su�cient

threshold. That is, the single usage of one modality in a benign app will not cause

it to be labeled as malware. We use machine learning techniques (described in

Section 7.3) to learn the indication of each modality used in the cumulative scoring

process. More specifically, we consider each of mined modalities as one detection

feature in the machine-learning model. Thus, the number of detection features is

equal to the dimensionality of the Modality Vector. By feeding modality vectors

extracted from known malware and benign apps into the applied machine-learning

classifier, the indication of those modalities that are highly correlated with malicious

apps are up-weighted in judging an app to be malicious; those modalities that are

also commonly used in benign apps are down-weighted.

DroidMiner could also be designed to detect malware using pre-defined (strict)

detection rules, like policy-based detection systems, which may lead to a lower false

positive rate. However, such a policy-based design requires considerable domain

150

knowledge and comprehensive manual investigations of malware samples, which can

limit overall scalability and thus is more suitable to be applied to detect specific

attacks. Our goal of designing a fully automated approach motivated us to use the

learning-based approach instead of policy-based ones.

7.2.4.2 Malware Family Classification

Another use case is automatically determining which malware family an malicious

app that is determined to belong to. This problem is also important for understand-

ing and analyzing malware families. In fact, many antivirus vendors still rely on

common code extraction techniques, which typically manually extract signatures af-

ter gathering a large collection of malware samples belonging to the same malware

family.

Di↵erent malware samples in the same family tend to share similar malicious

behaviors, which could essentially be depicted by Modality Vectors. Thus, the de-

gree of similarity between the Modality Vectors of two malware samples provides an

indication of whether these two samples belong to the same family. Hence, with the

knowledge of Modality Vectors mined from malware samples belonging to existing

malware families, we could build a malware family classifier for unknown malicious

apps by using machine learning techniques.

7.2.4.3 Malicious Behavior Characterization

The final use case involves characterizing the specific malicious functionality that

is embedded within a candidate app. To solve this problem, we essentially need to

know which modalities could be used to achieve specific malicious behaviors. Then,

if an app contains those modalities, we could claim with high confidence that the

app is malicious.

To realize this goal, we use a well-known data mining technique, called “Associ-

151

ation Rule Mining”. The problem of association rule mining is defined as follows:

Let A = {a1, a2, . . . , an} be a set of binary attributes. Let B = {B1, B2, . . . , Bm}

be a set of items, where Bi = {ai1, ai2, . . . , ain}. A rule is defined as an implication

of the form X) Y , where X, Y ✓ A and X \ Y = �. The attribute sets X and

Y are called antecedent and consequent of the rule, respectively. It represents the

scenario that if the attributes in X are true, then the attributes in Y are also true.

The support supp(X) of an attribute set X is defined as the proportion of items in

the item set whose attributes in X are all true. The confidence of a rule is defined as

conf(X) Y) = supp(X
S

Y)/supp(X), which could be interpreted as an estimate

of the probability P (Y |X).

We abstract this as an Association Rule Mining problem, i.e., we need to mine

relationships (association rules) from modalities to malicious behaviors. More specif-

ically, DroidMiner derives association rules by analyzing the relationship between the

modality usage in existing known malware families and their corresponding malicious

behaviors. e.g., Zsone has two known malicious behaviors: (i) sending SMS and (ii)

blocking SMS. Hence, we attempt to associate modalities generated from this family

to these two behaviors.

Our assumption is that in most cases malware samples belonging to particular

malware families tend to express similar malicious behaviors. (While our ground

truth may not be perfect, we believe that this assumption will be valid for most

cases.) More specifically, given a set of modalities M = {M1,M2, . . . ,Mn} and a

set of malware samples S = {S1, S2, . . . , Sn} with their malware family names, for

each malware sample Si, we extract its Modality Vector SMi = {Mi1,Mi2, . . . ,Mip}.

Given a set of malicious behaviors B = {B1, B2, . . . , Bq}, we generate a behavior

vector for Si, Bi = {Bi1, Bi2, . . . , Biq}, whereBik = 1, if Si’s family contains malicious

behavior Bk; otherwise Bik = 0. Accordingly, as illustrated in Table 7.1, we build

152

a behavior matrix BMn⇥(p+q) by setting: (1) BMi,j = (Si,Mj) denotes whether ith

malware sample in the malware set contains jth modality in the modality set, where

1  i  n and 1  j  p; (2) BMi,p+k = Bik, where 1  i  n and 1  k  q.

M1 M2 ... Mp B1 ... Bq

S1 0 1 ... 1 0 ... 1

S2 1 0 ... 0 1 ... 0

S3 0 1 ... 0 0 ... 1

...

Sn 0 0 ... 1 1 ... 1

Table 7.1: An example of behavior matrix.

Thus, the problem of identifying which modalities could be used to achieve the

malicious behavior Bk could be transformed to the following problem:

Finding a set of modalities, Mk = {Mi|Mi 2 M, 1  i  m},

s.t., C(Mk) = conf(Mk) Bp+k) = supp(Mk

S
Bp+k)/supp(Mk) � Tconf , where

Tconf is a pre-defined threshold.

Then, we consider the set of modalitiesMk that could be used to achieve malicious

behavior Bk with a confidence score of C(Mk). Accordingly, we mine association rules

from modalities to malicious behaviors with high confidence scores and su�cient

support scores, and apply them to candidate malicious apps to characterize their

malicious behaviors.

7.3 Evaluation

We present our evaluation results by implementing a prototype of DroidMiner

and applying it to apps collected from existing third-party Android markets and

from the o�cial Android market (GooglePlay).

153

7.3.1 Prototype Implementation

We implement a prototype of DroidMiner on top of a popular static analysis tool

(Androguard [45]). In our experience, comparing with other public Android app

decompilers (e.g., Dex2Jar [47] or Smali [50]), Androguard produces more accurate

decompilation results, especially in terms of handling exceptions. The prototype

decompiles an Android app into Dalvik bytecode, further builds its behavior graph

and mines its modalities based on the bytecode.

The method call graph in an app is built by analyzing the caller-callee relation-

ships of all methods used in the app. For each method, DroidMiner extracts its callee

methods by analyzing the invoke-kind instructions (e.g., invoke-virtual and invoke-

direct) used in the method. Since Android is an event-driven system, the entrance of

an app could be UI event methods (e.g., onClick) instead of lifetime cycle methods.

However, such UI event methods could only be executed after the corresponding

UI event listeners are registered (e,g., setOnClickListener). Thus, to make the

program logic more complete, DroidMiner adds an edge from UI events listeners to

corresponding UI event methods, although there is no such caller-callee relationship

in the bytecode. We use a similar strategy to address registered event handlers by

linking the handle method (e.g., handleMessage) to its corresponding construction

method (e.g., Landroid/os/Handler.init). We also modify Androguard to generate

the control-flow graph in each method by analyzing branch jump instructions (e.g.,

if-eq).

As an illustrative example, Figure 7.6 shows part of Dalvik code for the method

Myservice.onCreate() used in the malware sample described in Section 7.1.1. From

Line 1, DroidMiner will build an edge from Myservice.onCreat() to Myservice.

getSystemService() in its method call graph. Frome Line 9, which contains a

154

1 invoke-virtual v8, v3, Lcom/xxx/yyy/MyService;->getSystemService(Ljava/lang/String;)
2 move-result-object v2
3 check-cast v2, Landroid/telephony/TelephonyManager;
4 invoke-virtual v2, Landroid/telephony/TelephonyManager;->getDeviceId()
5 move-result-object v3
6 iput-object v3, v8, Lcom/xxx/yyy/MyService;->imei Ljava/lang/String;
7 invoke-virtual v2, Landroid/telephony/TelephonyManager;->getSubscriberId()
8 iget-object v3, v8, Lcom/xxx/yyy/MyService;->smsObserver Lcom/xxx/yyy/SMSObserver;
9 if-nez v3, +1e
10 new-instance v3, Lcom/xxx/yyy/SMSObserver;
11 new-instance v4, Landroid/os/Handler;
12 invoke-direct v4, Landroid/os/Handler;-><init>()V
13 invoke-direct v3, v4, v8, Lcom/xxx/yyy/SMSObserver;-><init>
14 iput-object v3, v8, Lcom/xxx/yyy/MyService;->smsObserver Lcom/xxx/yyy/SMSObserver;
15 invoke-virtual v8, Lcom/xxx/yyy/MyService;->getContentResolver()
16 move-result-object v3
17 const-string v4, ’content://sms/’
18 invoke-static v4, Landroid/net/Uri;->parse(Ljava/lang/String;)Landroid/net/Uri;

Figure 7.6: The Dalvik bytecode of the method Myservice.onCreat() used in a
real-world malware with capabilities of reading device ID and accessing SMS.

branch-jump instruction (if-nez), DroidMiner will generate a new code block, while

generating the control-flow logic. Two sensitive framework API functions will be

recorded from Line 4 and Line 7, and one sensitive resource (content provider) will

be recorded from Line 17. Thus each application’s modalities could be mined through

examination of its usage of framework API functions and content providers.

7.3.2 Data Collection

We crawled four representative marketplaces, including GooglePlay, and three

alternative Android marketplaces (SlideMe [100], AppDH [5], and Anzhi [70]). The

collection from the alternative Android markets occurred during a 13-day period,

from June 3 through June 15, 2012. The GooglePlay collection was harvested during

a two-months period, from August 23 through October 23. Our resulting app corpus

is described in Table 7.2. In total, we collected 67,822 free apps, where 17% of the

apps (11,529) were collected from GooglePlay, and the remaining 83% (56,268) were

harvested from the alternative markets.

Next, we attempt to isolate the set of malicious apps from our corpus by submit-

ting the set of apps from the alternative markets to “VirusTotal.com”, which is a free

155

O�cial Market SlideMe AppDH Anzhi

Location U.S.A U.S.A China China

Number of Apps 11,529 15,129 2,349 38,790

Total Apps
11,529 (17%) 56,268 (83%)

67,797

Table 7.2: The summary of collecting Android apps.

antivirus (AV) service that scans each uploaded Android app using over 40 di↵erent

AV products [114]. For each app, if it has been scanned earlier by an AV tool, we can

obtain the full VirusTotal report, which includes the first and last time the app was

seen, as well as the results from the individual AV scans. For example, BitDefender

has a report for a malicious application (MD5: 7acb7c624d7a19ad4fa92cacfddd9257)

as Droid.Trojan.KungFu.C. In this way, we obtained 1,247 malicious apps identi-

fied by at least one AV product. For each malicious app, we extract its associated

malware family name, and when AV reports disagree, we derive a consensus label

using the label that dominates the responses from the AV tools. In addition, we ob-

tain another set of malware samples from Genome Project [140, 141]. This dataset

contains the family label for each malware sample. After excluding those already

appeared in our crawled malware set, there are 1,219 di↵erent malware apps. Thus,

in total, our malware dataset consists of 2,466 (1,247+1,219) unique malicious apps

that belong to 68 di↵erent malware families.

In addition to the malware dataset, we also construct a benign dataset using

popular apps collected from GooglePlay. To further clean this dataset, we submit

our candidate set of 11,529 free GooglePlay apps to VirusTotal, of which 1,126 apps

were labeled as malicious by one AV product. We discarded those apps and con-

structed our benign dataset using the remaining 10,403 free GooglePlay Android

apps. Clearly, the benign app dataset may still contain some malicious apps, but

156

this set has at least been vetted by the GooglePlay anti-malware analysis and by

more than 40 AV products from VirusTotal. The problem of producing a perfect

benign app corpus remains a hard challenge, and we note that a similar approach to

construct a benign app dataset has been used in prior related work [84].

7.3.3 Evaluation Result

Below, we summarize our system evaluation results for malware detection, mal-

ware family classification, behavior characterization, and e�ciency.

7.3.3.1 Malware Detection

As introduced in Section 7.2.4, we utilize machine learning techniques to conduct

malicious app detection. To better evaluate the e↵ectiveness of DroidMiner, we uti-

lize four widely used machine learning (ML) classifiers: NaiveBayes, Support Vector

Machine (SVM), DecisionTree and Random Forest. NaiveBayes is a probabilistic-

based classifier. It is fast, easy to understand, and has been widely used in spam

detection studies. Since this classifier relies on the assumption that each individual

feature is distributed independently of other features, its main disadvantage is that

it could not learn interactions between features. Accordingly, it is not very powerful

when the feature set is complex and the training set is big with high variance. SVM

is a kernel-function-based classifier, very popular for text classification problems. It

could achieve a relatively high accuracy regarding over-fitting, especially when the

number of the feature dimensions is very high. However, its performance is sensitive

to the choice of the kernel functions and parameters.

Decision Tree and Random Forest are two rule-based classifiers. They are non-

parametric and could easily handle feature interactions. Thus, they could achieve

high performance, even when the data is not linearly separable. Random Forest

considers the problem of over-fitting, which could perform better than Decision Tree.

157

Classifier NaiveBayes SVM

Method Permission[84] DroidMiner Permission[84] DroidMiner

DR 75.1% 82.2% 78.8% 86.7%

FP Rate 7.2% 4.4% 3.5% 1.1%

Classifier Decision Tree Random Forest

Method Permission[84] DroidMiner Permission[84] DroidMiner

DR 85.7% 92.4% 87.0% 95.3%

FP Rate 2.2% 1.0% 2.0% 0.4%

Table 7.3: E↵ectiveness of malware detection (DR denotes detection rate, FP denotes
false positive).

Specifically, Random Forest is fast, scalable and often the winner for many problems

in classification. Also, Random Forest does not require developers to excessively tune

parameters as SVM does.

For each classifier, we conduct a series of experiments using a ten-fold cross vali-

dation to compute three performance metrics: False Positive Rate, Detection Rate,

and Accuracy. Specifically, we divide both malicious and benign datasets randomly

into 10 groups, respectively. In each of the 10 rounds, we choose the combination

of one group of benign apps and malicious apps as the testing dataset, and the re-

maining 9 groups as the training dataset. We further compare the performance of

DroidMiner with another classifier (used in [84]), which uses registered permissions

as major detection features, based on our collected dataset.7 Although [84] is mainly

designed to rank apps’ risks based on apps’ registered permissions and categories,

it also reports the true positive rate and false positive rate by choosing a particular

risk value as indicative of malicious apps.

Table 7.3 shows the results of using permission versus DroidMiner based on dif-

7We are unable to provide a direct corpus comparative evaluation with other detection systems
discussed in related work [142, 21], because they are not publicly available and it is generally
di�cult to completely reproduce similar systems and parameter selections.

158

ferent classifiers. We see that for all four classifiers, the usage of modalities as the

input feature set (DroidMiner) produces a higher detection rate and lower false pos-

itive rate than the approach of using permission features [84]. In particular, using

Random Forest DroidMiner achieved a detection rate of 95.3%, roughly 10% higher

than the that of using permission. Furthermore, DroidMiner produced a lower false

positive rate of (0.4%), or around 1/5th of the compared approach. Also, Droid-

Miner could maintain the detection rate higher than 86% for all four classifiers. In

addition, we can see that Decision Tree, Random Forest and SVM could achieve

better performance than NaiveBayes by using both permissions and modalities as

inputs, mainly because the features (both permissions and modalities) are not to-

tally linear separable. In terms of permission, particular permissions with semantic

coordination are often granted together (e.g., SEND SMS and RECEIVE SMS). In terms

of modalities, a shorter (more general) modality may be a part of a longer (more

specific) modality. Also, since Random Forest could solve over-fitting without the

need of tuning parameters, its performance could beat Decision Tree and SVM.

We next compare the average training time used for each classifier with Droid-

Miner. As seen in Table 7.4, we find that the training time used for all four classi-

fiers could be maintained lower than 150 seconds. Particularly, although NaiveBayes

could not achieve an accuracy as high as other classifiers, it is the fastest one (taking

only 0.15 seconds) to train the model, which validates what have we discussed about

this classifier. We see that Random Forest is both fast (taking only 8.15 seconds)

and accurate.

Classifier NaiveBayes SVM Decision Tree Random Forest

Time (s) 0.15 141.21 76.08 8.15

Table 7.4: Training time (in seconds).

159

Further, to understand false positives/negatives, we randomly choose 20 false

negatives and 15 false positives generated in the case of Random Forest for further

investigation that were induced in the first two rounds of our ten-fold cross vali-

dation experiment. Through manually analyzing these apps, we find four possible

reasons that induce those false negatives: (i) Adware: we find DroidMiner missed

identifying 11 instances of adware (seven belong to Leadbolt and four belong to Air-

push), due to the diverse implementation of those adware examples. (ii) Native

code: Since DroidMiner relies on the static analysis on the Dalvik code, it generated

four false negatives that utilize native code to achieve malicious goals (e.g., root-

ing the phone). (iii) Dynamic payload: we also find four malware instances that

will dynamically launch malicious payloads by either downloading from the remote

servers (e.g., Plankton) or modifying local files (AnserverBot). Since such malware

initially does not contain (or activate) malicious payloads, DroidMiner could not de-

tect them through statically analyzing Dalvik code. (iv) False label: we also found

1 false negative, which is labeled as malware belonging to the family of Pjapps by

Sophos in our data collection phase. However, our manual analysis does not find any

malicious payload from the app that could be seen in other apps belonging to this

family. Then, we re-submited this app to VirusTotal again and found that Sophos

has changed its description on this app and identified it as benign.

Similarly, we find that our false positives could be classified into four categories:

(i) Eight apps from GooglePlay are identified as malicious because they could send

out sensitive information. In particular, four apps (three Game apps and one Shop-

ping app) sent out phone information (e.g., IMSI) or account information8; three

apps sent out Geo-location information; the other app could send out the contact

8That could be because some Game or Shopping apps tend to use such information as the unique
identifier to distinguish registered accounts.

160

information. (ii) Three apps could achieve sensitive functionalities as malware. Two

of them could automatically monitor and send out the phone state, and even unlock

the phone without using the password. The other one, named as “Task Manger”,

could kill the background process, start/restart an app, clean web browsing history,

and so on. (iii) One app is essentially adware, which belongs to both Leadbolt and

Airpush. (iv) Three other benign apps are falsely identified as malware.

7.3.3.2 Family Classification

The purpose of this experiment is to measure the accuracy of using Modality

Vectors to correctly assign apps that are classified as malicious to their correct cor-

responding malware family. To conduct the malware family classification, we use

samples from 12 families, each of which has more than 50 samples. The number of

samples of each family is shown in Table 7.5.

Ind Family Num Ind Family Num

1 GingerMaster 166 7 KMin 52

2 GoldDream 57 8 BaseBridge 122

3 Airpush 568 9 Geinimi 69

4 AnserverBot 187 10 DroidKungFu3 327

5 DroidKungFu 70 11 DroidKungFu4 104

6 Leadbolt 52 12 Plankton 194

Table 7.5: Malware samples used for classification.

For each family, we use half of the samples as training dataset, and the other half

as the testing dataset. In this case, the classification accuracy represents the ratio of

the number of correctly classified samples to the total number of samples in the test

dataset. Here, we use Random Forest for classifying both the training and testing

datasets. The classifier produces a relatively high classification accuracy of 92.07%.

161

Figure 7.7 shows the confusion matrix produced from our classification of the

dataset into the malware family label set. The value of the cell (i, j) in the matrix

shows the number of samples in family i, which are classified as being family j.

Thus, the central diagonal in the matrix shows the number of correctly predicted

samples per malware family. The darker the cell color is, the higher the classification

accuracy is. With the exception of Leadbolt (index is 6), most of the other families

achieve an accuracy higher than 90%. Leadbolt is an adware family, and thus its

implementation may be influenced by the campaign it is serving, and thus producing

a behavior that has a wide variability, leading its samples to appear to match a wider

range of potential families.

Figure 7.7: The confusion matrix of malware classification for multiple malware
families.

This experiment suggests that Modality Vectors also have a potential applicability

to assist in the classification of malware family labels.

162

7.3.3.3 Behavior Characterization

As described in Section 7.2.4, to characterize malicious apps’ behaviors, we first

construct a behavior matrix based on malicious behaviors observed within an ex-

isting training set of known malware applications. To decrease sampling bias, we

produce our training dataset using malware samples from 29 di↵erent malware fam-

ilies, each contributing a minimum of 5 members. Next, for each selected family, we

manually extract a malicious behavior description for this family using documenta-

tion describing the malware family from sites that contain malware analysis reports,

such as threat reports from various AV companies (e.g., Symantec.com). There are

many detailed public sources of information regarding malicious behavior description

for many existing Android malware families [103]. For this experiment, we focus on

the following six malicious behaviors commonly observed within many malware fam-

ilies: stealing phone information (GetPho), Sending SMS (SdSMS), blocking SMS

(BkSMS), communicating with a C&C (C&C), escalating root privilege (Root) and

accessing geographical information (GetGeo). Table 7.6 summarizes malicious be-

haviors observed within those 29 malware families.

Using an Association Rule Mining system, DroidMiner automatically learned 439

behavior association rules. In Table 7.7, we summarize the number of association

rules mined for each malicious behavior. Applying these learned rules to test new

malware samples (not in the training set) with ground truth information, we find

that DroidMiner could generate correct behavior characterizations.

7.3.3.4 E�ciency

We now consider the performance overhead of DroidMiner in identifying modal-

ities. As described in Section 7.2.3, modality identification involves three steps: 1)

decompilation, 2) behavior graph generation and 3) modality vector generation. Ta-

163

Family GetPho SdSMS BkSMS C&C Root GetGeo

ADRD
p p p p

AnserverBot
p p

Asroot
p

BaseBridge
p p p

BeanBot
p p p p

Bgserv
p p p p

DroidDream
p p

DDLight
p

DroidKungFu1
p p p

DroidKungFu2
p p p

DroidKungFu3
p p p

DroidKungFu4
p

DroidKungFu5
p p p

FakePlayer
p

Geinimi
p p p

GingerMaster
p p

GoldDream
p

Gone60
p p

GPSSMSSpy
p

jSMSHider
p p p

KMin
p p

Pjapps
p p

Plankton
p

RogueSPPush
p

SmsSend
p

SndApps
p p

YZHC
p p p

zHash
p

Zsone
p p

Table 7.6: Malicious behaviors in di↵erent families.

ble 7.8 shows the mean and median value of time spent on each step and the overall

time required to identify modalities for all collected apps.

Table 7.8 illustrates that DroidMiner expended an average of 19.8 seconds and a

median of 5.4 seconds to identify modalities in an app. We further find that the vast

164

GetPho SdSMS BkSMS C&C Root GetGeo

157 144 11 71 37 19

Table 7.7: Number of association rules mined for common malicious behaviors.

majority of this time is spent on behavior graph generation.

Step Decompile Behavior Graph Modality Vector Overall

Mean 3.87 15.19 1.10 19.83

Median 1.65 3.08 0.56 5.35

Table 7.8: Processing time for identifying modalities.

For a more fine-grained performance analysis of this step, Figure 7.8(a) shows the

cumulative distribution of time used to generate behavior graphs for our collected

apps. For approximately 80% of the apps, our system generates their behavior graphs

within 10 seconds. As seen in Figure 7.8(c) and 7.8(d), the values of time spent

generating behavior graphs typically rise with the increased number of control-flow

blocks and programmer-defined methods found in the app. This occurs because the

behavior graphs of apps are extracted through analyzing the control-flow logic of API

functions with the consideration of their located control-flow blocks and programmer-

defined methods. Thus, the numbers of control-flow blocks and programmer-defined

methods will a↵ect the time used to generate the graphs. However, as shown in

Figure 7.8(b), the time spent in generating behavior graphs does not increase due to

increase in the app size. That is, a bigger app size does not necessarily contain more

complex control-flow logic.

165

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

Time (Second)

Em
pi

ric
al

 C
DF

0 2 4 6 8 10
x 106

0

50

100

150

200

250

300

Size of App (Byte)

Ti
m

e
(S

ec
on

d)

(a) CDF Distribution (b) AppSize vs Time

0 1 2 3 4 5 6
x 104

0

50

100

150

200

250

300

Num of Blocks

Ti
m

e
(S

ec
on

d)

0 0.5 1 1.5 2
x 104

0

50

100

150

200

250

300

Num of Methods

Ti
m

e
(S

ec
on

d)

(c) Block Number vs Time (d) Method Number vs Time

Figure 7.8: Processing time for generating behavior graphs.

7.4 Discussion and Limitation

7.4.1 DroidMiner Against Zero-day Attacks

Emerging malware generally falls into two classes: fundamentally new strain

with entirely novel code bases, and malware that improves (evolves) from an exist-

ing code base. The latter form arguably represents the dominant case. We believe

DroidMiner is well designed to adapt to evolutionary change in existing code bases,

and thus useful in detecting most emerging variant strains. As long as new malware

launches malicious behaviors through utilizing modalities observed in known mal-

ware families, DroidMiner should detect it. For entirely novel malware strains, an

166

additional strength of DroidMinder is that unlike traditional systems that require

human expertise, DroidMiner’s features (modalities) can be automatically learned

and updated by feeding new malware samples.

7.4.2 DroidMiner Against Common Evasion Techniques

As there is an arms race between attackers and defenders, Android malware

may evolve to be more evasive. As observed by DroidChameleon [91], common

malware transformation techniques (e.g., repackaging, changing field names, and

changing control-flow logics) could evade many existing commercial anti-malware

tools. However, DroidMiner is resilient to these common malware evasion techniques

studied in [91]. Specifically, DroidMiner does not rely on specific signing signatures

or class/method/field names to detect malware. The simple program transformation

(resigning, repackaging, changing names) will not a↵ect the detection model used

in DroidMiner. Another type of evasion technique is to insert noisy code or to

change specific control-flow logic. However, DroidMiner is designed to extract all

subsequences of suspicious control-flow logic commonly seen in malware. As long

as the malware follows a known programming paradigm to achieve malicious goals

(e.g., intercepting short text messages after receiving them, and obtaining the phone

number before sending it), DroidMiner could still capture such suspicious logic and

ignore noise API injections.

7.4.3 Limitations

Like any learning-based approach, DroidMiner requires an accurate training dataset

to mine its malicious behaviors into modalities. The e↵ectiveness of our approach

depends on the quality of the given training data, e.g., labeled malicious Android

apps and their families. Fortunately, it was easy for us to obtain such data (thanks

to prior research e↵orts from academia and industry). In fact, one may also rec-

167

ognize DroidMiner’s automatic learning approach as a feature rather than a strict

liability. Whereas most existing approaches require significant manual labor to gen-

erate signature, specifications, and models for detection, DroidMiner o↵ers far more

automated model generation.

Our current behavior graphs and modalities primarily model the control flow in-

formation corresponding to malware behavior, i.e., we may miss some important data

flow information that could help build better behavior models. Also, the obfuscation

of the control-flow logic and the constant-string for content providers in the malicious

apps’ bytecode may decrease the detection rate of our approach. Attackers could

also split the constant-string for content providers (e.g., “content://sms/inbox/”)

into segments and recombine them later to avoid the identification of the usage of

sensitive content providers.

DroidMiner currently employs static analysis, which is a reasonable choice given

that current Android apps are relatively easy to reverse engineer statically, unlike

notorious malware programs commonly seen in PC-based malware. We acknowledge

that dynamic analysis provides an advantage in accurately studying runtime behav-

iors, and in the future we plan to extend DroidMiner to utilize a combination of static

and dynamic analyses. Like other Java static analysis studies, DroidMiner may fail

to identify certain usages of instances/methods, which are encrypted or made by

using Java Reflection and native code. This serves as another motivation for us to

incorporate dynamic analysis in our future work.

7.5 Summary

Android malware detection is a relatively new and very challenging research area.

In this chapter, we introduced a new Android malware detection system, named

DroidMiner. Our detection approach is designed based on the intuition that An-

168

droid malware authors must obey certain specific rules, pre-defined by the Android

platform, to realize malware functionality (e.g., using particular Android framework

APIs and accessing particular content providers). DroidMiner automatically mines

malicious parasitic code segments from a corpus of malicious mobile apps to detect

Android malware, while preserving the control flow logic. We reported an experi-

mental evaluation of DroidMiner on many real-world Android apps and showed that

it has very promising detection accuracy with a very low false positive rate.

169

8. LESSONS LEARNED AND A FUTURE MALICIOUS ACTIVITY

DETECTION SYSTEM

8.1 Lessons Learned

As we have highlighted earlier regarding the lack of the understanding of the new

types of the malicious activities in the OSN and smartphone platforms, an in-depth

analysis of the way in which the malicious activities are launched and propagated is

indeed needed. From and the success of our findings, and proposed defensive insights,

we have learned the following important lessons:

• An in-depth understanding of the malicious activities can facilitate the gen-

eration of the e↵ective defensive insights. By understanding the di↵erences

between malicious activities and benign activities, we can design e↵ective de-

tection features to distinguish malicious activities from benign ones. By under-

standing the strategies and steps used by cyber-criminals to launch malicious

activities, we can both design e↵ective defensive rules to catch those launching

actions, and reverse engineer those strategies to find other malicious activities.

By understanding how the malicious activities are propagated, wen can design

approaches to find more other malicious activities from a small seed set of

identified malicious activities.

• The graph propagation-based algorithms can be e↵ectively used to sample ma-

licious activities in both OSN and smartphone platforms by starting from a

small seed set of known malicious activities. In both the OSN and smartphone

platforms, if the cyber-criminals want to achieve significant attacking a↵ect

(or su�cient profit), they typically require to launch multiple malicious ac-

170

tivities. Meanwhile, these malicious activities launched by the same group of

cyber-criminals typically inevitably have some intrinsic connections/relation-

ships/similarities. Accordingly, these malicious activities and the connections

among them can be modeled into a relationship graph. Then, once we use a

few identified malicious activities as seeds, and propagate a score from them to

the rest of activities in the graph, those activities accumulate su�cient scores

(i.e., have strong connections with existing known malicious activities) are more

likely to be malicious. Based on this observation, we can design lightweight

and e↵ective inference algorithms to find unknown malicious activities from

known ones.

• A more complete and e↵ective Android malware detection solution should rely

on more fine-grained detection features that represent the programming proce-

dure. Although several existing Android malware detection systems are devel-

oped, their detection performance is highly limited due to the features used in

those detection systems. These features are selected either too corse-grained

that are not e↵ective enough to distinguish malicious apps from benign ones.

Or, they can not be used to represent well the programming procedure of the

Android apps. Thus, such detection systems tend to generate many false neg-

atives. As we have shown, compared with the corse-grained features, those

fine-grained detection features that represent the programming procedure, can

be used to e↵ectively distinguish malicious apps from benign ones (i.e., achieve

a high detection rate and a low false positive rate).

8.2 A Future Malicious Activity Detection System

Figure 8.1 shows the architecture of an example design of a future malicious

activity detection system that incorporates the complementary techniques we have

171

discussed.

Known%
Malicious%
Ac.vi.es�

Machine%
Learning%
Classifier�

Graph9based%
Inference%
Sampler�

Reverse%
Engineering�

Effec.ve%
Honeypot�

More%
Unknown%
Malicious%
Ac.vi.es�

��
��������
�
�����

Submit%Content�

��������
���
���������
�
�
�����

Submit%Frequency�

��

Community%Analysis�

�
���������������
��

Behavior%Correla.on�

��

AKack%Evolvement�

���
���	
��
��

Target%Selec.on�

��

�
�
��������
�
�����

Figure 8.1: Example combination of multiple techniques in a future malicious activity
detection system on OSN and smartphone platforms.

The new system is divided into two main parts: analysis components and detec-

tion components. The analysis components contains three major categories: analysis

of individual malicious behavior, analysis of malicious ecosystem, and analysis of at-

tack targets. Each of the four detection components (Machine learning classifier,

inference sampler, honeypot and reverse engineering strategy) are motivated by the

defensive insights obtained from the analysis results.

While obtaining a seed set of known malicious activities on OSN or smartphone

platform, the analysis of the di↵erences between the malicious behaviors and benign

behaviors in each individual identify (OSN account, smartphone market account, and

smartphone malware) are very useful (and typically the first step) to design detection

approaches. The malicious behaviors in each individual identify can include the

172

submission of the malicious content (OSN spam messages and malicious smartphone

apps), the submission frequency, and etc. Once accumulating su�cient amount and

types of known malicious activities, we can design e↵ective detection features by

comparing the di↵erences between malicious and benign behaviors, and further build

e↵ective machine learning classifiers to detect malicious activities.

Besides focusing on analyzing isolated behaviors, the analysis of the malicious

ecosystem can help better understand more deep insights on how attackers launch

and spread the malicious activities on the communication platforms. In order to

attract more victims, attackers typically need to launch multiple malicious activities

(OSN spam and smartphone malware). Also, due to practical restrictions, attack-

ers typically also have to repeatedly use the same malicious accounts to submit their

malicious content, or repeatedly use similar strategies (e.g., injecting malicious URLs

into OSN messages, and using sensitive Android framework APIs to implement An-

droid malware) to launch and spread malicious activities. Thus, there are obvious

behavior correlation relationships among malicious identities (e.g., similar malicious

content patterns, similar account behaviors, and similar temporary patterns). These

correlations can be further used to find malicious communities, which are very impor-

tant to understand the influence and the categories of the malicious activities. Also,

the analysis of the ecosystem can further motivate the design of community-based

detection features, to build more e↵ective machine learning classifier. In addition,

by building the relation graph among the malicious activities, we can design e↵ec-

tive graph-based inference samplers to find more other unknown malicious activities.

Since this approach is essentially a prioritized sampler, it is very suitable for the

large-scale of dataset, which typically requires great amount of resource and time.

Also, unlike the machine learning classifier, which requires su�cient amount of train-

ing data, this type of approach can be e↵ectively applied to find unknown malicious

173

activities, while starting from a very small seed set of known malicious ones.

By analyzing the attack targets, we can further understand how attackers choose

their targets, and even uncover the evolvement of the attacks by keeping monitoring

the communication between attackers and their victims. Once knowing the strategies

used by attackers to choose their attack targets (specific types of OSN/smartphone

market accounts, or versions of smartphones), we can design more e↵ective honeypots

to attract attackers, and e↵ective detection approaches by reverse engineering those

strategies. In addition, since the malicious activities can become more evasive, this

type of analysis is very important to understand the evolvement of the malicious

behaviors, and further help design more robust detection features.

To conclude, we can develop a relatively comprehensive and practical solution by

combining multiple complementary detection techniques to achieve a multi-perspective

view, as shown in this section.

174

9. CONCLUSION AND FUTURE WORK

9.1 Conclusion

Malicious OSN accounts and malicious Android apps are considered as the most

dangerous malicious activities to the security on OSN and smartphone platforms.

Millions of benign users have su↵ered a lot from those new types of malicious ac-

tivities, and they can further be utilized by cyber-criminals to spread attacks and

fraudulent actives on these two types of communication platforms. Thus, we urgently

need to better understand the ecosystem of malicious OSN accounts and malicious

Android apps, and further to design e↵ective solutions to mitigate and defend against

them.

In this dissertation, we have proposed an in-depth analysis of the ecosystem

of malicious activities in the two emerging communication platforms, and further

presented e↵ective defensive insights against those malicious activities. Our anal-

ysis mainly focuses on three facets of the ecosystem (attack infrastructure, attack

target, and relationships among attack identities). We also presented three infer-

ence algorithms for sampling more likely malicious activities (two are made for the

OSN platform, and one is made for the smartphone platform), and detection system

(DroidMiner). We have discussed our analysis and defensive insights in details, and

summarized the lessons we have learned.

Our analysis of the malicious activities and defensive insights have the following

three major characteristics:

First, our analysis covers multiple perspectives of the ecosystem of the malicious

activities. Our analysis of the spammers’ social networks uses the knowledge of graph

theory to understand the social relationships among social spammers, and further

175

to reveal the reason why spammers have mixed well in the current real-world OSN

platforms. By deploying social honeypots with multiple fine-grained social behav-

iors, our analysis of the spammers’ spamming targets reveals that many spammers

tend to build unsolicited social relationships with those accounts that expose specific

interests. Based on these findings, we provide guidelines for deploying more e↵ective

social honeypots. Our analysis of the ecosystem of the Android malware first reveals

the fact that a few indications that are commonly used to select Android apps with

high quality are not that trustable. Then, the analysis further shows the characteris-

tics of the networking infrastructure that are tend to be utilized by Android malware

authors. It further reveals the characteristics of the community relationships among

multiple Android apps that share the same developer or similar remote communica-

tion servers. All the analysis of these perspectives facilitate us to better understand

these new types of malicious activities. Such analysis further spurs new defensive

insights against those malicious activities.

Second, our solutions are practical for the large-scale datasets. One common

challenge of detecting malicious activities in these two types of platforms is the huge

volume of the objects that are uploaded in the platforms. Also, these objects are

constantly updated by their providers. Thus, given the limited resource/time, it is

very challenging or even impossible to make in-depth checks on every object whether

it is malicious in a short time period. Thus, lightweight defensive algorithms, to guide

to more suspicious objects instead of scanning or analyzing all objects at the same

time, are indeed needed. By exploring social relationships and semantic coordinations

among spam OSN accounts, and reverse engineering spammers’ strategies of selecting

spam targets, we provide light-weight inference algorithms to sample more likely

spam OSN accounts. Similarly, by exploring the community relationships among

Android malware, we present light-weight inference algorithms to sample more likely

176

malicious Android apps.

Finally, our proposed defensive sights are practical and capable to work in the

real world. Our defensive insights are evaluated on real-world dataset (real-world

Twitter accounts and Android apps). Experimental results are promising, showing

that our defensive insights can be used to e↵ectively capture those malicious activities

on real-world communication platforms.

9.2 Future Work

In the future, we plan to study the following directions:

• Larger dataset and more types of data. We plan to design and test more

crawling strategies and crawl more data, to decrease possible sampling bias.

We also plan to obtain more data from other OSN and smartphone platforms

(e.g., Facebook accounts and iOS malware), to reveal more insights of the

malicious activities.

• Dynamic view of the malicious activities. Besides analyzing the static view of

the malicious activities by crawling the dataset at a particular timestamp, we

plan to further analyze a more dynamic (evolvement) of the malicious activities

by monitoring the change of identified malicious activities for a longer time. By

doing this, we can further understand how the malicious activities evolved, and

further design more e↵ective detection approaches. We also plan to adaptively

change the strategies of our honeypots to more e↵ectively collect spammers.

• Analysis of more prospectives. We plan to provide more analysis of the simi-

larities and di↵erences of the malicious activities among more communication

platforms. We also plan to make a more in-depth analysis of the strategies

utilized by cyber-criminals to gain their profits.

177

• More comprehensive detection approaches. We plan to cooperate our inference

algorithms with other detection features to build more comprehensive detection

models. Then, we can further evaluate the advantages of our proposed defensive

approaches, compared with other existing ones.

• Improvements of the DroidMiner. We plan to explore how to model malicious

code segments written in native code, which DroidMiner currently does not

handle well. We also plan to combine the dynamic analysis approaches with

DroidMiner to further improve the detection performance.

178

REFERENCES

[1] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining API-level Features

for Robust Malware Detection in Android. In Proceedings of the 9th Interna-

tional Conference on Security and Privacy in Communication Networks (Se-

cureComm), Sydney, Australia, 2013.

[2] Alexa. Alexa Top Websites, April 2014. http://www.alexa.com/topsites/

category/Top/Computers/Internet/Domain_Names.

[3] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells: A Virtual

Mobile Smartphone Architecture. In Proceedings of the 23rd ACM Symposium

on Operating Systems Principles (SOSP), Cascais, Portugal, 2011.

[4] S. Antonatos, I. Polakis, T. Petsas, and E. Markatos. A Systematic Charac-

terization of IM Threats Using Honeypots. In Proceedings of the 17th Network

and Distributed System Security Symposium (NDSS), San Diego, CA, USA,

2010.

[5] AppDH. App DH Android Market, May 2014. http://www.appdh.com/.

[6] C. Arthur. Twitter Phishing Hack Hits BBC, Guardian and Cabinet Min-

ister, Feburary 2010. http://www.guardian.co.uk/technology/2010/feb/

26/twitter-hack-spread-phishing.

[7] K. Au, Y. Zhou, Z. Huang, D. Lie, X. Gong, X. Han, and W. Zhou. PScout:

Analyzing the Android Permission Specification. In Proceedings of the 19th

ACM Conference on Computer and Communications Security (CCS), Raleigh,

NC, USA, 2012.

[8] BarracudaLabs. Barracuda Labs 2010 Midyear Security Re-

port, October 2010. http://www.barracudalabs.com/downloads/

179

BarracudaLabs2010MidyearSecurityReport.pdf.

[9] A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon. Automatically Securing

Permission-Based Software by Reducing the Attack Surface: An Application

to Android. In Proceedings of the 27th International Conference On Automated

Software Engineering (ASE), Essen, Germany, 2012.

[10] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida. Detecting Spammers

on Twitter. In Proceedings of Collaboration, Electronic messaging, Anti-Abuse

and Spam Conference (CEAS), Redmond, Washington, 2010.

[11] F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida, C. Zhang, and K. Ross.

Identifying Video Spammers in Online Social Networks. In Proceedings of In-

ternational Workshop on Adversarial Information Retrieval on the Web (Air-

Web), Beijing, China, 2008.

[12] F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida, C. Zhang, and K. Ross.

Detecting Spammers and Content Promoters in Online Video Social Networks.

In Proceedings of ACM SIGIR Conference, Boston, Massachusetts, USA 2009.

[13] A. Bose, X. Hu, K. G. Shin, and T. Park. Behavioral Detection of Malware on

Mobile Handsets. In Proceeding of the 6th International Conference on Mobile

Systems, Applications, and Services (MobiSys), Breckenridge, CO, USA, 2008.

[14] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu. The Socialbot

Network: When Bots Socialize for Fame and Money. In Proceedings of 2011

Annual Computer Security Applications Conference (ACSAC), Orlando, FL,

USA, 2011.

[15] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry.

Towards Taming Privilege-escalation Attacks on Android. In Proceedings of

the 19th Network and Distributed System Security Symposium (NDSS), San

Diego, CA, USA, 2012.

180

[16] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: Behavior-Based

Malware Detection System for Android. In Proceedings of the 1st Workshop on

Security and Privacy in Smartphones and Mobile Devices (SPSM), Chicago,

IL, 2011.

[17] Carol. New Koobface Campaign Spreading on Facebook, January 2011. http:

//forums.cnet.com/7726-6132_102-5064273.html.

[18] C. Castillo, M. Mendoza, and B. Poblete. Information Credibility on Twit-

ter. In Proceedings of International World Wide Web Conference (WWW),

Hyderabad, India, 2011.

[19] M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi. Measuring User Influ-

ence in Twitter: The Million Follower Fallacy. In Proceedings of International

AAAI Conference on Weblogs and Social Media (ICWSM), Washington DC,

USA, 2010.

[20] P. P. Chan, L. C. Hui, and S. M. Yiu. Droidchecker: Analyzing Android

Applications for Capability Leak. In Proceedings of the 5th ACM conference

on Security and Privacy in Wireless and Mobile Networks, Tucson, Arizona,

USA, 2012.

[21] K. Chen, N. Johnson, V. Silva, S. Dai, K. MacNamara, T. Magrino, E. Wu,

M. Rinard, and Dawn Song. Contextual Policy Enforcement in Android Appli-

cations with Permission Event Graphs. In Proceedings of the 20thNetwork and

Distributed System Security Symposium (NDSS), San Diego, CA, USA, 2013.

[22] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing Inter-

Application Communication in Android. In Proceedings of the 9th Interna-

tional Conference on Mobile Systems, Applications, and Services (MobiSys),

Washington DC, USA, 2011.

[23] A. Chowdhury. State of Twitter Spam, March 2010. http://blog.twitter.

181

com/2010/03/state-of-twitter-spam.html.

[24] N. Christin, S. Yanagihara, and K. Kamataki. Dissecting One Click Frauds.

In Proceedings of the 17th ACM conference on Computer and Communications

Security (CCS), Chicago, IL, USA, 2010.

[25] M. Christodorescu, S. Jha, and C. Kruegel. Mining Specifications of Malicious

Behavior. In Proceedings of the 6th European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-

ing (ESEC/FSE), Dubrovnik, Croatia, 2007.

[26] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-

Aware Malware Detection. In Proceedings of the 26th IEEE Security and Pri-

vacy, Oakland, CA, USA, 2005.

[27] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia. Who is Tweeting on Twit-

ter: Human, Bot, or Cyborg? In Proceedings of Annual Computer Security

Applications Conference (ACSAC), Austin, Texas, USA, 2010.

[28] G. Cluley. Twitter onMouseOver Security Flaw Widely Exploited,

September 2010. http://nakedsecurity.sophos.com/2010/09/21/

twitter-onmouseover-security-flaw-widely-exploited/.

[29] M. Conti, V. T. N. Nguyen, and B. Crispo. CRePE: Context-related Policy

Enforcement for Android. In Proceedings of the 13th Information Security

Conference (ISC), Boca Raton, FL, USA, 2010.

[30] Cyveillance. Malware Detection Rates for Leading AV Solutions, 2013. https:

//www.cyveillance.com/web/docs/WP_MalwareDetectionRates.pdf.

[31] G. Danezis and P. Mittal. SybilInfer: Detecting Sybil Nodes using Social

Networks. In Proceedings of the16th Annual Network and Distributed System

Security Symposium (NDSS), San Diego, CA, USA, 2009.

[32] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire:

182

Lightweight Provenance for Smart Phone Operating Systems. In Proceedings

of the 20th USENIX Security Symposium (USENIX), San Francisco, CA, USA,

2011.

[33] DNS-BH. Malware Domain Blocklist, May 2014. http://www.

malwaredomains.com/.

[34] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. Revirt: Enabling Intru-

sion Analysis through Virtual-Machine Logging and Replay. In Proceedings of

the 5th Symposium on Operating Systems Design and Implementation (OSDI),

Boston, MA, USA, 2002.

[35] W. Enck, P. Gilbert, B.G. Chun, L. P. Cox, J. Jung, P. Mc-Daniel, and A. N.

Sheth. TaintDroid: An Information-Flow Tracking System for Realtime Pri-

vacy Monitoring on Smartphones. In Proceedings of the 9th Symposium on Op-

erating Systems Design and Implementation (OSDI), Vancouver, BC, Canada,

2010.

[36] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A Study of Android

Application Security. In Proceedings of the 20th USENIX Security Symposium

(USENIX), Portland, OR, USA, 2011.

[37] W. Enck, M. Ongtang, and P. McDaniel. On Lightweight Mobile Phone Appli-

cation Certification. In Proceedings of the 16th ACM Conference on Computer

and Communications Security (CCS), Chicago, IL, USA, 2009.

[38] J. Erman, A. Gerber, K. K. Ramadrishnan, S. Sen, and O. Spatscheck. Over

the Top Video: The Gorilla in Cellular Networks. In Proceedings of the 11th

ACM SIGCOMM conference on Internet measurement (IMC), Berlin, Ger-

many, 2011.

[39] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin. A First

Look at Tra�c on Smartphones. In Proceedings of the 10th ACM SIGCOMM

183

conference on Internet Measurement (IMC), Melbourne, Australia, 2010.

[40] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android Permissions

Demystied. In Proceedings of the 18th ACM Conference on Computer and

Communications Security (CCS), Chicago, IL, USA, 2011.

[41] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan. Synthesizing

Near-optimal Malware Specifications from Suspicious Behaviors. In Proceedings

31th of IEEE Security and Privacy, Oakland, CA, USA, 2010.

[42] W. Galuba, K. Aberer, D. Chakraborty, Z. Despotovic, and W. Kellerer.

Outtweeting the Twitterers - Predicting Information Cascades in Microblogs.

In Proceedings of USENIX Workshop on Online Social Networks (WOSN),

Boston, MA, USA, 2010.

[43] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Zhao. Detecting and Char-

acterizing Social Spam Campaigns. In Proceedings of ACM SIGCOMM con-

ference on Internet measurement (IMC), Melbourne, Australia, 2010.

[44] A. Gember, A. Anand, and A. Akella. A Comparative Study of Handheld and

Non-handheld Tra�c in Campus Wi-Fi Net-works. In Proceedings of the 12th

International conference on Passive and Active Measurement, Atlanta, GA,

USA, 2011.

[45] Google. Androguard, May 2014. http://code.google.com/p/androguard/.

[46] Google. Android TCPDump, April 2014. http://www.kandroid.org/

online-pdk/guide/tcpdump.html.

[47] Google. Dex2Jar, May 2014. https://code.google.com/p/dex2jar/.

[48] Google. Google Play, May 2014. https://play.google.com/store?hl=en.

[49] Google. Google Safe Browsing API, April 2014. http://code.google.com/

apis/safebrowsing/.

[50] Google. Smali, May 2014. https://code.google.com/p/smali/.

184

[51] C. Grier, K. Thomas, V. Paxsony, and M. Zhang. @spam: The Underground

on 140 Characters or Less. In Proceedings of the ACM Conference on Computer

and Communications Security (CCS), Chicago, IL, USA, 2010.

[52] Honeynet. Capture HPC, April 2014. https://projects.honeynet.org/

capture-hpc.

[53] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These Arent the

Droids Youre Looking For: Retrofitting Android to Protect Data from Impe-

rious Applications. In Proceedings of the 18th ACM Conference on Computer

and Communications Security (CCS), Chicago, IL, USA, 2011.

[54] Instagr. Instagr – Photo Sharing for Your iPhone, April 2014. http:

//instagr.am/.

[55] L. Invernizzi, P. Comparetti, S. Benvenuti, C. Kruegel, M. Cova, and G. Vigna.

EVILSEED: A Guided Approach to Finding Malicious Web Pages. In Proceed-

ings of IEEE Symposium on Security and Privacy (Oakland), San Francisco,

CA, USA, 2012.

[56] D. Ionescu. Twitter Warns of New Phishing Scam, October 2009. http:

//www.pcworld.com/article/174660/twitter_phishing_scam.html.

[57] D. Irani, M. Balduzzi, D. Balzarotti, E. Kirda, and C. Pu. Reverse Social

Engineering Attacks in Online Social Networks. In Proceedings of Detection

of Intrusions and Malware & Vulnerability Assessment (DIMVA), Amsterdam,

Netherlands, 2011.

[58] J. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi. Heat-seeking Honey-

pots: Design and Experience. In Proceedings of the 20th International World

Wide Web Conference (WWW), Hyderabad, India, 2011.

[59] Jose. Twitter-based Botnet Command Channel, August 2009. http://ddos.

arbornetworks.com/2009/08/twitter-based-botnet-command-channel/.

185

[60] C. Kolbitsch, P. Milani Comparetti, C. Kruegel, E. Kirda, X. Zhou, and

X. Wang. E↵ective and E�cient Malware Detection at the End Host. In Pro-

ceedings of USENIX Security Symposium (USENIX), San Diego, CA, USA,

2009.

[61] G. Koutrika, F. E↵endi, Z. Gyongyi, P. Heymann, and H. Garcia-Molina. Com-

bating Spam in Tagging Systems. In Proceedings of International Workshop

on Adversarial Information Retrieval on the Web (AIRWeb), Alberta, Canada,

2007.

[62] C. Kreibich and J. Crowcroft. Honeycomb: Creating Intrusion Detection Sig-

natures using Honeypots. In Proceedings of the 2nd Workshop on Hot Topics

in Networks (HotNets), Cambridge, MA, USA, 2003.

[63] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a Social Network or a

News Media? In Proceedings of the International World Wide Web Conference

(WWW), Raleigh, NC, USA, 2010.

[64] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter. L4Android:

A Generic Operating System Framework for Secure Smartphones. In Proceed-

ings of the 1st Workshop on Security and Privacy in Smartphones and Mobile

Devices, Chicago, IL, USA, 2011.

[65] K. Lee, J. Caverlee, and S. Webb. Uncovering Social Spammers: Social Honey-

pots + Machine Learning. In Proceedings of ACM SIGIR Conference, Geneva,

Switzerland, 2010.

[66] K. Lee, B. Eo↵, and J. Caverlee. Seven Months with the Devils: A Long-Term

Study of Content Polluters on Twitter. In Proceedings of 5th International

AAAI Conference on Weblogs and Social Media (ICWSM), Dublin, Ireland,

2012.

[67] N. Leontiadis, T. Moore, and N. Christin. Measuring and Analyzing Search-

186

Redirection Attacks in the Illicit Online Prescription Drug Trade. In Proceed-

ings of the 20th USENIX Security Symposium (USENIX), San Francisco, CA,

USA, 2011.

[68] C. Lever, M. Antonakakis, and B. Reaves. The Core of the Matter: Analyzing

Malicious Tra�c in Cellular Carriers. In Proceedings of the 20th Network &

Distributed System Security Symposium (NDSS), San Diego, CA, USA, 2013.

[69] S. Levine. So Much Twitter Spam, April 2011. http://blog.sysomos.com/

2011/04/07/so-much-twitter-spam/.

[70] LiTianWuXian. Anzhi Android Market, May 2014. http://www.anzhi.com/.

[71] H. Lockheimer. Android and Security, February 2012. http://googlemobile.

blogspot.com/2012/02/android-and-security.html.

[72] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX: Statically Vetting Android

Apps for Component Hijacking Vulnerablilities. In Proceedings of the 19th

ACM Conference on Computer and Communications Security (CCS), Raleigh,

NC, USA, 2012.

[73] MalwareDomainList. Malware Domain List, May 2014. http://www.

malwaredomainlist.com/.

[74] A. Matwyshyn, A. Keromytis, A. Cui, and S. Stolfo. Ethics in security vulner-

ability research. Journal of IEEE Security and Privacy, 8(2):67–72, 2010.

[75] P. Metaxas and E. Mustafaraj. Prominence in Minutes: Political Speech and

Real-time Search. In Proceedings of the Web Science (WebSci), Raleigh, NC,

USA, 2010.

[76] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee.

Measurement and Analysis of Online Social Networks. In Proceedings of the

7th ACM SIGCOMM Conference on Internet measurement (IMC), 2007.

[77] A. Moshchuk, T. Bragin, S. Gribble, and H. Levy. A crawler-based study of

187

spyware on the web. In Proceedings of the 13th Annual Symposium on Network

and Distributed System Security (NDSS), San Diego, CA, USA, 2006.

[78] M. Nauman, S. Khan, and X. Zhang. Apex: Extending Android Permission

Model and Enforcement with User-defined Runtime Constraints. In Proceedings

of the 5th International Conference on Cyber Security (ICCS), Amsterdam,

The Netherlands, 2010.

[79] M. Ongtang, K. Butler, and P. McDaniel. Porscha: Policy Oriented Secure

Content Handling in Android. In Proceedings of the 26th Annual Computer

Security Applications Conference (ACSAC), Austin, TX, USA, 2010.

[80] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically Rich

Application-Centric Security in Android. In Proceedings of the 25th An-

nual Computer Security Applications Conference (ACSAC), Honolulu, Hawaii,

USA, 2009.

[81] A. Ostrow. Twitter Spam Invades Trending Topics, May 2009. http:

//mashable.com/2009/05/11/twitter-spam-trending-topics/.

[82] B. Pan. 17 Bad Mobile Apps Still Up, 700,000+ Downloads So Far, May

2012. http://blog.trendmicro.com/trendlabs-security-intelligence/

17-bad-mobile-apps-still-up-700000-downloads-so-far/.

[83] D. Pelleg and A. Moore. X-Means: Extending K-means with E�cient Es-

timation. In Procceedings of International Conference on Machine Learning

(ICML), Stanford, CA, USA, 2000.

[84] H. Peng, C. Gates, B. Sarm, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,

and I. Molloy. Using Probabilistic Generative Models for Ranking Risks of

Android Apps. In Proceedings of the 19th ACM Conference on Computer and

Communications Security (CCS), Raleigh, NC, USA, 2012.

[85] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos. Paranoid Android:

188

Versatile Protection for Smartphones. In Proceedings of the 26th Annual Com-

puter Security Applications Conference (ACSAC), Austin, Texas, USA, 2010.

[86] R. Pozo, K. Remington, and A. Lumsdaine. Sparselib++, October 2008. http:

//math.nist.gov/sparselib++/.

[87] N. Provos. A virtual honeypot framework. In Proceedings of the 13th USENIX

Security Symposium (USENIX), Boston, MA, USA, 2004.

[88] Purchasetwitterfriends. Purchase Twitter Friends, May 2014. http://www.

purchasetwitterfriends.com/.

[89] Quora. Why Do I Get Spam Followers on Twitter?, September 2010. http:

//www.quora.com/Why-do-I-get-so-many-spam-followers-on-Twitter.

[90] A. Ramachandran and N. Feamster. Understanding the Network-Level Be-

havior of Spammers. In Procceedings of ACM Special Interest Group on Data

Communication (SIGCOMM), Pisa, Italy, 2006.

[91] V. Rastogi, Y. Chen, and X. Jiang. DroidChameleon: Evaluating Android

Anti-malware Against Transformation Attacks. In Proceedings of the 8th In-

ternational Conference on Cyber Security (ICCS), Hangzhou, China, 2013.

[92] J. Ratkiewicz, M. Conover, M. Meiss, B. Goncalves, S. Patil, A. Flammini,

and F. Menczer. Detecting and Tracking the Spread of Astroturf Memes in

Microblog Streams. In Proceedings of the 5th International Conference on

Weblogs and Social Media (ICWSM), Barcelona, Spain, 2011.

[93] A. Ray. Seven Things I learned to Bait Twitter Spammers, July 2011. http:

//www.experiencetheblog.com/2011_07_01_archive.html.

[94] A. Schmidt, R. Bye, H. Schmidt, J. Clausen, O. Kiraz, K. Yxksel, S. Camtepe,

and A. Sahin. Static Analysis of Executables for Collaborative Malware Detec-

tion on Android. In Procceddings of Communication and Information Systems

Security Symposium, Dresden, Germany, 2009.

189

[95] A. Schmidt, H. Schmidt, J. Clausen, K. Yuksel, O. Kiraz, A. Sahin, and

S. Camtepe. Enhancing Security of Linux-based Android Devices. In Pro-

ceedings of 15th International Linux Kongress, Hamburg, Germany, 2008.

[96] Seantm. How to Get Rid of DM Spam on

Twitter, August 2010. http://seanmalarkey.com/

rid-dm-inbox-spam-auto-dms-mafia-invites-twitter.

[97] A. Shabtai, Y. Fledel, and Y. Elovici. Securing Android-Powered Mobile De-

vices Using SELinux. In Proceedings of the 31th IEEE Security and Privacy,

Oakland, CA, USA, 2010.

[98] Sina. Money-stealing Apps are Hosting in the Mobile Devices, April 2012.

http://finance.sina.com.cn/money/lczx/20120410/070311783396.

shtml.

[99] Sina. Android Markets are the Source for Android Malware, October 2013.

http://tech.sina.com.cn/t/2013-10-07/02398791182.shtml.

[100] SlideMe. SlideMe Android Market, May 2014. http://slideme.org/.

[101] V. Sridharan, V. Shankar, and M. Gupta. Twitter Games: How Successful

Spammers Pick Targets. In Proceedings of 28th Annual Computer Security

Applications Conference (ACSAC), Orlando, Florida, USA, 2012.

[102] G. Stringhini, S. Barbara, C. Kruegel, and G. Vigna. Detecting Spammers On

Social Networks. In Proceedings of the Annual Computer Security Applications

Conference (ACSAC), Austin, Texas, 2010.

[103] Symantec. Symantec Security Response, May 2014. http://www.symantec.

com/security_response/landing/azlisting.jsp.

[104] Tapp. Tapp Android market, May 2014. http://tapp.ru/.

[105] K. Thomas, C. Grier, V. Paxson, and D. Song. Suspended Accounts in Retro-

spect:An Analysis of Twitter Spam. In Proceedings of Internet Measurement

190

Conference (IMC), Berlin, Germany, 2011.

[106] Twitpic. Twitpic, April 2014. http://twitpic.com/.

[107] Twitter. Twitter Streaming API, September 2012. https://dev.twitter.

com/docs/streaming-apis.

[108] Twitter. The Twitter Rules, May 2014. http://help.twitter.com/entries/

18311-the-twitter-rules.

[109] Twitter. Trending Topics, May 2014. http://support.twitter.com/

entries/101125-about-trending-topics.

[110] Twitter. Twiends, May 2014. http://twiends.com/.

[111] Twitter. Twitter Public Timeline, April 2014. http://twitter.com/public_

timeline.

[112] Twitter. Twitter Search, May 2014. https://twitter.com/#!/search-home.

[113] Twitter. Twitter’s Following Limits, May

2014. http://support.twitter.com/groups/

32-something-s-not-working/topics/117-following-problems/

articles/66885-i-can-t-follow-people-follow-limits.

[114] VirusTotal. VirusTotal Blacklist Service, May 2014. https://www.

virustotal.com/.

[115] L. Walker. Automatically Follow Back, May 2014.

http://personalweb.about.com/od/howtotwitter/a/

What-Is-Auto-Follow-And-How-Does-It-Work.htm.

[116] A. Wang. Don’t follow me: spam detecting in Twitter. In Proceedings of

Conferene on Security and Cryptography (SECRYPT), Athens, Greece, 2010.

[117] T. Wang, Y. Chen, Z. Zhang, P. Sun, B. Deng, and X. Li. Unbiased Sampling

in Directed Social Graph. In Proceedings of ACM Special Interest Group on

Data Communication (SIGCOMM), New Delhi, India, 2010.

191

[118] Yi. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King.

Automated Web Patrol with Strider HoneyMonkeys. In Proceedings of the 13th

Annual Symposium on Network and Distributed System Security (NDSS), San

Diego, CA, USA, 2006.

[119] M. Warman. Fake Android Apps Scam Costs, May 2012.

http://www.telegraph.co.uk/technology/news/9286538/

Fake-Android-apps-scam-costs-28000.html.

[120] C. Warren. Warning: Facebook Clickjacking Attack Spreading

Through Likes, May 2010. http://mashable.com/2010/05/31/

facebook-like-worm-clickjack/.

[121] C. Warren. Lady Gaga Falls Prey to Rogue Twitter Attack, April 2011. http:

//mashable.com/2011/04/28/lady-gaga-twitter-attack/.

[122] WhatIsMyIPAddress. WhatISMyIPAddress Blacklist, May 2014. http://

whatismyipaddress.com/blacklist-check.

[123] C. Whittaker, B. Ryner, and M. Nazif. Large-Scale Automatic Classification

of Phishing Pages. In Proceedings of the 17th Network and Distributed System

Security Symposium (NDSS), San Diego, CA, 2010.

[124] C. Whittaker, B. Ryner, and M. Nazif. Large-Scale Automatic Classification

of Phishing Pages. In Proceedings of the 17th Network and Distributed System

Security Symposium (NDSS), San Diego, CA, USA, 2010.

[125] R. Whitwam. Circumventing Google Bouncer, June

2012. http://www.extremetech.com/computing/

130424-circumventing-googles-bouncer-androids-anti-malware-system.

[126] Wikipedia. Gaussian Error Function, May 2014. http://en.wikipedia.org/

wiki/Error_function.

[127] Wikipedia. Latent Dirichlet Allocation, May 2014. http://en.wikipedia.

192

org/wiki/Latent_Dirichlet_allocation.

[128] Wikipedia. PageRank Algorithm, May 2014. http://en.wikipedia.org/

wiki/PageRank.

[129] D. Wu, C. Mao, T. Wei, H. Lee, and K. Wu. DroidMat: Android Malware

Detection through Manifest and API Calls Tracing. In Proceedings of the 7th

Asia JCIS, Tokyo, Japan, 2012.

[130] R. Xu, H. Saidi, and R. Anderson. Aurasium: Practical Policy Enforcement for

Android Applications. In Proceedings of the 21st USENIX Security Symposium

(USENIX), Bellevue, WA, USA, 2012.

[131] L. Yan and H. Yin. Droidscope: Seamlessly Reconstructing the Os and Dalvik

Semantic Views for Dynamic Android Malware Analysis. In Proceedings of the

21st USENIX Security Symposium (USENIX), Bellevue, WA, USA, 2012.

[132] C. Yang, R. Harkreader, and G. Gu. Die Free or Live Hard? Empirical Evalua-

tion and New Design for Fighting Evolving Twitter Spammers. In Proceedings

of the 14th International Symposium on Recent Advances in Intrusion Detec-

tion (RAID), Menlo Park, CA, USA, 2011.

[133] C. Yang, R. Harkreader, J. Zhang, S. Shin, and G. Gu. Analyzing Spammers’

Social Networks For Fun and Profit – A Case Study of Cyber Criminal Ecosys-

tem on Twitter. In Proceedings of the 21st International World Wide Web

Conference (WWW), Lyon, France, 2012.

[134] S. Yardi, D. Romero, G. Schoenebeck, and D. Boyd. Detecting Spam in a

Twitter Network. Journal of First Monday, 15(1), 2010.

[135] V. Yegneswaran, J. Gi�n, P. Barford, and S. Jha. An Architecture for Generat-

ing Semantics-Aware Signatures. In Proceedings of the 14th USENIX Security

Symposium (USENIX), Anaheim, CA, USA, 2005.

[136] H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman. SybilGuard: Defending

193

Against Sybil Attacks via Social Networks. In Procceedings of ACM Special

Interest Group on Data Communication (SIGCOMM), Pisa, Italy, 2006.

[137] J. Zhang and G. Gu. NeighborWatcher: A Content-Agnostic Comment Spam

Inference System. In Proceedings of the 20th Annual Network and Distributed

System Security Symposium (NDSS), San Diego, CA, USA, 2013.

[138] J. Zhang, P. Porras, and J. Ullrich. Highly Predictive Blacklisting. In Pro-

ceedings of 17th USENIX Security Symposium (USENIX), San Jose, CA, USA,

2008.

[139] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zhou. SmartDroid:

An Automatic System for Revealing UI-based Trigger Conditions in Android

Applications. In Proceedings of the 2ed Workshop on Security and Privacy in

Smartphones and Mobile Devices, Raleight, NC, USA, 2012.

[140] Y. Zhou and X. Jiang. Android Malware Genome Project, August 2012. http:

//www.malgenomeproject.org/.

[141] Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization and Evo-

lution. In Proceedings of the 33th IEEE Security and Privacy, San Francisco,

CA, USA, 2012.

[142] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get o↵ of My Market:

Detecting Malicious Apps in O�cial and Alternative Android Markets. In

Proceedings of the 19th Network and Distributed System Security Symposium

(NDSS), San Diego, CA, USA, 2012.

[143] Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. RiskRanker: Scalable and Accurate

Zero-day Android Malware Detection. In Proceedings of the 10th Interna-

tional Conference on Mobile Systems, Applications, and Services (MobiSys),

Low Wood Bay, Lake District, UK, 2012.

194

