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ABSTRACT

Many large-scale social systems such as Web-based social networks, online so-

cial media sites and Web-scale crowdsourcing systems have been growing rapidly,

enabling millions of human participants to generate, share and consume content on

a massive scale. This reliance on users can lead to many positive effects, including

large-scale growth in the size and content in the community, bottom-up discovery of

“citizen-experts”, serendipitous discovery of new resources beyond the scope of the

system designers, and new social-based information search and retrieval algorithms.

But the relative openness and reliance on users coupled with the widespread interest

and growth of these social systems carries risks and raises growing concerns over the

quality of information in these systems.

In this dissertation research, we focus on countering threats to the quality of

information in self-managing social systems. Concretely, we identify three classes of

threats to these systems: (i) content pollution by social spammers, (ii) coordinated

campaigns for strategic manipulation, and (iii) threats to collective attention. To

combat these threats, we propose three inter-related methods for detecting evidence

of these threats, mitigating their impact, and improving the quality of information

in social systems. We augment this three-fold defense with an exploration of their

origins in “crowdturfing” – a sinister counterpart to the enormous positive opportu-

nities of crowdsourcing. In particular, this dissertation research makes four unique

contributions:

• The first contribution of this dissertation research is a framework for detecting

and filtering social spammers and content polluters in social systems. To detect

and filter individual social spammers and content polluters, we propose and

ii



evaluate a novel social honeypot-based approach.

• Second, we present a set of methods and algorithms for detecting coordinated

campaigns in large-scale social systems. We propose and evaluate a content-

driven framework for effectively linking free text posts with common “talking

points” and extracting campaigns from large-scale social systems.

• Third, we present a dual study of the robustness of social systems to collective

attention threats through both a data-driven modeling approach and deploy-

ment over a real system trace. We evaluate the effectiveness of countermeasures

deployed based on the first moments of a bursting phenomenon in a real system.

• Finally, we study the underlying ecosystem of crowdturfing for engaging in

each of the three threat types. We present a framework for “pulling back

the curtain” on crowdturfers to reveal their underlying ecosystem on both

crowdsourcing sites and social media.
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1. INTRODUCTION

1.1 Motivation

The past few years have seen the rapid rise of many large-scale social systems

– from Web-based social networks (e.g., Facebook, LinkedIn) to online social media

sites (e.g., YouTube, Flickr) to large-scale information sharing communities (e.g., red-

dit, Yahoo! Answers) to crowd-based funding services (e.g., Kickstarter, IndieGoGo)

to Web-scale crowdsourcing systems (e.g., Amazon Mechanical Turk, Crowdflower).

One of the key features of these systems is their leveraging of massive numbers

of human participants – as primary contributors of content, as annotators and raters

of other’s content, as sources of expertise, and so on. We can observe the rapid

growth of human participants in various social systems. For example, Facebook –

launched in 2004 – now has more than a billion monthly active users. Among them,

approximately 82% of monthly active users are outside the U.S and Canada, and

680 million monthly active users access Facebook via Facebook mobile products [35].

Twitter has over 500 million users, who generate over 340 million tweets daily; the

Twitter service handles over 1.6 billion search queries per day [85, 140, 138]. Similarly

online video site such as YouTube have become very popular. YouTube now has over

800 million unique users visit YouTube each month, and over 4 billion hours of video

are watched each month on YouTube [160]. Freelancer.com and Elance.com – popular

crowdsourcing sites – has 6.5 million users and 2 million users, respectively [86]. This

reliance on users can lead to many positive effects, including large-scale growth in

the size and content in the community, bottom-up discovery of “citizen-experts”,

serendipitous discovery of new resources beyond the scope of the system designers,

and new social-based information search and retrieval algorithms. response to real-
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world events or online phenomena.

But the relative openness and reliance on users coupled with the widespread

interest and growth of these social systems carry risks and raise growing concerns

over the quality of information in these systems. For example, 8.7% user accounts

on Facebook in 2012 (83 million accounts) are fake [110, 121]. Akismet and Mollom

reported that up to 90% of all comments on the Web are spam [151, 122]. Similarly,

1% messages and 5% accounts on Twitter are spam and spam accounts, respectively

[137, 117]. VideoSurf estimated that 20% of online videos are spam [42]. Other

new threats have been observed – including collective attention spam targeting a

popular topic or an item to where user attention goes [75], malicious requesters

recruiting many workers from a crowdsoucing site to spread manipulated contents to

other websites for astroturfing [143], misinformation [17], fake reviews [96, 97], and

astroturfing political campaigns [115].

1.2 Research Challenges

In the previous section, we described positive aspects of large-scale social systems,

and several threats to information quality in these systems. We now identify some

research challenges associated with these threats as follows:

• Openness: Social systems are inherently open to users who generate, share

and consume information. Maintaining this openness is important for their

continued growth and impact. But the openness and reliance of users allowed

malicious participants to threaten information quality in these systems. Can

we maintain the openness of social systems with assuring the quality of infor-

mation?

• Collaboration: Many users organically participate in social systems to engage

in collaborative activities (e.g., organizing for political change and sharing
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disaster-related information). But social systems are a prime target for strate-

gic influence. Some users inorganically engage with social systems and degrade

quality of information by forming “astroturfing” campaigns, promoting a prod-

uct aggressively and sending unwanted messages.

• Collective Dynamics: Collective attention – exemplified by breaking news, vi-

ral videos, and popular memes that captivate the attention of huge numbers

of users – is one of the cornerstones of large-scale social systems. But this

self-organization, leading to user attention quickly coalescing and then collec-

tively focusing around a phenomenon, opens these systems to new threats like

collective attention spam.

1.3 Overview of this Dissertation

In this dissertation research, we first identify three classes of threats to these

systems (as shown in Figure 1.1): (i) content pollution by social spammers, (ii)

coordinated campaigns for strategic manipulation, and (iii) threats to collective at-

tention. To combat these threats, we propose four inter-related methods for detecting

evidence of these threats, mitigating their impact, and improving the quality of in-

formation in social systems. We augment this three-fold defense with an exploration

of their origins in “crowdturfing” – a sinister counterpart to the enormous positive

opportunities of crowdsourcing. In particular, this dissertation research makes four

unique contributions toward this direction:

• The first contribution of this dissertation research is a framework for detecting

and filtering social spammers and content polluters in social systems. These

spammers and content polluters are increasingly targeting these systems as

part of phishing attacks, to disseminate malware and commercial spam mes-

sages, and to promote affiliate websites. Successfully defending against these
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Figure 1.1: Overall Dissertation Organization

social spammers and content polluters is important to improve the quality of

experience for community members, to lessen the system load of dealing with

unwanted and sometimes dangerous content, and to positively impact the over-

all value of the social system going forward.

To detect and filter social spammers and content polluters, we propose a novel

social honeypot-based approach. Two of the key components of the proposed

approach are: (i) The deployment of social honeypots for harvesting deceptive

spam profiles from social networking communities; and (ii) Statistical analysis

of the properties of these spam profiles for creating spam classifiers to actively

filter out existing and new spammers. Our empirical evaluation over both

MySpace and Twitter demonstrates the effectiveness and adaptability of the

honeypot-based approach, leading to the development of robust classifiers for

ongoing protection.
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• Second, we present a set of methods and algorithms for detecting coordinated

campaigns in large-scale social systems. These campaigns – ranging from coor-

dinated spam messages to promotional and advertising campaigns to political

astro-turfing – are growing in significance and reach with the commensurate

rise in massive-scale social systems. However, there has been little research in

detecting these campaigns of strategic manipulation “in the wild”.

Hence, we propose and evaluate a content-driven framework for effectively link-

ing free text posts with common “talking points” and extracting campaigns

from large-scale social systems. Three of the salient features of the campaign

extraction framework are: (i) an investigation of graph mining techniques for

isolating coherent campaigns from large message-based graphs; (ii) a compre-

hensive comparative study of text-based message correlation in message and

user levels; and (iii) an analysis of the temporal behaviors of various campaign

types. Through an experimental study over millions of Twitter messages we

identify five major types of campaigns – Spam, Promotion, Template, News,

and Celebrity campaigns – and we show how these campaigns may be extracted

with high precision and recall.

• Third, we examine threats to collective attention – exemplified by breaking

news, viral videos, and popular memes that captivate the attention of huge

numbers of users. But this self-organization opens these systems to new threats.

In one direction, we have observed what we refer to as collective attention spam

which relies on the users themselves to seek out the content – like breaking

news, viral videos, and popular memes – where the spam will be encountered,

potentially increasing its effectiveness and reach.

To identify threats to collective attention, we take a two fold approach. First,
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we develop data-driven models to simulate large-scale social systems based on

parameters derived from a real system. In this way, we can vary parameters

– like the fraction of malicious users in the system, their strategies, and the

countermeasures available to system operators – to explore the resilience of

these systems to threats to collective attention. Second, we pair the data-

driven model with a comprehensive evaluation over a Twitter system trace, in

which we evaluate the effectiveness of countermeasures deployed based on the

first moments of a bursting phenomenon in a real system. Our experimental

study shows the promise of these countermeasures to identifying threats to

collective attention early in the lifecycle, providing a shield for unsuspecting

social media users.

• Finally, we investigate the origins of threats to social systems. We study the

ecosystem of crowdturfing which has recently been identified as a sinister coun-

terpart to the enormous positive opportunities of crowdsourcing. Crowdturfers

leverage human-powered crowdsourcing platforms to spread malicious URLs

in social media, form “astroturf” campaigns, and manipulate search engines,

ultimately degrading the quality of online information and threatening the use-

fulness of these systems.

We present a framework for “pulling back the curtain” on crowdturfers to reveal

their underlying ecosystem. Concretely, we analyze the types of malicious

tasks and the properties of requesters and workers in crowdsourcing sites such

as Microworkers.com, ShortTask.com and Rapidworkers.com, and link these

tasks (and their associated workers) on crowdsourcing sites to social media, by

monitoring the activities of social media participants. Based on this linkage,

we identify the relationship structure connecting these workers in social media,
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which can reveal the implicit power structure of crowdturfers identified on

crowdsourcing sites. We identify three classes of crowdturfers – professional

workers, casual workers, and middlemen.

The rest of this dissertation is organized as follows:

• Chapter 2: In this chapter, we discuss related work, specifically threats to

information quality and methods to tackle the threats in email, search engines,

social networks and crowdsourcing sites.

• Chapter 3: In this chapter, we present the design and real-world evaluation of

a novel social honeypot-based approach to detect social spammers and content

polluters. We investigate techniques and develop effective tools for automat-

ically detecting and filtering social spammers. We also design and evaluate a

system for automatically detecting and profiling content polluters on Twitter.

• Chapter 4: In this chapter, we investigate the problem of campaign detection in

social media. We propose and evaluate an efficient content-driven graph-based

framework for identifying and extracting campaigns from the massive scale of

real-time social systems. We find six campaign types (spam, promotion, tem-

plate, celebrity, news and babble), and analyze temporal behaviors of various

campaign types.

• Chapter 5: In this chapter, we present a dual study of the robustness of social

systems to collective attention threats through both a data-driven modeling

approach and deployment over a real system trace. We explore the resilience

of large-scale social systems to threats to collective attention, and identify

countermeasures and demonstrate their effectiveness at filtering spam during

the early development of a bursting phenomenon in a real system.
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• Chapter 6: We present a framework for “pulling back the curtain” on crowd-

turfers to reveal their underlying ecosystem. By linking malicious tasks and

their workers on crowdsourcing site to social media, we identify three classes

of crowdturfers – professional workers, casual workers, and middlemen.

• Chapter 7: We conclude with a summary of the contributions of this work and

provide a discussion of future research extensions to the results presented here.
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2. RELATED WORK

In this chapter, we summarize threats to information quality and methods to

tackle the threats in email, the Web, social networks and crowdsourcing sites.

2.1 Email and Web

To prevent and detect email spam, many approaches have been developed, in-

cluding content-based filtering like whitelisting, blacklisting, keyword-based [26], sta-

tistical classification [3, 120], heuristic-based filtering [28, 129], collaborative filtering

[108], network-level clustering approach [112], spambot identification [106, 127], data

compression algorithms [12], and behavioral blacklisting [114]. Other classes of fil-

tering approaches include challenge-response [62], MTA/Gateway filtering (Tarproxy

[74]), greylisting [52], and micropayments [69]. Researchers have also analyzed the

network-level characteristics of spammers [113], the underlying business operations

of spam-advertised enterprises [65] and common spam in tweets and email [84], have

quantified the effect of email spam on behavior and engagement of email users [30],

and have studied the spam value chain [80]. In addition, Qian et al. [111] revealed

triangular spamming that exploits routing irregularities of spoofed IP packets, and

proposed practical detection and prevention methods. Stringhini et al. [126] pro-

posed a system for filtering spam that takes into account how messages are sent

from spammers, analyzing the communication at the SMTP protocol level. Improv-

ing spam blacklisting in terms of the false positive and false negative rates by dy-

namic thresholding and speculative aggregation was proposed [123]. Isacenkova and

Balzarotti [61] conducted a measurement study of the behavior of a real world de-

ployment of a challenge-response anti-spam system. Pitsillidis et al. [105] conducted

comparative analysis of spam datasets.
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Similarly, in the Web domain, researchers have considered content-based features

of Web pages [37, 99], link-based features to distinguish between spam and legitimate

hyperlinks [2, 31, 34], anomalous linking patterns [93, 6, 51, 152], and trust-aware

ranking for favoring whitelist Web pages [50, 153]. Cheng et al. [23] have detected

spam websites using a semi-supervised learning framework based on posts in SEO

forums. Caverlee and Liu [18] measure the “credibility” of each web page to find

good and malicious pages. Other researchers have studied to detect link farms [5, 7].

2.2 Social Networks

Several research efforts have found a high degree of reciprocity in social networks

(e.g., [72]), meaning that many users may elect to make themselves susceptible to

a spammer (e.g., by becoming “friends” and subsequently the target of spam mes-

sages). Jagatic et al. [63] have shown that adding “social” contextual clues (like

sending a spam message from a known “friend” account) can increase the effective-

ness of such attacks. Similarly, Brown et al. [16] showed that context-aware attacks

in social systems are very effective. Heymann et al. [53] have summarized three

main anti-spam strategies in social systems: (i) detection strategy; (ii) demotion

strategy; and (iii) prevention strategy in social networking communities. Detection

strategy is that users or moderators detect spam manually or the system detects

it automatically. Demotion strategy requires using ranking algorithms so that rele-

vant pages or objects can be retrieved on top k results. Prevention strategy is that

system designers limit automated interaction or make some details of the system

secret. Markines et al. [90] assumed that the purpose of social spammers is to earn

money by attracting users to advertisements. They proposed six features based on

the post-level (tags), the resource-level (annotated web pages), and the user-level.

They found that post-level information was most effective for spam classification.
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Friend-in-the-middle attacks (hijacking approach) on social networking sites can be

used to harvest social data, and the collected data is used for spam and phishing

emails targeted at the victim’s friends [56]. Wondracek et al. [150] revealed a novel

de-anonymization attack that exploits group membership information on social net-

working sites. They warned that spammers can predict a user’s identify by misusing

the group membership information and target the user for future attack like sending

spam or disseminating malware software. [132] analyzed the tweets sent by suspended

users on Twitter.

Other types of social spam have been described and solutions proposed. Examples

include Twitter-based threats like spam URLs posted in Twitter [49], the detection

of malicious URLs [87], real-time URL spam filtering service [131], trend-stuffing

[59], the existence of malicious Twitter spam accounts and methods for detecting

them [76], and the adoption of link farms in Twitter [45]. Other researchers have

proposed domain-specific spam detection solutions for video sites, social tagging sites,

and others [8, 60, 68, 82, 101]. In addition, researchers have begun studying group

spammers and their tactics. Gao et al. [44] studied spam behavior on Facebook;

their approach finds coordinated spam messages that use the same malicious URL.

Mukherjee et al. [96, 97] proposed an approach to detect group spammers in product

reviews. Their approach consists of frequent itemset mining techniques and several

behavior features derived from collusion among fake reviewers. The Truthy system

[115] detects astroturf political campaigns on Twitter. Gonçalves et al. described

the abuse of social media and pollical manipulation [48]. Gao et al. [43] proposed

campaign identification approach and validated it on Facebook and Twitter data.

Caverlee et al. [19] have proposed the SocialTrust framework for tamper-resilient

trust establishment in online communities.

11



2.3 Crowdsourcing Sites

With the rise in popularity of commercial crowdsourcing services, there have been

many efforts to analyze the nature of jobs available and their characteristics. For

example Kittur et al. [66] studied Amazon Mechanical Turk and found that a large

number of workers can be hired within a short time and for low cost. Similar studies

– e.g., [11] – have shown the potential of crowdsourcing. And researchers have begun

developing new crowd-based platforms – e.g., [1] [40] – for augmenting traditional

information retrieval and database systems, embedding crowds into workflows (like

document authoring) [9], and so forth.

A key question for these crowd-based systems is how to control the quality of

workers and outputs due to the openness of these sites. For example, Venetis and

Garcia-Molina [141] described two quality control mechanisms. The first mechanism

repeats each task multiple times and combines the results from multiple users. The

second mechanism defines a score for each worker and eliminates the work from users

with low scores. Xia et al. [157] provided a real-time quality control strategy for

workers who evaluate the relevance of search engine results based on the combina-

tion of a qualification test of the workers and the time spent on the actual task.

The results are promising and these strategies facilitate reducing the number of bad

workers. Recently, Wang et al. [143] coined the term “crowdturfing” (crowdsourcing

+ astroturfing) to refer to crowdsourcing systems where malicious campaigns are

hosted by employers. They have studied crowdsourcing sites based in China and the

impact of these sites on one social networking site – Weibo.
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3. DETECTING SOCIAL SPAMMERS AND CONTENT POLLUTERS∗

3.1 Introduction

In this chapter, we begin to investigate our first threat to social systems. This

threat has been caused by individual social spammers and content polluters.

Social spammers are increasingly targeting these systems as part of phishing

attacks [63], to disseminate malware [10] and commercial spam messages [16, 162],

and to promote affiliate websites [83]. In the past year alone, more than 80% of social

networking users have “received unwanted friend requests, messages, or postings

on their social or professional network account” (Source: Harris Interactive, June

2008). Unlike traditional email-based spam, social spam often contains contextual

information that can increase the impact of the spam (e.g., by eliciting a user to click

on a phishing link sent from a “friend”) [16, 36, 63].

Successfully defending against these social spammers is important to improve the

quality of experience for community members, to lessen the system load of dealing

with unwanted and sometimes dangerous content, and to positively impact the over-

all value of the social system going forward. However, little is known about these

social spammers, their level of sophistication, or their strategies and tactics. Filling

this need is challenging, especially in social networks consisting of 100s of millions

of user profiles (like Facebook, MySpace, Twitter, YouTube, etc.). Traditional tech-

niques for discovering evidence of spam users often rely on costly human-in-the-loop

∗Reprinted with permission from “Uncovering social spammers: social honeypots + machine
learning” by Kyumin Lee, James Caverlee, and Steve Webb, 2010. Proceedings of the 33rd inter-
national ACM SIGIR conference on Research and development in information retrieval, 435-442,
Copyright 2010 by ACM. Reprinted with permission from “Seven Months with the Devils: A Long-
Term Study of Content Polluters on Twitter” by Kyumin Lee, Brian David Eoff, and James Caver-
lee, 2011. Proceedings of the 5th International AAAI Conference on Weblogs and Social Media,
Copyright 2011 by AAAI.
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inspection of training data for building spam classifiers; since spammers constantly

adapt their strategies and tactics, the learned spam signatures can go stale quickly.

An alternative spam discovery technique relies on community-contributed spam re-

ferrals (e.g., Users A, B, and C report that User X is a spam user); of course, these

kinds of referral systems can be manipulated themselves to yield spam labels on

legitimate users, thereby obscuring the labeling effectiveness. And neither spam dis-

covery approach can effectively handle zero-day social spam attacks for which there

is no existing signature or wide evidence.

With these challenges in mind, we propose and evaluate a novel honeypot-based

approach for detecting social spammers and content polluters in social systems. In

Section 3.2, the proposed approach is designed to (i) automatically harvest spam

profiles from social networking communities, avoiding the drawbacks of burdensome

human inspection; (ii) develop robust statistical user models for distinguishing be-

tween social spammers and legitimate users; and (iii) actively filter out unknown

(including zero-day) spammers based on these user models. Drawing inspiration

from security researchers who have used honeypots to observe and analyze malicious

activity (e.g., for characterizing malicious hacker activity [124], generating intrusion

detection signatures [70], and observing email address harvesters [109]), we deploy

and maintain social honeypots for trapping evidence of spam profile behavior, so that

users who are detected by the honeypot have a high likelihood of being a spammer

(i.e., low false positive rate). Over two distinct communities (MySpace and Twitter),

we find that the proposed approach provides generalizable and effective social spam

detection.

Section 3.3 presents the first long-term study of social honeypots via a seven-

month deployment of 60 honeypots on Twitter that resulted in the harvesting of
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36,000 candidate content polluters†. We provide a detailed examination of the har-

vested Twitter users, including an analysis of link payloads, user behavior over

time, and followers/following network dynamics. We experimentally evaluate a

wide range of features – including user demographics, properties of the Twitter fol-

lower/following social graph, Tweet content, and temporal aspects of user behavior

– to investigate the effectiveness of automatic content polluter identification, even

in the presence of strategic polluter obfuscation. Finally, we empirically validate

the social honeypot-derived classification framework on an alternative Twitter spam

dataset, which shows the flexibility and effectiveness of the proposed approach.

3.2 Uncovering Social Spammers

3.2.1 Overall Framework

In this subsection, we present the conceptual framework of the proposed honeypot-

based approach and outline the research questions motivating our examination of this

framework.

3.2.1.1 Problem Statement

In social networking communities like MySpace and Facebook, there are a set of k

users U = {u1, u2, . . . , uk}. Each user ui has a profile pi. Profiles are self-describing

pages that are created and controlled by a given user. For example, users typically

include information such as their name, gender, age, and so on in their profiles. Each

community has its own profile format, but most fields in the formats are the same.

The social spam detection problem is to predict whether ui is a spammer

through a classifier c when pi is given. A classifier

c : ui → {spammer, legitimate user}
†We use the term “social spammer” and “content polluter” interchangeably.
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Figure 3.1: Overall Framework of Social Honeypot-based Approach

approximates whether ui is a spammer. To build c, we need to extract a set of m

features F = {f1, f2, . . . , fm} from U. For example, we can extract Fui
from pi of ui.

Whereas traditional email spam detection has focused on identifying spam mes-

sages which are of relatively low individual value to the spammer (and whose iden-

tification typically doesn’t threaten the ongoing ability of a spammer to send new

messages), social spam detection is focused on identifying and eliminating spam ac-

counts themselves. This detection is potentially more disruptive to spammers, since

these accounts typically represent a more expensive investment by the spammer

(through email and social media account registrations).

3.2.1.2 Solution Approach

We propose to monitor spammer activity through the creation of social honeypots.

We define social honeypots as information system resources that monitor spammers’

behaviors and log their information (e.g., their profiles and other content created by

them in social networking communities). Social honeypots and traditional honeypots

(e.g., in domains such as network systems and emails [70, 109, 124]) share a similar
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purpose in that they both monitor and log the behaviors of spammers or attackers.

However, traditional honeypots typically target network or systems-level behavior,

whereas social honeypots specifically target community-based online activities.

While social honeypots alone are a potentially valuable tool for gathering evidence

of social spam attacks and supporting a greater understanding of spam strategies, it is

the goal of this research project to support ongoing and active automatic detection

of new and emerging spammers (See Figure 3.1). In practice, we deploy a social

honeypot consisting of a legitimate profile and an associated bot to detect social

spam behavior. If the social honeypot detects suspicious user activity (e.g., the

honeypot’s profile receiving an unsolicited friend request) then the social honeypot’s

bot collects evidence of the spam candidate (e.g., by crawling the profile of the user

sending the unsolicited friend request plus hyperlinks from the profile). What entails

suspicious user behavior can be optimized for the particular community and updated

based on new observations of spammer activity.

As the social honeypots collect spam evidence, we extract observable features

from the collected candidate spam profiles (e.g., number of friends, text on the profile,

age, etc.). Coupled with a set of known legitimate (non-spam) profiles which are more

populous and easy to extract from social networking communities, these spam and

legitimate profiles become part of the initial training set of a spam classifier. Through

iterative refinement of the features selected and the classifier used (e.g., SVM), the

spam classifier can be optimized over the known spam and legitimate profiles.

Based on these developed classifiers, we can then explore the wider space of un-

known profiles. On MySpace alone there are 100s of millions of profiles, of which

some unknown fraction are spam. Using the classifiers based on the harvested so-

cial honeypot data, we iteratively explore these profiles “in-the-wild” to detect new

spammers that have yet to be identified by a social honeypot directly. In our design
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of the overall architecture, we include human inspectors in-the-loop for validating

the quality of these extracted spam candidates. Instead of inspecting the entirety

of all profiles, these inspectors are guided to validate just the few spam candidates

recommended by the learned classifiers. Based on their feedback, the spam classi-

fiers are updated with the new evidence and the process continues. Given the overall

architecture, we address three important research challenges in turn in the rest of

this chapter:

• Research Challenge #1 [RC1]: Do social honeypots collect evidence of spam

with low false positives? In other words, do honeypots really work in prac-

tice? A poorly performing social honeypot will negatively impact the spam

classification approach, leading to poor performance.

• Research Challenge #2 [RC2]: Can we build classifiers from the harvested

social honeypot profiles and known legitimate profiles to effectively identify

spam profiles? Since social honeypots are triggered by suspicious user activity,

we must explore if the harvested spam data contains signals that are strongly

correlated with observable profile features (e.g., content, friend information,

posting patterns, etc.). It is our hypothesis that spammers engage in behavior

that is correlated with observable features that distinguish them from legiti-

mate users.

• Research Challenge #3 [RC3]: Finally, can the developed classifiers be effec-

tively deployed over large collections of unknown profiles (for which we have

no assurances of the degree of spam or legitimate users)? This last question

is important for understanding the promise of social honeypots in defending

against new and emerging spam as it arises “in-the-wild.”
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3.2.2 RC1: Study of Harvested Spam Users

Based on the overall social honeypot framework, we selected two social networking

communities – Myspace and Twitter – to evaluate the effectiveness of the proposed

spam defense mechanism. Both MySpace and Twitter are large and growing com-

munities and both also support public access to their profiles, so all data collection

can rely on purely public data capture.

• MySpace Social Honeypot Deployment: In previous research [146], we created

51 generic honeypot profiles within the MySpace community for attracting

spammer activity so that we can identify and analyze the characteristics of so-

cial spam profiles. To observe any geographic artifacts of spamming behavior,

each profile was assigned a specific geographic location (i.e., one honeypot was

assigned to each of the U.S. states and Washington, D.C.). Each honeypot

profile tracks all unsolicited friend requests. Upon receiving a friend request,

we store a local copy of the profile issuing the friend request, extract all hy-

perlinks in the “About Me” sections (we find that these typically point to an

affiliate spam website), and crawl the pages pointed to by these hyperlinks.

Based on a four month evaluation period (October 2007 to January 2008), we

collected 1,570 profiles whose users sent unsolicited friend requests to these

social honeypots.

• Twitter Social Honeypot Deployment: Similarly, we created and deployed a

mix of honeypots within the Twitter community – some of them had personal

information such as biography, location and so on, while others did not have this

personal information. Some social honeypots posted tweets, while others did

not post them. We omit some of the concrete details of the Twitter honeypot

deployment due to the space constraint. From August 2009 to September 2009,
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these social honeypots collected 500 users’ data.

3.2.2.1 MySpace Observations

After analyzing the harvested spam profiles from MySpace, we find some interest-

ing observations (more fully detailed in [146]): (1) The spamming behaviors of spam

profiles follow distinct temporal patterns. (2) The most popular spamming targets

are Midwestern states, and the most popular location for spam profiles is California.

(3) 57.2% of the spam profiles copy their “About Me” content from another profile.

(4) Many of the spam profiles exhibit distinct demographic characteristics (e.g., age,

relationship status, etc.). (5) Spam profiles use thousands of URLs and various redi-

rection techniques to funnel users to a handful of destination Web pages. Through

manual inspection, we grouped the harvested spam profiles into five categories:

• Click Traps: Each profile contains a background image that is also a link to

another Web page. If users click anywhere on the profile, they are directed to

the link’s corresponding Web site.

• Friend Infiltrators: These nominally legitimate profiles befriend as many users

as possible so that they can infiltrate the users’ circles of friends and bypass

any communication restrictions imposed on non-friends. Once a user accepts a

friend request from one of these profiles, the profile begins spamming the user

through existing communication systems (e.g., message spam, comment spam,

etc.).

• Pornographic Storytellers: Each of these profiles has an “About Me” section

that consists of randomized pornographic stories, which are book-ended by

links that lead to pornographic Web pages. The anchor text used in these
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profiles is extremely similar, even though the rest of the “About Me” text is

almost completely randomized.

• Japanese Pill Pushers: These profiles contain a sales pitch for male enhance-

ment pills in their “About Me” sections. According to the pitch, the attractive

woman pictured in the profile has a boyfriend who purchased these pills at an

incredible discount.

• Winnies: All of these profiles have the same headline: “Hey its winnie.” How-

ever, despite this headline, none of the profiles are actually named “Winnie.”

In addition to a shared headline, each of the profiles also includes a link to a

Web page where users can see the pictured female’s pornographic pictures.

3.2.2.2 Twitter Observations

Similarly, we discovered various types of spam users in the harvested data from

Twitter. In many cases, spammers inserted malicious or spam links into their tweets.

Since most Twitter links use a form of URL-shortening, users clicking on these links

have no assurances of the actual destination.

• Duplicate Spammers: These users post a series of nearly identical tweets. In

many cases, the only different content from tweet to tweet is the inclusion of

different @usernames (or @replies). The insertion of these @usernames essen-

tially delivers the tweet to the username’s account even if the spammer has no

relationship with the intended target.

• Pornographic Spammers: Their data such as user image, profile URL, and text

and links in tweets contains adult content.

• Promoters: These users post tweets about several things such as online busi-

ness, marketing and so on. Their posting approach is more sophisticated than
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duplicate spammers since spam tweets are randomly interspersed with seem-

ingly innocuous legitimate tweets.

• Phishers: Similar to promoters, these users use a mix of strategies to deliver

phishing URLs to targets on Twitter.

• Friend Infiltrators: Much like their counterparts on MySpace, these users have

profiles and tweets that are seemingly legitimate. They follow many people

and intend to accumulate many followers; then they begin engaging in spam

activities like posting tweets containing pornographic or commercial content.

These observations indicate that social honeypots can successfully attract spam-

mers across fundamentally different communities (MySpace vs. Twitter), and the

results suggest that building automatic classifiers may be useful for identifying social

spam.

3.2.3 RC2: Empirical Evaluation of Social Spam Signals

We next explore whether there are discernible spam signals in the harvested spam

profiles that can be used to automatically distinguish spam profiles from legitimate

profiles. Since social honeypots are triggered by spam behaviors only, it is unclear if

the corresponding profiles engaging in the spam behavior also exhibit clearly observ-

able spam signals. If there are clear patterns (as our observations in the previous

subsection would seem to indicate), then by training a classifier on the observable

signals, we may be able to predict new spam even in the absence of triggering spam

behaviors.

3.2.3.1 Classification Approach and Metrics

As part of this empirical evaluation of social spam signals, we consider four broad

classes of user attributes that are typically observable (unlike, say, private messaging
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between two users) in the social network: (i) user demographics: including age, gen-

der, location, and other descriptive information about the user; (ii) user-contributed

content: including “About Me” text, blog posts, comments posted on other user’s

profiles, tweets, etc.; (iii) user activity features: including posting rate, tweet fre-

quency; (iv) user connections: including number of friends in the social network,

followers, following. For MySpace and Twitter we select a subset of these features

to train the classifier.

The classification experiments were performed using 10-fold cross-validation to

improve the reliability of classifier evaluations. When a dataset is not large, it is

common to use 10-fold cross-validation to achieve statistically precise results. In 10-

fold cross-validation, the original sample is randomly divided into 10 equally-sized

sub-samples. 9 sub-samples are used as a training set and the remaining one is used

as a testing set; the classifier is evaluated, then the process is repeated for a total

of 10 times. Each sub-sample is used as a testing set once in each evaluation. The

final evaluation result is generated by averaging the results of the 10 evaluations.

In practice, we evaluated over 60 different classifiers in the Weka [149] machine

learning toolkit using 10-fold cross-validation with default values for all parameters.

Classification results are presented in the form of a confusion matrix as in Table 3.1.

Table 3.1: Confusion matrix example
Predicted

Spammer Legitimate
Actual Spammer a b

Legitimate c d

To measure the effectiveness of classifiers based on our proposed features, we used
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the standard metrics such as precision, recall, accuracy, the F1 measure, false positive

and true positive. Precision is the ratio of correctly predicted users as a class to the

total predicted users as the class. For example, the precision (P) of the spammer

class in Table 3.1 is a/(a+ c). Recall (R) is the ratio of correctly predicted users as

a class to the actual users in the class. The recall of the spammer class in the table

is a/(a+ b). Accuracy is the proportion of the total number of predictions that were

correct. The accuracy in the table is (a+ d)/(a+ b+ c+ d). F1 is a measure that

trades off precision versus recall. F1 measure of the spammer class is 2PR/(P +R).

A false positive is when the actual Y class users are incorrectly predicted as X class

users. The false positive of the spammer class is c. A true positive is when actual X

class users are correctly predicted as X class users. The true positive of the spammer

class is a.

To measure the discrimination power between spammers and legitimate users

of each of the proposed features, we generate a Receiver Operating Characteristics

(ROC) curve. ROC curves plot false positive rate on the X axis and true positive rate

on the Y axis. The closer the ROC curve is to the upper left corner, the higher the

overall accuracy is. The ideal ROC curve includes the coordinate (0, 1), indicating

no false positives and a 100% true positive rate.

3.2.3.2 MySpace Spam Classification

We randomly sampled 388 legitimate profiles from MySpace (which were labeled

by us) and 627 deceptive spam profiles from the 1,570 deceptive spam profiles col-

lected by our social honeypots. When we sampled the profiles, we considered several

conditions. Profiles have to be public, and marital status, gender, age, and “About

Me” content in the profiles have to be valid (i.e., a non-empty value). In addition,

we removed duplicated profiles among the 1,570 deceptive spam profiles in the case
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Figure 3.2: MySpace – Feature Comparison

that a spammer sent a friend request to several social honeypots. The goal of spam

classification over the MySpace data is to predict whether a profile is either spammer

or legitimate.

We considered several representative user features: number of friends, age, mar-

ital status, gender, as well as some text-based features modeling user-contributed

content in the “About Me” section. Specifically, we consider a bag-of-words model

in which we remove punctuation, make all letters lowercase, tokenize each word, re-

move stopwords, and do stemming for each word using the Porter stemmer [107]. We

assigned weights to each word based on tf-idf weighting: tf-idft,d = log(1 + tft,d) ×

log( N
dft

), where tft,d means term frequency of term t in a profile’s “About Me”, N is

the number of profiles, and dft is the number of profiles which includes term t. We

also measured the length in bytes of the “About Me” content.

Before evaluating the effectiveness of our classifiers, we investigated the discrim-
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ination power of our individual classification features. Recognizing that social spam

classification is an example of an adversarial classification problem [29], we wanted

to evaluate the robustness of our features against an adversarial attack. To show the

discrimination power and robustness of each feature, we generated ROC curves for

each feature using an AdaboostM1 classifier. The results are shown in Figure 3.2.

Marital status and sex are the least discriminative features, which is unsurprising

because they are represented by a small set of predefined values (e.g., “Married”,

“Single”, ”Male”, etc.) that will inevitably appear in both legitimate and spam

profiles. On the other hand, the bag of words features extracted from “About Me”

content (AMContent) are the most discriminative. This is a very encouraging result

because it means our classifier was able to distinguish between legitimate and spam

“About Me” content with a high degree of accuracy. Therefore, if spammers begin

varying the other features of their profiles (to appear more legitimate), our classifiers

will still be effective. Additionally, the “About Me” content is the most difficult

feature for a spammer to vary because it contains the actual sales pitch or deceptive

content that is meant to target legitimate users.

In Table 3.2, the performance results for the top 10 classifiers are shown. The

table clearly shows that all of the classifiers were successful. Each classifier generated

an accuracy greater than 98.4%, an F1 measure over 0.98, and a false positive rate

below 1.6%. Overall, meta-classifiers (Decorate, LogitBoost, etc.) performed better

than tree classifiers (FT and J48) and a function-based classifier (SimpleLogistic).

The best classifier is Decorate, which is a meta-learner for building diverse ensembles

of classifiers. It obtained an accuracy of 99.21%, an F1 measure of 0.992, and a 0.7%

false positive rate. We additionally considered different training mixtures of spam

and legitimate training data (from 10% spam / 90% legitimate to 90% spam / 10%

legitimate); we find that the metrics are robust across these changes in training data.
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Table 3.2: MySpace – Performance results of top 10 classifiers
Weka Classifier Accuracy F1 FP

Decorate 99.21% 0.992 0.7%

SimpleLogistic 99.01% 0.99 0.9%

FT 99.01% 0.99 0.9%

LogitBoost 99.01% 0.99 1.3%

RandomSubSpace 98.72% 0.987 1.1%

Bagging 98.62% 0.986 1.2%

J48 98.42% 0.984 1.5%

OrdinalClassClassifier 98.42% 0.984 1.5%

ClassBalancedND 98.42% 0.984 1.5%

DataNearBalancedND 98.42% 0.984 1.5%

3.2.3.3 Twitter Spam Classification

To evaluate the quality of spam classification over Twitter, we randomly selected

104 legitimate users (labeled by us) from a previously collected Twitter dataset

of 210,000 users. We additionally considered two classes of spam users: the 61

spammers and the 107 promoters sampled from 500 users’ data collected by the

social honeypots. For each user, we collected the user profile, tweets (status update

messages), following (friend) information and followers’ information. The goal of

spam classification over the Twitter data is to predict whether a profile is either

spammer, a promoter, or legitimate. When we sampled users’ data, we considered

two conditions: the profiles did not have a verified account badge and the number of

tweets had to be over 0. The verified account badge is one way Twitter ensures that

profiles belong to known people (e.g, Shaquille O’Neal and not an impersonator).

Unlike MySpace profiles which emphasize on longer-form personal information

sharing (e.g., “About Me” text) and usually have self-reported user demographics

(e.g., age, gender), Twitter accounts are noted for their short posts, activity-related

features, and limited self-reported user demographics. For user features, we consider
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the longevity of the account on Twitter, the average tweets per day, the ratio of the

number of following and number of followers, the percentage of bidirectional friends

( |following∩followers|
|following| ), as well as some features of the tweets sent, including:

• The ratio of the number of URLs in the 20 most recently posted tweets to the

number of tweets (|URLs|/|tweets|).

• The ratio of the number of unique URLs in the 20 most recently posted tweets

to the number of tweets (|unique URLs|/|tweets|).

• The ratio of the number of @usernames in the 20 most recently posted tweets

to the number of tweets (|@username|/|tweets|).

• The ratio of the number of unique @usernames in the 20 most recently posted

tweets to the number of tweets (|unique @username|/|tweets|).

Additionally, we measure the average content similarity over all pairs of tweets

posted by a user:

∑
a,b∈set of pairs in tweets

similarity(a, b)

|set of pairs in tweets|

where the content similarity is computed using the standard cosine similarity over

the bag-of-words vector representation
−→
V (a) of the tweet content:

similarity(a, b) =

−→
V (a) ·

−→
V (b)

|
−→
V (a)||

−→
V (b)|

We finally considered some text-based features to model the content in the tweets.

Since tweets are extremely short (140 characters or less), we consider a bag-of-words

model and a sparse bigrams model [27]. We remove punctuation, make all letters
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Figure 3.3: Twitter – Feature Comparison

lowercase, tokenize each word in the bag-of-words model and tokenize a pair of words

in the sparse bigrams model. The sparse bigrams model generates a pair of words

separated by no more than k words. We assigned k = 3 in our system, while k =

0 yields ordinary bigrams. If a tweet is “check adult page view models”, the sparse

bigrams will generate the features “check adult”, “check page”, “check view”, “adult

page”, “adult view”, “adult models”, “page view”, “page models”, “view models”.

We weighted terms and bigrams using tf-idf weighting as in the previous MySpace

classification.

In order to know how much discrimination power each feature has for spammers,

promoters and legitimate users, we generated ROC curves of the proposed features

using Decorate in Figure 3.3. Average posted tweets per day (|tweets| per day), per-

centage of bidirectional friends (bi-friends), and ratio of number of following and

number of followers (F-F Ratio) have low discrimination powers relatively, while
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Figure 3.4: Cumulative Distribution of Features Extracted from Users

ratio of number of unique URLs in recently posted top 20 tweets and number of

the tweets (|unique URL| per tweet), ratio of number of @username in recently

posted top 20 tweets and number of the tweets (|@| per tweet), ratio of number

of unique @username in recently posted top 20 tweets and number of the tweets

(|unique @| per tweet), and average content similarity between a user’s tweets (tweets

similarity) have good discrimination powers. Account age, text-based features ex-

tracted from tweets, and ratio of number of URLs in recently posted top 20 tweets

and number of the tweets (|URL| per tweet) have the best discrimination power.

Overall, the proposed all features have positive discrimination power.

To further illustrate, Figure 3.4(a) presents the cumulative distributions of con-

tent similarity in tweets posted by each user class. It shows clear distinction among

legitimate users, spammers and promoters. The content similarity in tweets of each

spammer is the largest compared to the other classes because some of them post

almost the same content or even duplicate tweets. Promoters have a goal of pro-

moting something like online business, marketing and so on; naturally their tweets

include common terms like the name of a product. Therefore, the content similar-
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ity in their tweets is larger than legitimate users’ one because legitimate users post

tweets about their news such as what they are doing, where they are and so on. The

content similarity in tweets of legitimate users is the smallest. Figure 3.4(b) shows

the cumulative distributions of the average number of URLs in the tweets of each

user. Tweets posted by legitimate users include the smallest number of URLs; not

surprisingly, the majority of spammers and promoters post tweets with URLs. The

curves of spammers and promoters are overlapped near 1 in the X axis, meaning

that promotor and spammer behavior is closely coupled in our dataset.

Table 3.3 shows the performance results for the top 10 classifiers. Each of the top

10 classifiers achieved an accuracy greater than 82.7%, an F1 measure over 0.82, and

a false positive rate less than 10.3%. As in the case with MySpace, the meta classi-

fiers (Decorate, LogitBoost, etc.) produced better performance than tree classifiers

(BFTree and FT) and function-based classifiers (SimpleLogistic and LibSVM). The

best classifier was Decorate, which obtained an accuracy of 88.98% accuracy, an F1

measure of 0.888, and a 5.7% false positive rate. As in the MySpace analysis, we

additionally considered different training mixtures of spam and legitimate training

data (from 10% spam / 90% legitimate to 90% spam / 10% legitimate); we find that

the classification metrics are robust across these changes in training data.

3.2.3.4 Summary

Based on our empirical study over both MySpace and Twitter, we find strong

evidence that social honeypots can attract spam behaviors that are strongly cor-

related with observable features of the spammer’s profiles and their activity in the

network (e.g., tweet frequency). These results hold across two fundamentally differ-

ent communities and confirm the hypothesis that spammers engage in behavior that

is correlated with observable features that distinguish them from legitimate users. In
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Table 3.3: Twitter – Performance results of top 10 classifiers
Weka Classifier Accuracy F1 FP

Decorate 88.98% 0.888 5.7%

LogitBoost 87.86% 0.877 6.2%

HyperPipes 85.29% 0.846 8.1%

Bagging 84.56% 0.844 7.5%

RandomSubSpace 84.19% 0.837 8.3%

BFTree 83.82% 0.84 7.2%

FT 83.46% 0.832 8.3%

SimpleLogistic 83.46% 0.832 8.5%

LibSVM (SVM) 83.09% 0.825 10.2%

ClassificationViaRegression 82.72% 0.823 9.1%

addition, we find that some of these signals may be difficult for spammers to obscure

(e.g., content containing a sales pitch or deceptive content), so that the results are

encouraging for ongoing effective spam detection.

3.2.4 RC3: Large-Scale Social Spam Classification In the Wild

So far, we have seen that the deployed social honeypots can collect evidence of

spam behavior, and that these behaviors are correlated with spam signals which can

support automatic spam classification. In this final study, we explore whether these

classifiers can be effectively deployed over large collections of unknown profiles (for

which we have no assurances of the degree of spam or legitimate users). Concretely,

we apply the developed classifiers for both MySpace and Twitter over datasets “in-

the-wild” to better understand the promise of social honeypots in defending against

new and emerging spam and zero-day spam attacks.

3.2.4.1 Data and Setup

For this final study, we considered two large datasets:

• MySpace Dataset: The first dataset is a crawl over MySpace, including about

1.5 million of public profiles collected in 2006 and 2007. A full description of
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Table 3.4: Statistics of MySpace dataset
Public Profiles Private Profiles Total Profiles Size

1,576,684 274,988 1,851,672 150GB

Table 3.5: Statistics of Twitter dataset
User Profiles Tweets Following Followers Size

215,345 4,040,415 51,650,754 65,904,253 11.3GB

this dataset and its characteristics is available in [20]. Table 3.4 summarizes

statistics of this dataset.

• Twitter Dataset: We also collected a large dataset from Twitter for the period

September 2 to September 9, 2009. We sampled the public timeline of Twitter

(which publishes a random selection of new tweets every minute), collected

usernames, and then used the Twitter API to collect each user’s recently posted

top 20 tweets, plus the user’s following (friends) and followers’ information.

Table 3.5 presents statistics of this Twitter dataset. It consists of 215,345 user

profiles, 4,040,415 tweets.

In both cases, the collected profiles are unseen to our system, meaning that we

do not know ground truth as to whether a profile is spam or legitimate. As a result,

the traditional classification metrics presented in the previous subsection would be

infeasible to apply in this case. Rather than hand label millions of profiles, we

adopted the spam precision metric to evaluate the quality of spam predictions. For

spam precision, we evaluate only the predicted spammers (i.e., the profiles that the

classifier labels as spam). Spam precision is defined as:

SpamPrecision =
true positives

true positives+ false positives
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Figure 3.5: MySpace – Spam Precision

3.2.4.2 Finding Unknown Spam on MySpace

As in the previous subsection, we trained a classifier over a training set consisting

of 388 legitimate profiles (labeled by us) and 627 deceptive spam profiles collected

from social honeypots. In the interests of efficiency, we used the LibSVM classifier –

an implementation of support vector machines – which is a widely popular classifier

and classifies a large dataset quickly with high accuracy. Its classification time is

faster than meta classifiers that proved successful in the previous experiments. We

sampled from the 1.5 million public profiles a smaller test set of 43,000 profiles. We

repeated this sampling procedure four times so we had four different test sets.

As we classified each of four test sets, a human inspector verified whether the

newly found predicted spam was actually spam, added the new instances to the

training set, and the process continued. In each test set, LibSVM classifier predicted

about 30 users as spammers. In each subsequent iteration, we found that the spam

precision increased.
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Figure 3.5 shows the evaluation results of the fourth test set. The left two bars

of the figure present spam precision based on sexual content. If an unseen profile

is classified to a deceptive spam profile by LibSVM, and its “About Me” content

includes sexual content, it will be considered as a real deceptive spam profile. The

right two bars of the figure present spam precision based on advertisement content.

If predicted spam profile’s “About Me” content includes advertisement content, it

will be considered as a real deceptive spam profile. Note that there are two results:

with postfilter and without postfilter. We found that LibSVM incorrectly predicted

spam labels for profiles containing special profile layout links, e.g., “click here to

get a theme for your myspace” or “click here for myspace backgrounds”, which are

similar to spammer techniques for inserting links into spam profiles. These types

of profile layout links are common on MySpace, which allows users to adjust their

profile layouts. To correct these errors, we inserted a “postfilter” to check for these

standard links and remove their spam labels.

As we can see, using postfilters improved about 40% spam precision in sexual

content and about 21% in advertisement content. Detecting spammers whose pro-

files include advertisement content is easier than detecting spammers whose profile

include sexual content. Even with the fairly good results (70% spam precision), the

results are significantly worse than what we observed in the previous subsection over

the controlled dataset. We attribute this decline in performance to the time-based

mismatch between the harvested social honeypots and the large MySpace dataset.

The honeypots were deployed in 2007, but the large MySpace data was crawled in

2006. As a result, the spam signatures developed from the honeypots have difficulty

identifying spam in an earlier dataset when those spam signature may have not been

in use at all. Even with these challenges, the results are fairly good.

As an example, Table 3.6 illustrates a legitimate-appearing profile in the first
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Table 3.6: Example of “About Me” content in new deceptive spam profiles
“About Me” content

I moved to san diego 3 months ago with my boyfriend, well, ex-boyfriend now . . . one
thing i did find is this webcam site. it pays pretty decent and the best part is that
its really fun, too . . . , click here to visit me.
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Figure 3.6: Twitter – Spam Precision

part of the “About Me” content, but then inserts a URL which links to an external

site (usually porn or sexual sites) in the middle part or the last part of the “About

Me” content.

3.2.4.3 Finding Unknown Spam on Twitter

Unlike the MySpace data mismatch, the social honeypots deployed on Twitter

pre-date the large Twitter dataset collection. Hence, we are interested in this final

experiment to discover if these honeypots can effectively detect new and emerging

spam. For Twitter classification, we again relied on the training set consisting of 104

legitimate users’ data, 61 spammers’ data and 107 promoters’ data which were used in

Section 3.2.3. For prediction, we considered two cases: legitimate or spam+promoter.
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We randomly selected a test set of 1,000 users’ data from the total dataset of about

210,000 users. We repeated this process three times, resulting in three test sets.

The feature generator produces the same features used in the previous subsection.

We selected Decorate as a classifier because it showed the best performance in the

previous Twitter study. Human inspectors view spam data predicted by the classifier,

and then decide whether or not they are real spam data. They will add newly found

spam data with labels (spam or non-spam) to the training set in order to iteratively

improve the classifier’s accuracy.

Figure 3.6 presents spam precision results obtained from the three test sets. In

each test set, the Decorate classifier predicted about 20 users as spammers. We

assessed whether the predicted spammers were real spammers. In the first iteration,

spam precision was 0.75, nearly matching the performance of the controlled classifier

reported in the previous subsection. By the third iteration, the spam precision was

0.82. We see in this experiment how the social honeypots provide strong ability to

discover unknown spam; and as these newly discovered spammers are added to the

training set, the classifier becomes more robust (resulting in the improvement from

the first to the third iteration).

As an example, Figure 3.7 shows an example of newly found spammer. The

spammer’s tweets include URLs which link to sex search tool pages. It is interesting

that the spammer has 205 followers, meaning that this spammer has successfully

inserted himself into the social network without detection. We additionally found

that about 20% of the users predicted to be spammers were bots that post tweets

automatically using the Twitter API.

Based on this large-scale evaluation of spam “in-the-wild”, we can see how social

honeypots can enable effective social spam detection of previously unknown spam

instances. Since spammers are constantly adapting, these initial results provide
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Figure 3.7: An example of newly found spammer on Twitter

positive evidence of the robustness of the proposed approach.

3.3 A Long-Term Study of Content Polluters on Twitter

3.3.1 Introduction

In the previous section, we have presented the design and real-world evaluation

of a novel social honeypot-based approach to detect individual social spammers. We

have investigated techniques and developed effective tools for automatically detecting

and filtering spammers who target social systems. Our empirical evaluation over

both MySpace and Twitter has demonstrated the effectiveness and adaptability of

the honeypot-based approach to social spam detection.

In contrast to the study in the previous section, in this section we present the first

long-term study of social honeypots via a seven-month deployment of 60 honeypots

on Twitter that resulted in the harvesting of 36,000 candidate content polluters. We

provide a detailed examination of the harvested Twitter users, including an analysis

of link payloads, user behavior over time, and followers/following network dynamics.

We experimentally evaluate a wide range of features – including user demographics,
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properties of the Twitter follower/following social graph, Tweet content, and tem-

poral aspects of user behavior – to investigate the effectiveness of automatic content

polluter identification, even in the presence of strategic polluter obfuscation. Finally,

we empirically validate the social honeypot-derived classification framework on an

alternative Twitter spam dataset, which shows the flexibility and effectiveness of the

proposed approach.

3.3.2 Tempting Content Polluters

As we created social honeypot accounts in the previous section, we created and

deployed 60 new social honeypot accounts on Twitter whose purpose is to pose as

Twitter users, and report back what accounts follow or otherwise interact with them.

The system ran from December 30, 2009 to August 2, 2010. During that time the

social honeypots tempted 36,043 Twitter users, 5,773 (24%) of which followed more

than one honeypot. One user was tempted by twenty-seven different honeypots.

After removing users who followed more than one honeypot, 23,869 users remained.

Figure 3.8 shows the number of polluters tempted per day.

3.3.3 Who are the Harvested Twitter Users?

Our overall goal is to automatically attract content polluters via our social hon-

eypots so that we can provide ongoing and dependable policing of the online com-

munity. Of course, a user identified by the social honeypot system is not necessarily

a content polluter. Our intuition, however, is that given the behavior of the social

honeypots there is no reason for a user who is not in violation of Twitter’s rules to

be tempted to message or follow them. Since social honeypot accounts post random

messages and engage in none of the activities of legitimate users, it seems reasonable

that the likelihood of a legitimate user being tempted to be similar, if not less, than

the likelihood an error would be made in hand-labeling the type of users.
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Figure 3.8: A chart of the number of content polluters tempted per day. On the
fourth day of the study the honeypots were able to tempt a total of 391 content
polluters, the most in a single day. The third highest single-day temptation was 339,
which occurred on day 191.

3.3.3.1 Users Detected via Social Honeypots vs. Official Twitter Spammers

To support this intuition, we first investigated the 23,869 polluters the honeypots

lured to see if any were considered as official violators of Twitter’s terms of service

[139]. We found that Twitter eventually suspended the accounts of 5,562 (or 23%

of the total polluters identified by the social honeypots). We observe that of the

5,562, the average time between the honeypot tempting the polluter and the account

being suspended was 18 days. In one case, the honeypot snared a polluter 204

days before Twitter terminated the account. In other words, the social honeypots

identified polluters much earlier than through traditional Twitter spam detection

methods (again, on average by 18 days). But what of the remaining 77% (18,307)

of the polluters that were caught but not suspended by Twitter? Are these merely

legitimate accounts that have been erroneously labeled as polluters?

3.3.3.2 Cluster Analysis of Harvested Users

To better understand who these harvested Twitter users are, we manually in-

vestigated them via cluster analysis. We used the Expectation-Maximization (EM)

algorithm [33] and a set of features for representing each harvested Twitter user (de-
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Table 3.7: Content polluter examples
Content Polluters Tweets

Duplicate Spammer
T1: OFFICIAL PRESS RELEASE Limited To 10,000 “Plat-
inum Founders” Reseller Licenses http://tinyurl.com/yd75xyy
T2: OFFICIAL PRESS RELEASE Limited To 10,000 “Plat-
inum Founders” Reseller Licenses http://tinyurl.com/yd75xyy

Duplicate @ Spammer
T1: #Follow @ anhran @PinkySparky @RestaurantsATL
@combi31 @BBoomsma @TexMexAtl @DanielStoicaTax
T2: #Follow @DeniseLescano @IsabelTrent @kxtramoney
@PhoinixROTC44 @ATL Events @HoldemTalkRadio

Malicious Promoter
T1: The Secret To Getting Lots Of Followers On Twitter
http://bit.ly/6BiLk3
T2: Have Fun With Twitter - Twitter Marketing Software
http://bit.ly/6ns0sc

Friend Infiltrator
T1: Thank you for the follows, from a newbie
T2: @EstherK Yes I do and and thatnks for the follow

scribed more fully in the following subsection) to find groups of harvested users with

similar appearances/behaviors. EM is a well-known clustering algorithm, and finds

the best number of clusters, assigning a probability distribution about the clusters

to each instance (each harvested user account). EM discovered nine clusters. We

investigated each of the clusters, focusing on major clusters which included a large

number of harvested users. Based on our observations, we grouped these users into

four categories of content polluters (illustrated in Table 3.7):

• Duplicate Spammers: These content polluters post nearly identical tweets with

or without links.

• Duplicate @ Spammers: These content polluters are similar to the Duplicate

Spammers, in that they post tweets with a nearly identical content payload,

but they also abuse Twitter’s @username mechanism by randomly inserting a

legitimate user’s @username. In this way, a content polluter’s tweet will be

delivered to a legitimate user, even though the legitimate user does not follow
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the content polluter.

• Malicious Promoters‡: These content polluters post tweets about online busi-

ness, marketing, finance and so on. They have a lot of following and followers.

Their posting approach is more sophisticated than other content polluters be-

cause they post legitimate tweets (e.g., greetings or expressing appreciation)

between promoting tweets.

• Friend Infiltrators: Their profiles and tweets are seemingly legitimate, but they

abuse the reciprocity in following relationships on Twitter. For example, if user

A follows user B, then user B typically will follow user A as a courtesy. Previous

literature [94, 147] has shown that reciprocity is prevalent in social networking

web sites including Twitter. After they have a large number of followers, friend

infiltrators begin engaging in spam activities (e.g., posting tweets containing

commercial or pornographic content).

What we see is that although not suspended by Twitter, these accounts are engag-

ing in aggressive promotion and negative behaviors, e.g., following a large number of

users, and shortly dropping them, exclusively posting promotional material, posting

pornographic material, and so on.

3.3.3.3 Followers and Following

We next investigated the properties of the collected content polluters, to explore

what behaviors and properties these users displayed. First, we found that on average

they followed 2,123 accounts, and the average number of followers they had was 2,163.

‡While product promotion is allowed by Twitter, accounts of this nature often are guilty
of violating Twitter’s definition of spam which includes if the account’s updates consist
mainly of links, and if the account repeatedly follow and unfollow other users or promotes
third-party sites that claim to get you more followers.
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Salome Eguizabal (MiaSalome) on Twitter

file:///C|/Users/humanist0810/Desktop/MiaSalome.htm[10/18/2010 9:12:22 PM]

Get short, timely messages from Salome
Eguizabal.
Twitter is a rich source of instantly updated information. It's easy to stay updated on an
incredibly wide variety of topics. Join today and follow @MiaSalome.

Get updates via SMS by texting follow MiaSalome to 40404 in the United States

gmhomebiz
Name george lee
Location London
Web http://trakim.biz/ac21

RSS feed of gmhomebiz's
tweets

Bio If you need a tool to help
you manage your twitter
accounts you need this
http://trakim.biz/ac21

537Tweets

Favorites

Have an account? Sign in

Codes for other countries

True love elite ad: Find out the name
of your TRUE LOVE now!
http://tinyurl.com/yzmybua
http://bit.ly/a8rMRH
2 minutes ago via twitterfeed

Take advantage of the recent Twitter explosion in popularity NOW
http://trakim.biz/ac21
14 minutes ago via API

How do I take advantage of this huge twitter growth and profit from
it? Try the FREE DEMO http://trakim.biz/ac21
36 minutes ago via API

Spend time on other tasks while the program builds twitter for you
http://trakim.biz/ac21
about 1 hour ago via API

2nd time in a month a waitress has overcharged me for lunch. $199
charged for a $19.90 and IceBox charged a transaction twice.
#dumb
2:18 PM Oct 17th via ÜberTwitter

RT @kanyewest: I hate when people type LOL next to shit that is
nooo way near LOL-able...
8:36 PM Oct 16th via ÜberTwitter

35,230
following

33,315
followers

12
listed

Figure 3.9: The Twitter homepage of gmhomebiz, a user tempted by our social
honeypots

These numbers are higher than most legitimate users which only have between 100

and 1,000 followers and following counts [71, 147]. Figure 3.9 shows the account

homepage of a content polluter the social honeypots tempted. It appears to be a

legitimate user; the profile information has been fully completed, and the appearance

of the page has been customized. However, this account is following 35,230 users, and

has a following of 33,315. Those counts are drastically different from most legitimate

users who typically follow fewer than 1,000 users.

3.3.3.4 Tweeting Activity

The discovered content polluters posted on average only four tweets per day. We

assume the controllers of these accounts are aware that if they post a large number

of tweets per day, they will be easily detected by Twitter and their accounts will be

suspended. Instead, they post a few tweets per day attempting to mimic the pattern

of a legitimate user. However, they cannot hide the large number of users they follow

and the large number of users following them since their goal is to promote to a vast

audience.
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Figure 3.10: The graph shows the changing number of users following the gmhomebiz
account and the number of users followed.

3.3.3.5 Behavior Over Time

This observation and intuition led us to investigate their temporal and historical

profile information which includes the number of following and followers collected by

our system once per hour, since they were tempted. The number of users the content

polluters were following fluctuated significantly over time. Figure 3.10 presents a

portion of the temporal information of the content polluter shown in Figure 3.9.

This polluter manipulated the number of accounts it was following in order to achieve

a balance between the number of following and followers, presumably to maintain

a balance so that Twitter will not investigate and possibly suspend the account.

To further illustrate, Figure 3.11 shows the change in the number of following and

followers for two content polluters and two legitimate users.

3.3.3.6 Link Payloads

Twitter users often add an URL to the text of a tweet; thus allowing them to cir-

cumvent Twitter’s 140 character limitation. Table 3.8 shows the five most frequently

posted URLs, where we have converted shortened URLs (e.g., http://bit.ly/6BiLk3)

44



17,000

13,000

14,000

15,000

16,000
Followers
Following

2800

200

1000

2000
Following
Followers

80

20

40

60

Followers

Following

650

570

600

625

Followers

Following

Figure 3.11: The top two graphs are of content polluter accounts. The bottom two
are legitimate users. The accounts in the top two graphs are engaging in the act of
“follower churn” [139].

to their original long form for easier understanding. Most linked to disreputable

pages such as automatic promotion/bot software and phishing sites, with some links

being inserted into hundreds of tweets in a clear attempt at link promotion.

3.3.4 Profiling Content Polluters

In this subsection, we aim to automatically “profile” Twitter-based content pol-

luters by developing automatic classifiers for distinguishing between content polluters
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Table 3.8: Top five URLs posted by Content Polluters
Freq. URL Linked Page

2,719 www.thetweettank.com twitter bot software

2,348 shop.cooliohigh.com sunglasses seller

2,227 friendfeed.com social networking site

1,919 www.tweetsbot.com twitter bot software

771 wefollow.com twitter 3rd party site

and legitimate users. Do we find that content polluters engage in particular behaviors

that make them clearly identifiable? Or do they strategically engage in behaviors

(e.g., posting frequency, history of friends in the network) that make them “invisible”

to automated detection methods? For example, we have seen that our harvested con-

tent polluters post ∼four tweets a day, which seems well within “normal” behavior

(in contrast to email spammers who issue millions of spam emails).

3.3.4.1 Classification Approach and Metrics

To profile content polluters on Twitter, we follow a classification framework where

the goal is to predict whether a candidate Twitter user u is a content polluter or a

legitimate user. To build a classifier c

c : u→ {polluter, legitimate user}

we used the Weka machine learning toolkit [149] to test 30 classification algorithms,

such as naive bayes, logistic regression, support vector machine (SVM) and tree-based

algorithms, all with default values for all parameters using 10-fold cross-validation.

10-fold cross-validation involves dividing the original sample (data) into 10 equally-

sized sub-samples, and performing 10 training and validation steps. In each step, 9

sub-samples are used as the training set and the remaining sub-sample is used as the
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validation set. Each sub-sample is used as the validation set once.

Table 3.9: Dataset
Class User Profiles Tweets

Polluters 22,223 2,380,059

Legit Users 19,276 3,263,238

For training, we relied on a dataset§ (summarized in Table 3.9) of content polluters

extracted by the social honeypots and legitimate users sampled from Twitter.

• Content Polluters: We filtered the original 23,869 polluters collected by the

social honeypots to exclude those that were (nearly) immediately identified and

suspended by Twitter. The reason why we dropped these short-lived polluters

is that Twitter already has their own solution for the short-lived polluters,

and our target is content polluters that are alive for a long time (at least two

hours, since our system tempted them). For the remaining 22,223 polluters,

we collected their 200 most recent tweets, their following and follower graph,

and their temporal and historical profile information including the number of

following and followers collected by our system once per hour since they were

tempted by a honeypot.

• Legitimate Users: To gather a set of legitimate users, we randomly sampled

19,297 Twitter users. Since we have no guarantees that these sampled users

are indeed legitimate users (and not polluters) and hand labeling is both time

consuming and error-prone, we monitored the accounts for three months to see

if they were still active and not suspended by Twitter. After three months, we

§Available at http://infolab.tamu.edu/data
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found that 19,276 users were still active and so we labeled them as legitimate

users. Even though there is chance of a false positive in the legitimate user

set, the results of our classifier study should give us at worst a lower bound on

accuracy since the introduction of possible noise in the training set would only

degrade our results.

Table 3.10: Confusion matrix
Predicted

Polluter Legitimate
Actual Polluter a b

Legit User c d

We compute precision, recall, F-measure, accuracy, area under the ROC curve

(AUC), false negatives (FNs) and false positives (FPs) as metrics to evaluate our

classifier. In the confusion matrix, Table 3.10, a represents the number of correctly

classified polluters, b (called FNs) represents the number of polluters misclassified as

legitimate users, c (called FPs) represents the number of legitimate users misclassified

as polluters, and d represents the number of correctly classified legitimate users. The

precision (P) of the polluter class is a/(a+ c) in the table. The recall (R) of the

polluter class is a/(a+ b). F1 measure of the polluter class is 2PR/(P +R). The

accuracy means the fraction of correct classifications and is (a+ d)/(a+ b+ c+ d).

AUC is a measure showing classification performance. The higher AUC is, the better

classification performance is. 1 AUC value means a perfect performance.

3.3.5 Features

The quality of a classifier is dependent on the discriminative power of the features.

Based on our previous observations, we created a wide variety of features belonging
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to one of four groups: User Demographics (UD): features extracted from descriptive

information about a user and his account; User Friendship Networks (UFN): features

extracted from friendship information such as the number of following and followers;

User Content (UC): features extracted from posted tweets; and User History (UH):

features extracted from a user’s temporal and historical profile information.

The specific features for each feature group are:

UD the length of the screen name, and the length of description

UD the longevity of the account

UFN the number of following, and the number of followers

UFN the ratio of the number of following and followers

UFN the percentage of bidirectional friends:

|following ∩ followers|
|following|

and
|following ∩ followers|

|followers|

UFN the standard deviation of unique numerical IDs of following

UFN the standard deviation of unique numerical IDs of followers

UC the number of posted tweets

UC the number of posted tweets per day

UC |links| in tweets / |tweets|

UC |unique links| in tweets / |tweets|

UC |@username| in tweets / |tweets|
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UC |unique @username| in tweets / |tweets|

@username features can detect a content polluter posting tweets with various @user-

names.

UC the average content similarity over all pairs of tweets posted by a user

∑
a,b∈set of pairs in tweets

similarity(a, b)

|set of pairs in tweets|

UC the ZIP compression ratio of posted tweets:

uncompressed size of tweets

compressed size of tweets

The compression ratio can detect a content polluter posting nearly identical tweets

because when we compress its tweets, their compressed size is significantly decreased.

UH the change rate of number of following obtained by a user’s temporal and historical

information: √√√√ 1

n− 1

n−1∑
i=1

(fi+1 − fi)

where n is the total number of recorded temporal and historical information, and fi

means the number of following of the user extracted in ith temporal and historical

information.

We computed the χ2 value [159] of each of the features to determine their dis-

criminative power. The larger the χ2 value is, the higher discriminative power the

corresponding feature has. The results showed all of our features had positive dis-

crimination power, though with different relative strengths. Table 3.11 shows the

top 10 features with χ2 value and average feature values of polluters and legitimate

users. The standard deviation of numerical IDs of following returned the highest χ2
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Table 3.11: Top 10 features with χ2 value and average feature values of polluters and
legitimate users
Feature χ2 value Polluters Legitimate Users

standard deviation of following 26,708 35,620,487 19,368,858

the change rate of |following| 23,299 29.6 1.5

standard deviation of followers 22,491 35,330,087 22,047,831

|following| 15,673 2,212 327

longevity of the account 15,467 279 506

ratio of the number of following and followers 12,115 11.1 1.5

|links| per tweet 11,827 0.65 0.21

|@username| in tweets / |tweets| 9,039 0.2 0.51

|unique @username| in tweets / |tweets| 8,859 0.12 0.17

|unique links| per tweet 7,685 0.48 0.18

value because polluters follow users randomly. Content polluters’ following standard

deviation is much higher than legitimate users’ standard deviation. The change rate

of number of following outperforms other features because polluters increased the

number of following in order to contact a larger number of users and promote to

them, and then decreased the number of following in order to maintain a balance

between the number of following and followers to avoid being suspended by Twitter.

The average change rate of polluters was 29.6, while the average change rate of le-

gitimate users was 1.5. Like the standard deviation of following, polluters’ follower

standard deviation is much higher than legitimate users’ follower standard devia-

tion. Polluters had larger followings than legitimate users, and shorter longevity

than legitimate users.

3.3.5.1 Classification Results

Using the classification setup described above and these feature groups, we tested

30 classification algorithms using the Weka machine learning toolkit [149]. Across

most classifiers (25 of the 30 tested), we find that the results are consistent, with
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accuracy ranging from 95% to 98%, indicating that the strength of classification lies

mainly in the choice of features and is relatively stable across choice of particular

classifier. For the other 5 of the 30 tested, accuracy ranges from 89% to under 95%.

Tree-based classifiers showed the highest accuracy results. In particular, Random

Forest produced the highest accuracy as shown in Table 3.12. Its accuracy was

98.42% and 0.984 F1 measure.

Table 3.12: The performance result of Random Forest
Classifier Accuracy F1 AUC FNs FPs

Random Forest 98.42% 0.984 0.998 301 354

We additionally considered different training mixtures of polluters and legitimate

users, ranging from 1% polluter and 99% legitimate to 99% polluter and 1% legiti-

mate. We find that the classification quality is robust across these training mixtures.

Table 3.13: Boosting and bagging of the Random Forest classifier
Classifier Accuracy F1 AUC FNs FPs

Boosting 98.62% 0.986 0.995 287 287

Bagging 98.57% 0.986 0.999 248 345

In order to improve the Random Forest classifier, we additionally applied stan-

dard boosting [41] and bagging [13] techniques. Both create multiple classifiers and

combine their results by voting to form a composite classifier. Table 3.13 shows the

results. Both outperformed the original Random Forest. Boosting of Random Forest

classifier produced the best result, 98.62% accuracy and 0.986 F1 measure. These

results provide strong evidence that social honeypots attract polluter behaviors that
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are strongly correlated with observable features of their profiles and their activity in

the network.

3.3.5.2 Handling Strategic Polluter Obfuscation

As time passes, the designers of content polluters may discover which features are

signaling to our system that their polluters are not legitimate Twitter users, and so

these features may lose their power to effectively profile and detect polluters. Thus,

we tested the robustness of the polluter-based classifier by constraining the classifier

to have access only to certain feature groups, mimicking the scenario in which content

polluters strategically target our system (and, hence, entire feature groups lose their

ability to distinguish polluters). We also considered scenarios in which one, two or

even three entire feature groups lose their effectiveness.

Table 3.14: The performance results of various feature group combinations
Feature Set Accuracy F1 AUC FNs FPs

UD 76.17% 0.762 0.839 6,007 3,882
UH 85.34% 0.854 0.899 4,130 1,950
UC 86.39% 0.864 0.932 2,811 2,837
UFN 96.46% 0.965 0.992 510 958

UD+UC 88.61% 0.886 0.953 2,469 2,256
UD+UH 92.45% 0.925 0.967 1,743 1,389
UC+UH 94.38% 0.944 0.979 1,111 1,221
UFN+UH 97.11% 0.971 0.994 496 702
UD+UFN 97.50% 0.975 0.995 437 597
UFN+UC 97.92% 0.979 0.996 413 448

UD+UC+UH 95.42% 0.954 0.985 878 1,022
UD+UFN+UH 97.78% 0.978 0.996 395 524
UFN+UC+UH 98.13% 0.981 0.997 361 413
UD+UFN+UC 98.26% 0.983 0.997 333 388

Following the classification setup described above, we trained the content polluter

classifier based on different feature group combinations, resulting in the effectiveness
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@spam - Twitter Search

file:///C|/Users/humanist0810/Desktop/search.htm[10/18/2010 10:15:58 PM]

 Feed for this query

 Tweet these results

Show tweets written
in:

English

Trending topics:
· Eyedea
· #mynext
· McLovin
· Dolphins win
· Superbad
· Xtra Factor
· Tebow
· Yeo Valley
· #neversaynever
· Peterson

Nifty queries:
· cool filter:links
· "is down"
· movie :)
· "happy hour" near:SF
· #haiku
· "listening to"
· love OR hate
· flight :(

Newer « Page 2 » Older

Twitter Home · About Twitter Search · API · Jobs · Install Search Plugin

© 2010 Twitter, Inc.

Results for @spam

jedimercer: Hey @spam, @Doloris24969 is a spambot. Nuke from orbit.
about 1 hour ago via Echofon · Reply · View Tweet

JMFanDotCom: @brionygriffith @spam
about 1 hour ago via Twitter for iPad · Reply · View Tweet

JMFanDotCom: @thehowtowizard @spam
about 1 hour ago via Twitter for iPad · Reply · View Tweet

Advanced Search@spam

Figure 3.12: “@spam” search results

measures shown in Table 3.14. First, in the extreme case in which only a single

feature group is available (either User Demographics, User Friendship Network, User

Content, or User History), we see results ranging from 76.17% accuracy to 96.46%

accuracy. Considering pairs of features, we can see that the classification accuracy

ranges from 88.61% to 97.92%. Even in the case when the content polluters obfuscate

the single most distinguishing signal (User Friendship Network), the UD+UC+UH

case resulted in 95.42% accuracy and nearly equaled the performance across the other

measures. Together, these results indicate that the signals distinguishing content

polluters from legitimate users are not tied to a single “super-feature”, but are a

composite of multiple inter-related features. This gives us confidence going forward

that content polluters cannot trivially change a single behavior (e.g., by manipulating

their follower-following ratio) and become invisible. Rather they must become more

like legitimate users, which necessarily decreases the effectiveness and impact of

their pollution attempts (e.g., by reducing the number of links per tweet, reducing

the number of @username per tweet, and so on).

3.3.5.3 Validation with Twitter @spam

Complicating the effective profiling of content polluters is the potential mismatch

between models built on polluters harvested by social honeypots and for content pol-
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luters in Twitter-at-large. We have seen that the framework presented in this chapter

is effective at tempting large amounts of content polluters and at discriminating be-

tween polluters and legitimate users. However, it could be argued that there is

inherent bias in the testing framework we have employed since the capacity of the

classification framework to distinguish polluters (even with 10-fold cross validation)

is linked to the collection method via social honeypots or that we are guilty of over-

fitting the models. Thus, we also evaluated the quality of our approach by applying

the learned content polluter models to a test set that was collected entirely separately

from our Twitter-based social honeypots.

To collect a content polluter dataset orthogonally from the honeypot framework,

we monitored Twitter’s spam reporting channel over a four month period using the

Twitter search API. Twitter supports user-based spam reporting via a special @spam

Twitter account which allows users to report suspicious or malicious users to @spam.

Figure 3.12 illustrates a sample @spam search result. In the first result, jedimercer

reported Doloris24969 as a suspicious account to @spam account. Twitter investi-

gates the reported user and if Twitter itself determines that the user has engaged in

harmful activities, only then is the account suspended. If we find that our approach

can effectively identify spam accounts from this alternative source, we will have con-

fidence in the robustness and wide applicability of our results. Accounts suspended

in this way may behave differently from the ones detected by our honeypots (e.g.,

they may never follow another account as our honeypots require).

Concretely, we constructed our orthogonal test set by searching for tweets con-

taining “@spam” once per 20 minutes, and extracted the user account names (@user-

name) listed in the tweets. When each user was reported to @spam, we collected

their descriptive profile information, friendship information, tweets, and temporal

and historical profile information. We continued to monitor these reported candi-
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date spam accounts to identify only those that were actually suspended by Twitter

(in effect, throwing away all of the false positives reported by users but not subse-

quently found to be spammers by Twitter itself). The four month observation period

led to a total of 2,833 suspended accounts.

Following the classifier setup described in the previous subsection, we trained

a Random Forest classifier using the content polluter data collected by our social

honeypots and the set of legitimate users (recall Table 3.9). The trained classifier

predicted class labels (content polluter or legitimate user) for the 2,833 suspended

users in the separate @spam testing set.

We find that our approach leads to 96.75% accuracy and 0.983 F1 measure over

these @spam profiles. When we applied bagging to the Random Forest classifier, we

achieved an even better result, 98.37% accuracy and 0.992 F1 measure. We did not

compute AUC because the test set does not include legitimate users. These results

indicate that there is a strong capacity of our approach to detect harmful users on

Twitter, even if they have not been directly discovered by our social honeypots.

To investigate the cases in which our classifier did not perform well (for the 46

spammers who were misclassified as legitimate users), we manually examined their

profiles, friendship networks, and historical behavior. In all cases, the misclassified

users have a low standard deviation of numerical IDs of following and followers (which

was a strong discriminating feature in our content polluter study). Most of these users

were quickly suspended by Twitter after they were first reported, meaning that the

historical and temporal profile features were not available to our system. For those

users for which we did have sufficient historical and temporal profile information,

most engaged in widespread @username messages to contact many users rather than

directly following users.

56



3.4 Summary

In this chapter, we have presented the design and real-world evaluation of a novel

social honeypot-based approach to detect social spammers and content polluters.

First, we have investigated techniques and developed effective tools for automati-

cally detecting and filtering spammers who target social systems. By focusing on

two different communities, we have seen how the general principles of (i) social hon-

eypot deployment, (ii) robust spam profile generation, and (iii) adaptive and ongoing

spam detection can effectively harvest spam profiles and support the automatic gen-

eration of spam signatures for detecting new and unknown spam. Our empirical

evaluation over both MySpace and Twitter has demonstrated the effectiveness and

adaptability of the honeypot-based approach to social spam detection. Second, we

have designed and evaluated a system for automatically detecting and profiling con-

tent polluters on Twitter. During our seven-month long study we have shown how

effectively our system lures many abusive Twitter accounts into following our collec-

tion of social honeypots. We see how these content polluters reveal key distinguishing

characteristics in their behavior, leading to the development of robust classifiers.
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4. EXTRACTING COORDINATED CAMPAIGNS∗

4.1 Introduction

In this chapter, we move from individual accounts that threaten social systems

to coordinated campaigns.

There is growing evidence that tightly-organized strategic campaigns are growing

in significance [95, 143]. One example is the development of sites like SubvertAnd-

Profit (www.subvertandprofit.com), which claims to have access to “25,000 users who

earn money by viewing, voting, fanning, rating, or posting assigned tasks” across so-

cial media sites. Related services can be found at fansandinvites.com, socioniks.com,

and usocial.net. Even within the great firewalls of China, we have witnessed the

emergence of the so-called “Wang Luo Shui Jun” or “Online Water Army” (e.g.,

http://shuijunwang.com). According to a recent CCTV report [21], online merce-

naries in China help their customers by (i) promoting a specific product, company,

person or message; (ii) smearing the competitor or adversary or competitors’ prod-

ucts or services; or (iii) deleting unfavorable posts or news articles. Most online

“mercenaries” work part-time and are paid around 5 US cents per action.

User-driven campaigns – often linked by common “talking points” – appear to

be growing in significance and reach with the commensurate rise of massive-scale

social systems. However, there has been little research in detecting these campaigns

“in the wild”. While there has been some progress in detecting isolated instances

of long-form fake reviews (e.g., to promote books on Amazon), of URL-based spam

∗Reprinted with permission from “Campaign Extraction from Social Media” by Kyumin Lee,
James Caverlee, Zhiyuan Cheng, and Daniel Z. Sui, 2013. ACM Transactions on Intelligent Sys-
tems and Technology, Copyright 2013 by ACM. Reprinted with permission from “Content-Driven
Detection of Campaigns in Social Media” by Kyumin Lee, James Caverlee, Zhiyuan Cheng, and
Daniel Z. Sui, 2011. Proceedings of the 20th ACM international conference on Information and
knowledge management, 551-556, Copyright 2011 by ACM.

58



in social media, and in manipulating recommender systems [44, 57, 73, 82, 91, 92,

100, 116, 128, 156], there is a significant need for new methods to support web-scale

detection of campaigns in social media.

Hence, we focus in this chapter on detecting one particular kind of coordinated

campaign – those that rely on “free text” posts, like those found on blogs, comments,

forum postings, and short status updates (like on Twitter and Facebook). For our

purposes, a campaign is a collection of users and their posts bound together by some

common objective, e.g., promoting a product, criticizing a politician, or inserting

disinformation into an online discussion. Our goal is to link messages with common

“talking points” and then extract multi-message campaigns from large-scale social

media. Detecting these campaigns is especially challenging considering the size of

popular social media sites like Facebook and Twitter with 100s of millions of unique

users and the inherent lack of context in short posts.

Concretely, we propose and evaluate a content-based approach for identifying

campaigns from the massive scale of real-time social systems. The content-driven

framework is designed to effectively link free text posts with common “talking points”

and then extract campaigns from large-scale social media. Note that text posts con-

taining common “talking points” means the contents of the posts are similar or

the same. We find that over millions of Twitter messages, the proposed framework

can identify 100s of coordinated campaigns, ranging in size up to several hundred

messages per campaign. The campaigns themselves range from innocuous celebrity

support (e.g., fans retweeting a celebrity’s messages) to aggressive spam and promo-

tion campaigns (in which handfuls of participants post hundreds of messages with

malicious URLs). Through an experimental study over millions of Twitter messages

we identify five major types of campaigns – Spam, Promotion, Template, News, and

Celebrity campaigns – and we show how these campaigns may be extracted with
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high precision and recall. We also find that the less organic campaigns (e.g., Spam

and Promotion) tend to be driven by a higher ratio of messages to participants (cor-

responding to a handful of accounts “pumping” messages into the system). Based

on this observation, we propose and evaluate a user-centric campaign detection ap-

proach. By aggregating the messages posted by a single user, we find that the method

can successfully discover cross-user correlations not captured at the individual mes-

sage level (e.g., for two users posting a sequence of correlated messages), resulting

in more robust campaign detection. In addition, we analyze each campaign type’s

temporal behavior to see the possibility to automatically determine a campaign’s

campaign type.

4.2 Content-Driven Campaign Detection

In this section, we describe the problem of campaign detection in social media,

introduce the data, and outline the metrics for measuring effective campaign detec-

tion.

4.2.1 Problem Statement

We consider a collection of n participants across social media sites U = {u1, u2, . . . , un},

where each participant ui may post a time-ordered list of k messages Mui
= {mi1,

mi2, . . ., mik}. Our hypothesis is that among these messages and users, there may

exist coordinated campaigns.

Given the set of users U , a campaign Mc can be defined as a collection of mes-

sages and the users who posted the messages: Mc = {mij, ui|ui ∈ U ∩ mij ∈

Mui
∩ theme(mij) ∈ tk} such that the campaign messages belong to a coherent

theme tk. Themes are human-defined logical assignments to messages and applica-

tion dependent. For example, in the context of spam detection, a campaign may

be defined as a collection of messages with a common target product (e.g., Viagra).
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In the context of astroturf, a campaign may be defined as a collection of messages

promoting a particular viewpoint (e.g., the veracity of climate change). Additionally,

depending on the context, a message may belong to one or multiple themes. For the

purposes of this chapter and to focus our scope of inquiry, we consider as a theme all

messages sharing similar “talking points” as determined by a set of human judges.

4.2.2 Data

To evaluate the quality of a campaign detection approach, we would ideally have

access to a large-scale “gold set” of known campaigns in social media. While re-

searchers have published benchmarks for spam webpages [145, 136], ad-hoc text

retrieval [142], and other types of applications [135, 24, 77], we are not aware of any

standard social media campaign dataset. Hence, we take in this chapter a twofold

approach for message level campaign detection: (i) a small-scale validation over

hand-labeled data; and (ii) a large-scale validation over 1.5 million Twitter messages

for which ground truth is not known.

• CDSmall: First, we sample a small collection of messages (1,912) posted to

Twitter in October 2010. Over this small campaign dataset (CDSmall), two

judges labeled all pairs of the 1,912 tweets as sharing similar “talking points”

or not, finding 298 pairs of messages sharing similar “talking points”. Based on

these initial labels, the judges considered all combinations of messages that may

form campaigns consisting of four messages or more, and found 11 campaigns

ranging in size from four messages to eight messages. While small in size, this

hand-labeled dataset allows us to evaluate the precision and recall of several

campaign detection methods.

• CDLarge: Second, we supplement the small dataset with a large collection of

messages (1.5 million) posted to Twitter between October 1 and October 7,
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2010. We sampled these messages using Twitter’s Streaming API, resulting in

a representative random sample of Twitter messages. Over this large campaign

dataset (CDLarge), we can test the precision of the campaign detection methods

and investigate the types of campaigns that are prevalent in-the-wild. Since

we do not have ground truth knowledge of all campaigns in this dataset, our

analysis will focus on the campaigns detected for which we can hand-label as

actual campaigns or not.

Additionally, we also consider a user-based dataset, in which all of the messages

associated with a single user are aggregated:

• CDUser Since the datasets CDSmall and CDLarge are collected by a random

sample method from Twitter (meaning most users were represented by only one

or two messages), we collected a user-focused dataset from Twitter consisting

of 90,046 user profiles with at least 20 English-language messages, resulting in

1.8 million total messages.

4.2.3 Metrics

To measure the effectiveness of a campaign detection method, we use variations of

average precision, average recall, and the average F1 measure. The average precision

(AP) for a campaign detection method is defined as:

AP =
1

n

n∑
i=1

maxCommonMessages(PCi, TCs)

|PCi|

where n is the total number of predicted campaigns by the campaign detection

method, PC is a predicted campaign, and TC is an actual (true) campaign.

MaxCommonMessage function returns the maximum of the number of common

messages in both the predicted campaign i (PCi) and each of the actual (true)
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campaigns (TCs). For example, suppose a campaign detection method identifies a

three-message campaign: {m1,m10,m30}. Suppose there are two actual campaigns

with at least one message in common: {m30,m38,m40} and {m1,m10,m35,m50,m61}.

Then the Precision is max(2, 1)/3 = 2/3. In the aggregate, this individual precision

will be averaged with all n predicted campaigns.

Similarly, we can define the average recall (AR) as:

AR =
1

n

n∑
i=1

maxCommonMessages(PCi, TCs)

|TCj|

where n is the number of the predicted campaigns, and TCj is a true campaign which

has the largest common messages with the predicted campaign i (PCi). Continuing

the example from above, the Recall would be max(2, 1)/5 = 2/5.

Finally, we can combine precision and recall as the average F1 measure (AF):

AF1 =
2 ∗ AP ∗ AR
AP + AR

An effective campaign detection approach should identify predicted campaigns

that are composed primarily of a single actual campaign (i.e., have high precision)

and that contain most of the messages that actually belong to the campaign (i.e.,

have high recall). A method that has high precision but low recall will result in only

partial coverage of all campaigns available (which could be especially disastrous in

the case of spam or promotional campaigns that should be filtered). A method that

has low precision but high recall may identify nearly all messages that belong to

campaigns but at the risk of mislabeling non-campaign messages (resulting in false

positives, which could correspond to mis-labeled legitimate messages as belonging to

spam campaigns).
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4.3 Campaign Detection: Framework and Methods

In this section, we describe the high-level approach for extracting campaigns from

social media, present the message and user level campaign detection in detail, and

discuss a MapReduce-based implementation for efficient campaign detection.

4.3.1 Overall Approach

To detect coordinated campaigns, we explore in this chapter several content-

based approaches for identifying campaigns. Our goal is to find methods that can

balance both precision and recall for effective campaign detection. In particular, we

propose a content-driven campaign detection approach that views social media from

two perspectives:

• Message Level: In the first perspective, we view each message as a potential

member of a campaign. Our goal is to identify a campaign as a collection

of its constituent messages. In this way, we can identify related message as

shown in Figure 4.1. Given a set of messages (6 messages in the example),

our goal is to build a message graph in which a node represents a message and

if the similarity of a pair of messages is larger than a threshold (τ) then an

edge exists between the pair of messages. Note that the similarity of a pair of

messages means how much the pair of messages is similar in terms of number

of common tokens, and a token can be defined as a n-gram word or n-gram

character depending on a message similarity identification algorithm. In this

way, we can identity significant subgraphs as campaigns, which should reflect

multiple messages sharing the same key “talking points”.

• User Level: In the second perspective, rather than viewing the message as

the core component of a campaign, we view each user as a potential member
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Figure 4.1: Overall approach showing how to identify campaigns given a list of
messages

of a campaign. In this way, a campaign is composed of constituent users.

This second perspective may be more reasonable in the case of campaigns that

span multiple messages posted by a single user, or in the case of campaigns

in which evidence of the campaign is clear at the user-level but perhaps not

at the individual message level (say, in cases of 3 spam accounts that post

similar messages in the aggregate, although no two individual messages may

share the same talking points). For this perspective, we construct a graph,

but where nodes represent users and their aggregated messages. Edges exist

between users based on some overall measure of their similarity.
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In the following, we detail these two approaches – at the message level and at the

user level – in great detail.

4.3.2 Message Level Campaign Detection

For the task of message level campaign detection, we consider a graph-based

framework, where we model messages in social media as a message graph. Each

node in the message graph corresponds to a message; edges correspond to some

reasonable notion of content-based correlation between messages, corresponding to

pairs of messages with similar “talking points.” Formally, we have:

Definition 1 (Message Graph). A message graph is a graph G = (V,E) where

every message in M corresponds to a vertex mix in the vertex set V . An edge

(mix,mjy) ∈ E exists for every pair of messages (mix,mjy) where corr(mix,mjy)

> τ , for a measure of correlation and some parameter τ .

A message graph which links unrelated messages will necessarily result in poor

campaign detection (by introducing spurious links). Traditional information retrieval

approaches for document similarity (e.g., cosine similarity [88], KL-divergence [89])

as well as efficient near-duplicate detection methods (e.g., Shingling [15], I-Match [25]

and SpotSigs [130]) have typically not been optimized for the kind of short posts of

highly-variable quality common in many social media sites (including Facebook and

Twitter). Concretely we consider six approaches for measuring whether messages

share similar “talking points”:

• Unigram Overlap: The baseline unigram approach considered two messages

to be correlated if they have higher Jaccard similarity than a threshold after

we extract unigrams from each message and compute Jaccard similarity. The

Jaccard coefficient between the unigrams of each pair of messages A and B is
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used to measure the similarity of the pair of messages:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

≤ min(|A|, |B|)
max(|A|, |B|)

• Edit Distance: An alternative is to consider the edit distance between two mes-

sages, that is, two messages are correlated if the number of edits to transform

one message into the other is less than some threshold value. Concretely, we

adopt the Levenshtein distance as a metric for measuring the amount of differ-

ence between two messages [81]. The distance is the minimum number of edits

required in order to transform one message into the other.

• Euclidean Distance: Another similarity metric is Euclidean distance which is

the length of the line segment connecting two vectors (two messages in this

context). First convert messages to vectors in the vector space model and then

compute their distance. The smaller Euclidean distance between two messages

is, the more similar they are.

• Shingling: As an exemplar of near-duplicate detection, Broder’s shingling al-

gorithm [15] views a document d as a sequence of words w1 w2 w3 . . . wn,

where n is the number of words in d. It extracts unique k -grams {g1, g2, . . . ,

gm}, such that m is the number of unique k -grams. For easy processing and

reduction of storage usage, each gi is encoded by 64-bit Rabin fingerprints F.

The encoded value is called a shingle. Now, d’s shingles S = {s1, s2, s3, . . .

sm}, such that si is a shingle (i.e., a signature) and si = F (gi). The Jaccard

coefficient between the shingles of each pair of documents A and B is used to

measure the similarity of the pair of documents.

If the similarity score of a pair of documents (messages) is higher than a thresh-
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old, they will be considered as near-duplicates (and hence, correlated messages

for our purposes).

• I-Match: In contrast to Shingling, the I-Match [25] approach explicitly lever-

ages the relative frequency of terms across messages. First, it defines an I-

Match lexicon L based on a message frequency of each term in a collection

of documents (i.e., Twitter messages). Usually, L consists of a bag of words

(i.e., terms or unigrams) which have mid-idf values in the collection. I-Match

extracts unigrams U from a document d and only use some unigrams P, which

have mid-idf values in the collection (i.e., P = L ∩ U). The idea behind this

approach is that infrequent and too frequent terms are not helpful to detect

near duplicate documents. Then, I-Match sorts P and concatenates it in order

to make a single string, which is then encoded to a single hash value h by SHA-

1; in our case, pairs of messages with identical hash values shall be considered

correlated messages.

• SpotSigs: The final approach we consider is SpotSigs [130], which observes that

noisy content, such as navigational banners and advertisements in web pages,

may result in poor performance of traditional Shingling-based methods. By

observing that stopwords rarely occur in the noisy content, SpotSigs scans a

document to find stopwords as antecedents (anchors), and extracts special k -

grams called “spot signatures”, one of which consists of an antecedent and a

k -gram after the antecedent, excluding stopwords. A hash function is applied

to detect identical duplicates.

It is of course an open question how well each of these methods performs toward

the ultimate goal of identifying campaigns in social media. Hence, we shall investi-

gate experimentally in Section 4.4 each of these approaches for determining pairwise
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Figure 4.2: In a messages graph, a node represents a message and there exists an
edge between correlated messages. This figure shows an example of a message graph
before extracting campaigns.

message correlation which guides the formation of the message graph.

Given a message graph, we propose to explore three graph-based approaches for

extracting campaigns:

• (i) loose extraction;

• (ii) strict extraction; and

• (iii) cohesive extraction.

Experimentally, we compare these graph-based approaches versus a traditional

k-means clustering approach and reach poor results for clustering as compared to

the graph methods. For now, we focus our attention on extracting content-driven

campaigns via graph mining.
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4.3.2.1 Loose Campaign Extraction

The first approach for content-driven campaign detection is what we refer to as

loose campaign extraction. The main idea is to identify as a logical campaign all

chains of messages that share common “talking points”. In this way, the set of all

loose campaigns is the set of all maximally connected components in the message

graph:

Definition 2 (Loose Campaign). A loose campaign is a subgraph s = (V ′, E ′), such

that s is a maximally connected component of G, in which s is connected, and for all

vertices mix such that mix ∈ V and mix /∈ V ′ there is no vertex mjy ∈ V ′ for which

(mix,mjy) ∈ E.

As an example, Figure 4.2 illustrates a collection of 10 messages, edges corre-

sponding to messages that are highly correlated, and the two maximal components

(corresponding to loose campaigns): {1, 2, 3, 6, 7, 8, 9} and {4, 5}. Such an ap-

proach to campaign detection faces a critical challenge, however: not all maximally

connected components are necessarily campaigns themselves (due to long chains of

tangentially-related messages). For example, a chain of similar messages A–B–C–...–

Z, while displaying local similarity properties (e.g., between A and B and between

Y and Z) will necessarily have low similarity across the chain (e.g., A and Z will be

dissimilar since there is no edge between the pair, as in the case of messages 9 and

1 in Figure 4.2). In practice, such maximally connected components could contain

disparate “talking points” and not strong campaign coherence.

4.3.2.2 Strict Campaign Extraction

A natural alternative is to constrain campaigns to be maximal cliques, what we

call strict campaigns :
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Definition 3 (Strict Campaign). A strict campaign s′ = (V ′′, E ′′) in a message

graph G = (V,E), in which V ′′ ⊆ V and E ′′ ⊆ E, such that for every two vertices

mix and mjy in V ′′, there exists an edge (mix,mjy) ∈ E ′′ and the clique cannot be

enlarged by including one more adjacent vertex (corresponding to a message in M).

To identify these strict campaigns, we can first identify all loose campaigns –

by identifying all maximally connected components over the message graph, we can

prune from consideration all singleton messages and are left with a set of candidate

campaigns. Over these candidates, we can identify the strict campaigns through

maximal clique mining. However, discovering all maximal cliques from a graph is

an NP-hard problem (i.e., the time complexity is exponential). Finding all maximal

cliques takes O(3n/3) in the worst case where n is the number of vertices [133]. Over

large graphs, even with parallelized implementation over MapReduce-style compute

clusters, the running time is still O(3n/3/m) in the worst case, where n is the number

of vertices and m is the number of reducers [154].

And there is still the problem that even with a greedy approximation, strict

campaign detection may overconstrain the set of campaigns, especially in the case of

loosely-connected campaigns. Returning to the example in Figure 4.2, the maximal

cliques {1, 2, 3} and {2, 3, 6} would be identified as strict campaigns, but perhaps {1,

2, 3, 6, 7} form a coherent campaign even though the subgraph is not fully-connected.

In this case the strict approach will identify multiple overlapping campaigns and will

miss the larger and (possibly) more coherent campaign. In terms of our metrics, the

expectation is that strict campaign detection will favor precision at the expense of

recall.

71



4.3.2.3 Cohesive Campaign Extraction

Hence, we also consider a third approach which seeks to balance loose and strict

campaign detection by focusing on what we refer to as cohesive campaigns, which

relaxes the conditions of maximal cliques:

Definition 4 (Cohesive Campaign). Given a message graph G = (V,E), a subgraph

G’ is called a cohesive campaign if the number of edges of G’ is close to the

maximal number of edges with the same number of vertices of G’.

The intuition is that a cohesive campaign will be a dense but not fully connected

subgraph, allowing for some variation in the “talking points” that connect subcom-

ponents of the overall campaign. There are a number of approaches mining dense

subgraphs [55, 46, 144] and the exact solution is again NP-hard in computation com-

plexity, so we adopt a greedy approximation approach following the intuition in [144].

The approach to extract cohesive campaigns requires a notion of maximum co-clique

CC(mix,mjy) for all neighbors:

Definition 5 (Maximum co-clique: CC(mix,mjy)). Given a message graph G =

(V,E), the maximum co-clique CC(mix,mjy) is the (estimated) size of the largest

clique containing both vertices mix and mjy, where mjy ∈ V and mjy is a neighbor

vertex of mix (i.e., they are connected).

Considering all of a vertex’s neighbors, we define the largest of the maximum

co-cliques as C(mix):

Definition 6 (C(mix)). Then, C(mix) is the largest value between mix and any

neighbor mjy, formally defined as C(mix) = max{CC(mix,mjy),∀mjy ∈ Neighbor(mix)}.

With these definitions in mind, our approach to extract cohesive campaign is as

follows:
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1. Estimate each vertex’s C(mix): In the first step, our goal is to estimate the

C values for every vertex in a candidate campaign which indicates the upper bound

of the maximum clique size the vertex belongs to. Starting at a random vertex mix

in s, we compute the maximum co-clique size CC(mix,mjy), where mjy ∈ V ′ and

mjy is a neighbor vertex of mix. Then, we compute C(mix). We insert mjy into

a priority queue and sort all mjy by CC(mix,mjy). Next, we greedily advance to

the mjy, which has the largest CC(mix,mjy) among all mjy, and remove it from the

queue. Finally, we compute C(mjy). We repeat this procedure for every vertex in

the candidate campaign. At the conclusion of this procedure, we have an estimated

C(mix) for every vertex.

2. Cohesive campaign extraction: Given the estimated C(mix) for every vertex

in a candidate campaign, by considering the order in which the greedy algorithm in

Step 1 encounters each vertex, we can consider consecutive neighbors as potential

members of the same coherent campaign. Intuitively, the C(mix) values should be

high for vertices in dense subgraphs but should drop as the algorithm encounters

nodes on the border of the dense subgraph, then rise again as the algorithm encoun-

ters vertices belonging to a new dense subgraph. We identify the first vertex with

an increasing C(mix) over its neighbor as the initial boundary of a cohesive cam-

paign. We next include all vertices between this first boundary up to and including

the vertex with a C(mix) value larger than or equal to some threshold (= the local

peak value * λ). By tuning λ to 1, the extracted cohesive campaigns will be nearly

clique-like; lower values of λ will result in more relaxed campaigns (i.e., with less

density). We repeat this procedure until we extract all cohesive subgraphs in the

candidate campaign.

The output of the cohesive campaign extraction approach is a list of cohesive
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(a) one-to-one match (b) one-to-many match

(c) two one-to-one matches (d) two one-to-many matches

Figure 4.3: Four matches of correlated messages between user u1 and u2

campaigns, each of which contains a list of vertices forming a cohesive subgraph.

4.3.3 User Level Campaign Detection

We turn our attention to a user-aggregated perspective. In the message level

campaign detection in the previous subsection, we have viewed all messages without

consideration for who is posting the messages. By also considering user-level informa-

tion, we are interested to see how this impacts campaign detection. The intuition is

that by aggregating the messages posted by a single user, we may discover cross-user

correlations not captured at the individual message level (e.g., for two users posting

a sequence of correlated messages), leading to more robust campaign detection.
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Definition 7 (User-Aggregated Message Graph). A user-aggregated message graph

is a graph Gu = (V,E) where V is a collection of n users’ aggregate messages

V = {Mu1 ,Mu2 , ...Mun}. An edge (Mui
,Muj

) ∈ E exists for every pair of ver-

tices (Mui
,Muj

) in V where confidence (Mui,Muj) > threshold, for some measure

of confidence and threshold. In the confidence computation, message similarity for

every pair of messages (mix,mjy) is computed where corr(mix,mjy) > τ , mix ∈Mui
,

mjy ∈Muj
and Mui

,Muj
⊆M , for some measure of correlation and some parameter

τ .

An important challenge is to define the correlation across vertices in the user-

aggregated message graph, since each vertex now represents multiple messages (and

so straightforward adoption of the message-level correlation approach is insufficient).

For example the two users in Figure 4.3 could have several different degrees of

message-level correlation, based on the overlap between their messages. In the figure,

we show messages Mu1 = {m11,m12}, and Mu2 = {m21,m22} from two users u1 and

u2 respectively. An edge represents that a pair of two messages between Mu1 and

Mu2 are correlated.

To compute user-based correlation, we propose a measure called confidence that

aggregates message-message correlation and reflects (i) that one edge in a one-to-

many match receives same weight comparing to the edge in a one-to-one edge; (ii)

that extra edges in a one-to-many match receive less weight than the weight for

the edge in a one-to-one match, but still credits the one-to-many match for more

evidence of user-based correlation.

Concretely, we calculate confidence in the following way: Given two users u1 and

u2 and their latest k messages Mui
= {mi1, mi2, . . ., mik} where i is a user id (i.e.,

1 or 2 in our example). First, we compute pairwise message correlation across Mu1
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and Mu2 , where pairs are P = {m1x,m2y|1 ≤ x, y ≤ k}. If the correlation of a pair

in P is larger than threshold τ , we consider the pair to be correlated. By continuing

this procedure for each pair in P, we have correlated pairs P ′ and can calculate: (1)

the number of pairs in P ′, N = |{m1x,m2y|corr(m1x,m2y) ≥ τ, 1 ≤ x, y ≤ k}|; and

(2) the minimum n between number of distinct messages belonging to P ′ in Mu1

and number of distinct messages belonging to P ′ in Mu2 , where n = MIN(|{m1x|

m1x ∈Mu1 and M1x ∈ P ′}|,|{m2y| m2y ∈Mu2 and m2j ∈ P ′}|). Now, we define that

confidence as:

confidence = αn+ (1− α)(N − n)

where α is the weight for the only edge in a one-to-one match or one edge in a

one-to-many match, and 1 − α is the weight for each of the extra edges in a one-

to-many match. We assigned 0.95 to α to balance between αn and (1− α)(N − n).

Returning to Figure 4.3(a),(b),(c),(d), we have {N=1, n=1, confidence=0.95}, {N=2,

n=1, confidence=1}, {N=2, n=2, confidence=1.9}, and {N=4, n=2, confidence=2}

showing that in order of user-based correlation a < b < c < d.

4.3.4 MapReduce-Based Implementation

To support scalable identification of correlated messages, we implement the pro-

posed approach over the MapReduce framework, which was introduced by Google to

process large datasets on a cluster of machines [32]. In MapReduce style program-

ming, each task is divided into two sub-functions: (1) a mapper: a sequence of data

is inserted to a computation to generate partial results; and (2) a reducer: the results

are then aggregated. We implemented our correlated message identification approach

on Hadoop [4] which can facilitate the handling of large scale social message data.

The implementation consists of three MapReduce jobs, illustrated in Figure 4.4
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Figure 4.4: Logical data flow of the three MapReduce jobs for identifying correlated
messages

with the following notation: (1) dk is an auto-increasing message ID for a message;

(2) mij indicates the jth message from user ui; (3) a near-duplicate detection algo-

rithm generates three signatures (s1, s2, s3) from the message m11; (4) { } means

a tuple and [ ] means a list. To calculate the correlation of the Jaccard coefficient

(we use Jaccard coefficient in this example, but use Overlap coefficient in the exper-

iments), we calculate each message’s number of signatures in the map function of

the signature generation job and pass the information associated to the message ID

to later jobs. The near-duplicate detection returns pairs of near-duplicate messages

(e.g., m11 and m21 have 0.66 similarity). To test the gains from a MapReduce-based

implementation, we ran the message correlation component over 1.5 million Twitter

messages as a MapReduce job on a small nine-node cluster and as a single-threaded

(non MapReduce) job on a single machine. The MapReduce job took only 7 minutes

as compared to one day in the non-MapReduce approach, indicating the gains from

parallelization.

4.4 Experimental Study

In this section, we explore campaign discovery over social media through an ap-

plication of the framework to messages and user-aggregated messages sampled from
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Twitter. For message level campaign detection, we begin by examining how to ac-

curately and efficiently construct the campaign message graph, which is the critical

first step necessary for campaign detection. We find that a short-text modified

Shingling-based approach results in the most accurate message graph construction.

Based on this finding, we next explore campaign detection methods over the small

hand-labeled Twitter dataset, before turning our sights to analysis of campaigns dis-

covered over the large (1.5 million messages) Twitter dataset. Based on the insights

learned from the experiments in message level campaign detection, we run user level

campaign detection to see whether we can find more evidence of spam and other

coordinated campaigns. In the end of this section, we analyze the temporal patterns

of campaigns, which suggest the potential of predicting a campaign’s category based

on its temporal pattern.

4.4.1 Message Level

We begin by examining message graph construction, which is the critical first

step necessary for campaign detection.

4.4.1.1 Message Graph Construction

Recall that each node in the message graph corresponds to a message; edges cor-

respond to some reasonable notion of “relatedness” between messages corresponding

to human-labeled similar “talking points”. Our first goal is to answer the question:

can we effectively determine if two messages are correlated (i.e., algorithmically de-

termine if they share similar “talking points”) across hundreds of millions of short

messages for constructing the message graph in the first place? This step is critical

for accurate message graph formation for discovering campaigns.

Using the small campaign dataset (CDSmall), we consider the 298 pairs of mes-

sages sharing similar “talking points” (as determined by human judges) as the ground
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truth for whether an edge should appear in the message graph between the two mes-

sages. We can measure the effectiveness of a message correlation method by precision,

recall, and F1. Precision (P) is the fraction of predicted edges that are correct:

# of correctly predicted edges

# of predicted edges

Recall (R) is the fraction of correct edges that are predicted:

# of correctly predicted edges

# of edges

The F1 measure balances precision with recall: 2PR
P+R

.

Identifying Correlated Messages: We investigate the identification of correlated

messages through a comparative study of the six distinct techniques described in

Section 4.3: unigram-based overlap between messages, edit distance, Euclidean dis-

tance and three representative near-duplicate detection algorithms (Shingling [15],

I-Match [25], SpotSigs [130]). The near-duplicate detection approaches such as Shin-

gling, I-Match and SpotSigs have shown great promise and effectiveness by web

search engines to efficiently identify duplicate web content, but their application to

inherently short messages lacking context is unclear.

To evaluate each approach, we considered a wide range of parameter settings.

For example, the quality of Shingling depends on the size of the shingle (2, 3, 4).

I-Match requires minimum and maximum IDF values; we varied the min and max

IDF values over the range [0.0, 1.0] in 0.1 increments and considered all possible pairs

(e.g., min = 0.1, max = 0.6). SpotSigs requires a number of antecedents (which we

varied across 10, 50, 100, and 500) and a specification of what antecedents will be

used. As the authors of SpotSigs [130] did in their experiments, we used stopwords

as antecedents. And across all approaches, we must also set a predefined threshold
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(a) Shingling

(b) I-Match

(c) SpotSigs

Figure 4.5: Performance of Shingling, I-Match and SpotSigs with different parameter
value
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value τ , above which a pair of messages are considered correlated (and hence and

edge should appear in the message graph).

With this large parameter space in mind, we show in Table 4.1 the results across

all approaches that optimizes the F1 score (The details of performance of Shingling,

I-Match and SpotSigs with different parameter value are shown in Figure 4.5).

Table 4.1: Identifying correlated messages
Approach F1 Precision Recall

Unigram (τ = 0.8) 0.63 0.97 0.46
Edit Distance (τ = 11) 0.54 0.97 0.38

Euclidean Distance (τ = 5) 0.61 0.99 0.44
4-Shingling (τ = 0.3) 0.81 0.89 0.73

I-Match (IDF=[0.0, 0.8]) 0.50 0.53 0.47
SpotSigs (#A=500, τ = 0.4) 0.70 0.77 0.64

We see that the baseline Shingling approach performs the best, with an F1 = 0.81.

In contrast, both I-Match and SpotSigs performed much worse (0.50, 0.70), in sharp

contrast to their performance in near-duplicate detection of web pages (with F1

near 95%) [130, 161]. While these approaches work well in news articles and web

pages (relatively long text), they do not work well for short text. We also observe

that unigram, edit distance and Euclidean distance based methods perform poorly,

primarily due to their low recall. This indicates that short messages that do share

common “talking points” may be missed by these approaches which emphasize on

only minor syntactic changes across messages.

Refining Shingling: Based on these results, we further explore refinements to the

baseline Shingling approach. First, we vary the base tokenization unit for message

comparison, which is especially critical for short messages. We consider three gen-

eral approaches for extracting tokens to generate shingles: (i) word-based k-grams,
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in which k consecutive words are treated as base tokens; (ii) character-based k-

grams, in which k consecutive characters are treated as base tokens. As compared to

word-based k-grams, character-based k-grams generate more tokens but offer finer

granularity of measuring message correlation; and (iii) orthogonal sparse bigrams,

introduced by Cormack et al. [27] for lexically expanding a short message by gener-

ating sparse bigrams by the number of intervening words, each of which we denote

by “?”. For example, “lady gaga is unique person” generates sparse bigrams: lady

+ gaga, lady + ? + is, lady + ? + ? + unique, gaga + is, gaga + ? + unique, gaga

+ ? + ? + person, is + unique, is + ? + person, unique + person.

Finally, we note that straightforward application of the Jaccard coefficient over

short messages may underestimate the degree of overlap between two messages, re-

sulting in the mislabeling of correlated messages as unrelated. For example, suppose

we apply 4-shingling to the following two messages, splitting each message on whites-

pace and punctation:

• Here’s How Apple’s iPad Is Invading The Business World (AAPL, RIMM,

MSFT) - San Francisco Chronicle: http://bit.ly/dhqDGf

• Here’s How Apple’s iPad Is Invading The Business World (AAPL, RIMM,

MSFT) http://bit.ly/d3ClTj

With 18 and 15 shingles, respectively, and 11 shingles in common, the Jaccard co-

efficient will identify a correlation of only 0.5 (11 / (18+15-11)), even though the

two messages are nearly identical. With a typical threshold τ of 0.6 or above, these

two messages, though clearly correlated would not be properly identified. Hence, we

propose as a measure of correlation the overlap coefficient:

corroverlap(A,B) =
|A ∩B|

min(|A|, |B|)
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which in this case results in a correlation value of 11/15 = 0.73. In general, smaller

number of words in two messages will give us higher Jaccard and overlap coefficients

diverge. Experimentally, we evaluate the impact of these approaches on the quality

of correlated message identification.

Table 4.2: Refinements to shingling
Approach F1 Precision Recall

4-Shingling (τ = 0.3) 0.81 0.89 0.73
Character k-grams (k = 6, τ = 0.6) 0.74 1 0.59

OSB. (τ = 0.5) 0.68 0.6 0.79
With Short Message Overlap 0.88 0.92 0.83

Interestingly, as seen in Table 4.2, neither character-based k-grams nor orthogonal

sparse bigrams, which have shown promise in other short text domains, performed as

well as shingling or the short-message optimized approach presented in this chapter.

We conjecture that word-based tokens can capture similar messages well compared

to character k-grams and orthogonal sparse bigrams which may generate too many

features, leading to message correlation confusion. The short message overlap op-

timization, however, results in the best results and so we shall use this as a core

approach for generating the message graphs in all subsequent experiments.

4.4.1.2 Campaign Detection over Small Data

In the previous set of experiments, we evaluated several approaches to measuring

message correlation. Now we turn our attention to evaluating campaign detection

methods. We begin in this section with the small dataset (which recall allows us

to measure precision and recall against ground truth) before considering the large

dataset.
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Over the hand-labeled campaigns in CDSmall, we apply the three graph-based

campaign extraction methods: (i) loose; (ii) strict; and (iii) cohesive, over the mes-

sage graph generated via the best performing message correlation method identified

in the previous section. We also compare campaign extraction using a fourth ap-

proach based on text clustering. For this non-graph-based approach, we consider

k-means clustering, where each message is treated as vector with 10K bag-of-words

features, weighted using TF-IDF, with Euclidean distance as a distance function.

We vary the choice of k value, and report the best result.

Table 4.3: Effectiveness comparison of campaign detection approaches
Approach NumC F1 Precision Recall
Loose 12 0.962 0.986 0.940
Strict 12 0.906 0.907 0.904
Cohesive 11 0.963 0.977 0.950
k-means 5 0.89 1 0.805

Table 4.3 presents the experimental results of the four campaign detection ap-

proaches. The cohesive campaign detection approach found 11 campaigns (NumC)

like the ground truth, but missed a message in two campaigns. The strict approach

found 12 campaigns, missed one message in a true campaign, and divided a true cam-

paign to two predicted campaigns because the approach due to the strict campaign

rule (all nodes in a campaign should be completely connected). The loose approach

found 12 campaigns, one of which is not an actual campaign (false positive) and

some predicted campaigns contain dissimilar messages due to long chains. The k-

means clustering algorithm found only 5 campaigns. Overall, the cohesive and strict

approaches outperformed the loose and cluster-based approaches. In practice, the

ideal approach should return the same number of campaigns as the ground truth and
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do so quickly. In this perspective, the cohesive approach would be preferred over the

strict approach because the number of its campaigns is the same with the ground

truth, and it is relatively faster than the strict approach.

4.4.1.3 Campaign Detection over Large Data

We next examine campaign extraction from the large Twitter dataset, CDLarge.

Can we detect coordinated campaigns in a large message graph with 1.5 million

messages? What kind of campaigns can we find? Which graph technique is the most

effective to find campaigns?

Message Graph Setup: Based on the best message graph construction approach

identified in the previous section, we generated a message graph consisting of 1.5

million vertices (one vertex per message). Of these, 1.3 million vertices are singletons,

representing messages without any correlated messages in the sample (and hence, not

part of any campaign). Based on this sample, we find 199,057 vertices have at least

one edge; in total, there are 1,027,015 edges in the message graph.

Identifying Loose Campaigns: Based on the message graph, we identify as loose

campaigns all of the maximally connected components, which takes about 1 minute

on a single machine (relying on a breadth-first search with time complexity O(|E|+

|V |). Figure 4.6 shows the distribution of the size of the candidate campaigns on

a log-log scale. We see that the candidate campaign sizes approximately follows a

power law, with most candidates consisting of 10 or fewer messages. A few candidates

have more than 100 messages, and the largest candidate consists of 61,691 messages.

On closer inspection, the largest candidate (as illustrated in Figure 4.7) is clearly

composed of many locally dense subgraphs and long chains. Examining the messages

in this large candidate, we find many disparate topics (e.g., spam messages, Justin

Bieber retweets, quotes, Facebook photo template) and no strong candidate-wide
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Figure 4.6: This figure depicts the distribution of the size of candidate campaigns
on a log-log scale. It follows a power law.

theme, as we would expect in a coherent campaign.

Identifying Strict Campaigns: To refine these candidates, one approach sug-

gested in Section 4.3 is strict campaign detection, in which we consider only maximal

cliques as campaigns (in which all message nodes in a subgraph are connected to

each other). While maximal clique detection may require exponential time and not

be generalizable to all social message datasets, in this case we illustrate the maximal

cliques found even though it required ∼7 days of computation time (which may be

unacceptable for campaign detection in deployed systems). Considering the top-10

strict campaigns discovered in order of size: [559, 400, 400, 228, 228, 227, 227, 217,

217, 214], we find high overlap in the campaigns discovered. For example, the 2nd

and 3rd strict campaigns (each of size 400) have 399 nodes in common. Similarly,

the 4th, 5th, 6th, 7th, and 10th strict campaigns have over 200 nodes in common,
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Figure 4.7: This figure depicts a candidate with 61,691 vertices. A blue dot and a
black line represent a vertex and an edge, respectively. The area in the center is dark
because most vertices in the center are very densely connected.

suggesting that these five different strict campaigns in essence belong to a single

coherent campaign (see Figure 4.8). This identification of multiple overlapping strict

campaigns – due to noise, slight changes in message “talking points”, or other arti-

facts of short messages – as well as the high cost of maximal clique detection suggests

the cohesive campaign detection approach may be preferable.

Identifying Cohesive Campaigns: We next applied the cohesive campaign ex-

traction approach to the set of candidate campaigns corresponding to maximal con-

nected components. We assign λ to 0.95 and use the CSV tool [144] for an efficient

implementation of computing each vertex mix’s C(mix) by mapping edges and ver-

tices to a multidimensional space. Although computing C(mix) of all vertices takes

O(|V |2 log |V |2d) where d is a mapping dimension, the performance for real datasets

is typically sub-quadratic. Figure 4.9 shows the distribution of the size of the cohe-

sive campaigns in a log-log scale. Like the candidate campaign sizes, we see that the
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Figure 4.8: An example dense subgraph campaign: the center area is dark because
vertices in the area are very densely connected; this subgraph is almost fully con-
nected except a few vertices. While strict campaign detection identifies 5 different
maximal cliques, cohesive campaign detection identifies a single coherent campaign
including all vertices.

cohesive campaigns follow a power law. Since the cohesive campaign extraction ap-

proach can isolate dense subgraphs, we see that the large 61,691 message candidate

has been broken into 609 sub-components. Compared to strict campaign detection,

the cohesive campaign extraction approach required only 1/7 the computing time on

single workstation.

Examining the top-10 campaigns (shown in Table 4.4) we see that the cohesive

campaign detection approach overcomes the limitations of strict campaign detection

by combining multiple related cliques into a single campaign (recall Figure 4.8).

The biggest campaign contains 560 vertices and is a spam campaign. The “talking

point” of this campaign is an Iron Man 2 promotion of the form: “#Monthly Iron

Man 2 (Three-Disc Blu-ray/DVD Combo + Digital Copy) ... http://bit.ly/9L0aZU”,
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Figure 4.9: This figure depicts the distribution of the size of cohesive campaigns on
a log-log scale. It also follows a power law.

though individual messages vary the exact wording and inserted link.

Based on a manual inspection of the identified campaigns, we categorize the

campaigns into five categories:

• Spam Campaigns : These campaigns typically post duplicate spam messages

(changing @username with the same payload), or embed trending keywords;

often with a URL linking to a malware website, phishing site or a product

website. Example: “Want FREE VIP, 100 new followers instantly and 1,000

new followers next week? GO TO http://alturl.com/bpby”.

• Promotion Campaigns : Users in these campaigns promote a website or product.

Their intention is to expose it to other people. Example: “FREE SignUp!!!

earn $450 Per Month Do NOTHING But Getting FREE Offers In The Mail!!

http://budurl.com/PPLSTNG”.
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Table 4.4: Top-10 largest campaigns
Msgs Users Talking Points
560 34 Iron Man 2 spam
401 390 Facebook photo template
231 231 Support Breast Cancer Research (short link)
218 218 Formspring template
203 197 Chat template (w/ link)
166 166 Support Breast Cancer Research (full link)
165 154 Quote “send to anyone u don’t regret meeting”
153 153 Justin Bieber Retweets
145 31 Twilight Movie spam
111 111 Quote “This October has 5 Fridays ...”

• Template Campaigns : These are automatically-generated messages typically

posted by a third-party service. Example: “I’m having fun with @formspring.

Create an account and follow me at http://formspring.me/xnadjeaaa”.

• News Campaigns : Participants post recent headlines along with a URL. Exam-

ple: “BBC News UK: Rwanda admitted to Commonwealth: Rwanda becomes

the 54th member of the Commonwealth g.. http://ad.vu/nujv”.

• Celebrity Campaigns : Users in these campaigns send messages to a celebrity

or retweet a celebrity’s tweet. Example: “@justinbieber please follow me i love

youuu<3”.

Some of these campaigns are organic and the natural outgrowth of social behavior,

e.g., a group of Justin Bieber fans retweeting a message, or a group posting news

articles of interest. On closer inspection, we observe that many of the less organic

campaigns (e.g., spam and promotion campaigns) are driven by a higher ratio of

messages to participants. For example in Table 4.4, the Iron Man 2 spam campaign

consists of 560 messages posted by only 34 different participants. In contrast, the
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Justin Bieber retweet campaign consists of 153 messages posted by 153 different

participants.

4.4.2 User Level

Based on this observation – of a handful of accounts aggressively promoting par-

ticular “talking points” in Twitter – we next turn to user-aggregated campaign de-

tection. By collapsing multiple messages from a single user in the user-aggregated

message graph, do we find more evidence of spam and other coordinated campaigns

(since edges correspond to users with highly-correlated messages)? What impact

does the confidence threshold have on campaign detection?

4.4.2.1 Data and Setup

Since the dataset for the previous study was based on a random sample of Twit-

ter (meaning most users were represented by only one message), we use a user-

focused dataset CDUser from Twitter consisting of 90,046 user profiles with at least

20 English-language messages. Based on these messages, we constructed a user-

aggregated message graph where each vertex corresponds to a user and an edge

exists between all users passing a threshold confidence value. For a threshold of 3.8

(i.e., n = 4) we find 2,301 vertices with at least one edge, and a total of 89,294 edges

in the user-aggregated message graph.

4.4.2.2 Campaign Detection

Following the campaign framework in Section 4.3.2.3, we find 303 candidate cam-

paigns illustrated in Figure 4.10. Applying the cohesive campaign extraction ap-

proach we find 62 campaigns with at least four users. Through manual inspection,

we labeled each of the 62 campaigns according to campaign type (see Figure 4.11).

We observe that spam and template campaigns are major campaign types in the all
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Figure 4.10: 303 candidate campaigns in the user-aggregated message graph

three partitions divide by ranges of the size.

We next analyze whether different campaign category has significantly different

content/terms in messages. To identify significant terms for the users in each category

type, we identify terms with high mutual information for each campaign category.

Mutual information is a standard information theoretic measure of “informativeness”

and, in our case, can be used to measure the contribution of a particular term

to a category of campaign. Concretely, we build a unigram language model for

each category of campaign by aggregating all messages by all users belonging to a

particular campaign category (e.g, all users participated in spam campaign). Hence,

mutual information is measured as: MI(t, c) = p(t|c)p(c)log p(t|c)
p(t)

where p(t|c) is the

probability that a user which belongs to category c has posted a message containing
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Figure 4.11: Campaign type distribution (threshold = 3.8)

term t, p(c) is the probability that a user belongs to category c, and p(t) is the

probability of term t over all categories. That is, p(t) = count(t)/n. Similarly, p(t|c)

and p(c) can be simplified as p(t|c) = count(c, t)/count(c) and p(c) = count(c)/n

respectively, where count(c, t) denotes the number of users in category c which also

contain term t, and count(c) denotes the number of users in category c.

Table 4.5 shows the top-10 significant terms for each campaign category. In spam

campaigns, we observe that spammers have posted messages regarding increasing fol-

lowers via a software service. An example message is “Hey Get 100 followers a day

using http://yumurl.com/p74ZY6. Its super fast!”. Note that the Twitter Safety

team considers promoting such automated friend software as spam [139]. Promo-
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Table 4.5: Top-10 significant terms for each campaign category
Category Top 10 Terms

spam
followers 100 day site fast

check twitter account upload twtmuzik

promotion
iq broadcasting stickam stream quiz

michael #140kingofpop jackson free woot

news
media social bbc engadget windows
#news apple android africa iphone

template
video #epicpetwars xbox chat #tinychat
joined people playing youtube live

celebrity
@justinbieber follow justin bieber love

mee song plss hiii dream

tion campaigns promote particular links or products. An example message is “if

you like iq quize’s then check out this free iq quiz http://tiny.cc/amazingfreeiqquiz

#donttrytoholla”. Messages of the users in the news campaign contain hot keywords

(e.g., social, media, android and iphone) or media name (e.g., bbc, engadget). The

significant terms in template campaigns describe a user’s status (playing, xbox) or

reflect a service being used (chat, #tinycat and live). Users participating in celebrity

campaigns often post messages targeting a particular celebrity (e.g., @justinbieber)

expressing love or asking for the celebrity to reciprocate and follow the user.

Table 4.6: Campaign categories for low confidence threshold and high confidence
threshold

Category Low High
Spam 42% 65%
Promotion 8% 3%
Template 37% 29%
News 11% 3%
Celebrity 2% 0%
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Figure 4.12: Campaign type distribution (threshold = 9.5)

4.4.2.3 Varying the Confidence Threshold

Now, we are interested in how the confidence threshold influences the campaigns

detected. A higher confidence corresponds to more tightly-correlated users (pairs

who tend to post a sequence of similar messages), and would perhaps suggest a

strategic rather than organic campaign. When we increase the confidence thresh-

old to 9.5 (i.e., n = 10) we find 28 campaigns as shown in Figure 4.12. Compared

to the lower confidence threshold, the proportion of spam campaigns increases to

65% compared with 42% in the previous experiment (see Table 4.6). Second, we

see that for campaigns of the largest size, all are spam campaigns. This indicates

that the confidence threshold can be an effective tunable knob for identifying strate-
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gic campaigns in large-scale social media. Overall, these user-aggregated message

graph results show that content-based campaign detection can effectively identify

campaigns of multiple types at low confidence and specifically of spam campaigns at

high confidence.

4.4.3 Temporal Analysis

We next analyze temporal behaviors of the cohesive campaigns. Especially, we

study each cohesive campaign category’s temporal behaviors to see whether each

campaign category has different temporal behavior. Using CDLarge (one week data)

may be not enough to study temporal patterns because of sparse data. In order to

overcome this sparsity, we extend the one week data to three weeks data collected

between October 1 and October 21, 2010 (again, we used Twitter Streaming API

which allows us to collect randomly 1% of all messages. If we can access all messages

generated on Twitter, we may just need to use 1 week data or even shorter data for

the temporal analysis.)

For temporal analysis, we selected the top-50 cohesive campaigns detected in Sec-

tion 4.4.1.3, and added similar messages in the extended dataset into each campaign†.

Then, we manually labeled the top-50 cohesive campaigns to one of four categories:

spam, promotion, celebrity and template. The campaign category distribution is

shown in Table 4.7.

Table 4.7: Categories of Top-50 cohesive campaigns
Category Percent Category Percent
Spam 26% Promotion 6%
Celebrity 34% Template 34%

†There was no news campaign in the top-50 cohesive campaigns.
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(a) Spam (b) Promotion

(c) Celebrity (d) Template

Figure 4.13: Average temporal graphs of four campaign categories

For temporal behavior analysis, a cohesive campaign is represented by a time

series vector Ta = (Ta1, Ta2, . . . , Tan). Each value in the vector denotes a number

of messages belonging to the campaign in a time unit (e.g., 1 day). Likewise, we

create 50 time series (campaign vectors) based on 1 day unit. To make a time

series graph smooth (less fluctuated), we use two days moving average. For example,

given a time series Ta = (Ta1, Ta2, Ta3, . . . , Tan), two days moving average of Ta is

T ′a = (Ta1+Ta2

2
, Ta2+Ta3

2
, . . . , Tan−1+Tan

2
).

We use dynamic time warping barycenter averaging (DBA) which is a global tech-

nique for averaging a set of sequences [103]. Compared to approaches like balanced

hierarchical averaging or sequential hierarchical averaging, DBA avoids some of the
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deficiencies of these alternative [98].

Figure 4.13 presents an average time series of each campaign type calculated

by DBA. Spam campaigns have a sharp spike, reflecting how spammers post many

similar messages at the beginning and then reduce the frequency of messages or

change payload to avoid being caught by Twitter administrators. Users in promo-

tion campaigns post messages over a longer period, suggesting that promotion and

spam campaigns (though closely related) may reveal distinctions in their temporal

patterns to support automatic differentiation. Celebrity campaigns have two spikes

and then the frequency drops off. We conjecture that this phenomenon happens as

people quickly retweet a celebrity’s message (the first spike) and then the retweet

passes through those user’s social networks and is echoed (the second spike). Tem-

plate campaigns have different temporal patterns from the others. As we can expect

a temporal pattern of template campaigns, messages forming template campaign are

posted constantly and statically over time. This phenomenon makes sense because

these messages are posted by third party services or tools. Overall, each type of cam-

paigns has different temporal pattern. This temporal analysis reveals the possibility

to automatically classify a campaign type by its temporal pattern.

4.4.4 Summary

Through the above experiments, we found that it is possible to detect content-

based campaigns in message and user levels in social media. Also, we found five

campaign categories–spam, promotion, template, celebrity and news campaigns. The

proposed cohesive campaign detection approach outperformed loose and strict cam-

paign detection approaches and k-means clustering approach in terms of effectiveness

and efficiency. The most encouraging results are the messages posted by users who

participate in negative campaigns (spam and promotion campaigns) have higher con-
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tent similarity. Temporal analysis of campaigns reveals that each campaign type has

different temporal pattern, showing us the possibility to automatically determine a

campaign’s category.

4.5 Summary

In this chapter, we have investigated the problem of campaign detection in social

media. We have proposed and evaluated an efficient content-driven graph-based

framework for identifying and extracting campaigns from the massive scale of real-

time social systems. We have found six campaign types (spam, promotion, template,

celebrity, news and babble), and analyzed temporal behaviors of various campaign

types.
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5. COMBATING THREATS TO COLLECTIVE ATTENTION∗

5.1 Introduction

We now turn to the third and final threat to social systems investigated in this

dissertation. This new threat – which targets collective attention – is an emerging

threat made possible by large-scale systems connecting millions of people.

Collective attention – exemplified by breaking news, viral videos, and popular

memes that captivate the attention of huge numbers of users – is one of the cor-

nerstones of large-scale social systems. As Wu and Huberman have noted, collective

attention describes how “attention to novel items propagates and eventually fades

among large populations” [155]. In the context of social media, an item – be it a

video, web page, image – attracts the interest of a small group, then gathers a larger

following as additional attention focuses on it, then (in some cases) exploding across

social media to large-scale attention, and then finally fading in interest. Popular

examples include YouTube videos that accumulate millions of views in a few days,

memes attracting huge audiences on Reddit (http://www.reddit.com) and 4chan

(http://www.4chan.org), spikes in search volume on Google and Twitter following

breaking news, and so forth. As a result, many researchers have begun examin-

ing these phenomena, to model their dynamics, lifecycles, and future spread, e.g.,

[47, 54, 78, 79, 118].

Guided by the knowledge that collective user interest may quickly coalesce, ma-

licious users have begun threatening the quality of information associated with this

collective attention. As illustration, consider these three recent examples of collective

∗Reprinted with permission from “Combating Threats to Collective Attention in Social Media:
An Evaluation” by Kyumin Lee, Krishna Kamath, and James Caverlee, 2013. Proceedings of the
7th International AAAI Conference on Weblogs and Social Media, Copyright 2013 by AAAI.
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Figure 5.1: Example YouTube video designed to capitalize on collective interest
during and immediately after the London Olympics Opening Ceremony

attention spam found in large-scale social systems:

• YouTube: In the immediate aftermath of the London Olympics Opening Cere-

mony on July 27, 2012, we found that four of the top-five videos returned for the

YouTube query “london olympics opening ceremony 2012” were videos tagged

with keywords associated with the London Olympics Opening Ceremony, but

that were expressly designed to promote an unrelated spammer-controlled web-

site. Figure 5.1 shows one example, which includes a URL linking to a spam

website.

• Twitter: Twitter publishes the current most-trending topics, and so spammers

have been observed abusing this signal of collective user interest by “trend-
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Figure 5.2: Spam messages targeting the Twitter trending topic “Glen Rice”

stuffing” these popular topics with spam messages including malicious URLs

[59]. Figure 5.2 shows a sample search result for the trending topic “Glen

Rice” for which three out of the most recently posted six messages are spam.

All three spam messages include the same URL and multiple trending topics,

but are posted from multiple accounts, adding to the growing evidence (e.g.,

[115, 132]) that spammers strategically post to Twitter in an organic-like way

to simulate the behavior of non-spam users.
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Figure 5.3: Three spam approaches. Collective attention spam relies on the users
themselves to seek out the content where the spam will be encountered.

• Facebook: We have found many examples of popular profiles on Facebook –

including celebrities, popular musical groups, and brand-name products – that

have attracted spam photos and other spam content. Spammers can easily

target these profile pages when interest is focused on these high-interest profiles,

since many popular profile pages support media uploads by fans, which can be

abused by collective attention spammers.

In contrast to traditional email spam and social spam, collective attention spam

relies on users themselves to seek out the content where the spam will be encoun-

tered. In email spam, as illustrated in Figure 5.3(a), the spammer relies on a bulk

attack based on the hope that a small percentage of users who are contacted will

actually click on a link in an email. Social spam, as illustrated in Figure 5.3(b), is

typically a more targeted attack than email spam, and relies on some social mech-

anism for coupling a spammer with an intended target (e.g., becoming friends in a

social network, following a user on Twitter). In contrast, collective attention spam in

Figure 5.3(c) targets users who are already inherently interested in the topic. In this
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Figure 5.4: All messages and spam messages associated with a popular topic
“#LookAtMeNow”. Spammers quickly started posting spam messages as the topic
became popular.

way, users themselves have self-selected for interest in the topic and made themselves

susceptible to collective attention spam. For example, as users become interested in

a popular YouTube video and the view count increases, spammers can insert spam

comments. As users begin monitoring Twitter for a trending topic, spammers (with

knowledge of these popular topics derived directly from Twitter) can insert spam

messages associated with the topic (e.g., by including the relevant hashtag). To il-

lustrate, Figure 5.4 depicts the incidence of spam for the Twitter trending hashtag

“#LookAtMeNow” over its 12-hour lifespan, where we can observe that spammers

quickly posted spam messages as the topic becomes popular (details of the data and

how spam was labeled provided in the following section).

While email and social spam have been the subject of considerable study, there

is a significant gap in our understanding of the susceptibility of social systems to
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collective attention threats. Our goal in this chapter is to begin to understand this

phenomenon better, building on our preliminary effort to detect collective attention

spam reported in [75]. How susceptible are social systems to malicious attacks?

What strategies by malicious users are most effective? And least effective? How do

users of a system access items of interest and how does this affect their exposure to

threats? Can a system automatically inoculate itself from emerging attacks? What

kinds of countermeasures can be deployed and how effective are they at limiting the

effectiveness of malicious users?

5.1.1 Our Approach

Answering these questions is challenging. Large-scale social systems are typically

proprietary and responsible to their current user base, so it is infeasible to auto-

matically “stress-test” such a system by subjecting it to hundreds or thousands of

malicious users. An alternative is to take a representative snapshot of a system and

measure the current level of threats in the system and characterize their reach and

effectiveness. However, this approach alone may not be suitable for understanding

the system’s future state, as social systems are constantly evolving. Hence, we take

a two fold approach. First, we take a data-driven modeling approach, in which we

simulate a large-scale social system based on parameters derived from a real system.

In this way, we can vary system parameters – like the fraction of malicious users in

the system, their strategies, and the countermeasures available to system operators

– to explore the resilience of these systems to threats to collective attention. Based

on our data-driven model, we identify two possible countermeasures – a rule-based

filter and a supervised detector. Since many instances of collective attention are

bursty and unexpected, it is unclear if such countermeasures – though effective in

simulation – may be effectively deployed based on the first moments of a bursting
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phenomenon in a real system. Hence, we pair the data-driven model with a compre-

hensive evaluation over a Twitter system trace, in which we evaluate the effectiveness

of countermeasures deployed based on the first moments of a bursting phenomenon

in a real system.

5.1.2 Summary of Key Findings

In summary, this chapter presents the first comprehensive study of collective

attention spam in social systems.

• Through our data-driven model, we find that social systems are extremely

susceptible to collective attention spam. With spammers accounting for only

5% of all users, we find that every legitimate user can be exposed to spam.

At even higher spammer penetration, the social system becomes unusable with

spam dominating.

• We find that strategically organized spammers can collude to selectively push

particular spam payloads, increasing the exposure of legitimate users to spam

content.

• On a positive note, we find that the countermeasures deployed early in the

lifecycle of a collective attention attack can dramatically reduce the amount

of spam in the system. Through testing over 20 million Twitter messages, we

validate the model findings and see that these countermeasures can effectively

identify threats to collective attention early in the lifecycle with 98% accuracy,

reducing “spamness” up to 73% and providing a shield for unsuspecting social

media users.
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5.2 A Data-Driven Model for Studying Collective Attention Threats

In this section, we present a data-driven modeling approach for simulating collec-

tive attention and threats. Our goal is to answer questions about the susceptibility

of social systems to collective attention threats and to explore techniques for limiting

this impact. We begin by describing how both good and bad users post content to

the social system, and how the system itself supports information access. We de-

scribe how the model is seeded and validated, and then we investigate (i) threats

from individual spammers; (ii) threats from coordinated spammers; and (iii) finally,

we examine countermeasures. In the following section, we revisit these model-driven

results through an experimental study over a real Twitter trace.

5.2.1 System Model

We consider a social system of interest S, consisting of a set of content items C

(e.g., Facebook status updates, photos, videos, etc.), a set of topics T for which each

content item is associated (e.g., the “London Olympics” topic, the “Steve Jobs” topic,

etc.), and a set of users U , who participate in the system by posting and viewing

content items. For example, a user in U may post a tweet “Thank you #SteveJobs

The world will miss you”, where the tweet is associated with the topic indicated by

the hashtag #SteveJobs. Similarly, a user may post a video to YouTube associated

with the “London Olympics” topic by including a tag or descriptive text at the time

of upload. We use the symbols u, c, and t to denote a user in U , a content item in

C, and a topic in T .

5.2.2 Posting Model

To populate a social system, we initialize the system with a set of topics and a set

of users. To model users in a social system, we define two sets of users: a good user
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set U+ and a bad user set U−. Good users post content items that are associated

with a “correct” topic. Bad users, on the other hand, post content items that are

irrelevant to the topic they are associated with. For example, a bad user may post

a spam video, but intentionally describe it as a “London Olympics” video. When

users post to the system, we assume they have access to both the set of topics T as

well as the current subset of “popular” topics Tpop (in practice, these popular topics

may be known to users via prior knowledge or explicitly advertised by the system,

as in the case of Twitter trending topics or popular YouTube videos). The system

proceeds in step-wise fashion; at each time increment, users generate content items

according to a particular posting model. Good users post according to the good user

model :

Good User Model:

for each user u ∈ U+ do

with probability γ+ decide to post:

with probability δ+:

select a popular topic t ∈ Tpop and relevant item c;

else:

select at random a topic t ∈ T and relevant item c.

At each time increment, a good user chooses to post something with the user

content generation probability γ+. If a user decides to post a content item, an

already popular topic is selected with probability δ+; alternatively, the user decides

to post to a random topic. A bad user follows a similar process, but always posts

spam content items:

Bad User Model:
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for each user u ∈ U− do

with probability γ− decide to post:

with probability δ−:

a popular topic t ∈ Tpop and spam item c;

else:

select at random a topic t ∈ T and spam item c.

Notice that the user content generation probability γ and the popular topic prob-

ability δ may vary between the good and bad user models. As part of our data-driven

simulation, we will vary these parameters to reflect different spammer behaviors. For

example, a spammer may adopt a high rate of content generation relative to good

users (e.g., γ− � γ+) in an attempt to flood the system with spam content. Al-

ternatively, a spammer seeking to maximize their potential audience may choose to

focus only on popular topics and so adopt a popular topic probability much greater

than the good user model (e.g., δ− � δ+).

5.2.3 Collective Attention Access Models

Given the approach for populating a social system, we now consider how users

access the content posted in the system. We assume that users monitor topics by

one of two methods:

• By Recency : In the first access model, users interested in a topic access the k-

most recently posted items related to the topic. This recency approach is akin

to the “Most Recent Uploads” functionality on YouTube, viewing comments

associated with a blog by their posting order (from recent to oldest), and

Twitter’s basic search.

• By Relevance: The second access model imposes a relevance ordering over
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content items associated with a topic. This relevance-based approach may

incorporate the popularity of an item (e.g., rank images in order of the number

of clicks they have accumulated), content and link-based ranking (e.g, applying

IR principles), or learning-to-rank methods. For modeling purposes, we assume

that content items are ranked by their occurrence count, with all duplicates

removed to maintain diversity (i.e., item ci posted 20 times is ranked first; item

cj posted 10 times is ranked second; and so on).

User interest in a topic is based on the amount of content items posted to the

topic. So, if topic ti is the most popular topic according to the good and bad user

models, then it will be monitored by the most users. In this way, as items become

more bursty, collective attention in them rises accordingly.

Figure 5.5: Spamness variation by a number of spam items in top 10 search result
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5.2.4 Measuring Spam Impact

To evaluate the impact of bad users on inserting spam into the system, we mea-

sure the overall spamness, which is a measure similar to NDCG@k [64]. Note that

NDCG@k is a metric to measure the quality of top k search result. For a user

accessing topic t, we have:

Spamness(t, k) =

∑k
i=1w(ci) ∗ 1

log2(1+i)

Norm(k)

where

w(ci) =

 1, if ci is a spam content item;

0, otherwise.

and k is the number of items (e.g., messages or tweets) shown in a search result by

a search system, and Norm(k) =
∑k

i=1
1

log2(1+i)
is a normalizing constant. Spamness

varies from 0 to 1, with 0 signifying no impact to 1 signifying all of the items viewed

by a user are spam. If users view 10 items at a time (k = 10), spamness varies over

the number of spam items in the top 10 search result as shown in Figure 5.5. With

three spam items, spamness ranges between 0.200 and 0.469, depending on where

the spam items are located in the search result; if they are positioned in the top,

spamness will be high. As a rule-of-thumb we consider a spamness of 0.2 or greater

to indicate a high-level of spam, corresponding to a user encountering 3 or more spam

items for every 10 items encountered.

5.2.5 Seeding and Validating the Model

To accurately model real social systems for a data-driven simulation, we require

baseline parameter settings. However, there are no standard datasets of collective

attention spam. Hence, we sampled a collection of popular topics and their associated
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Table 5.1: A sample of 101 popular topics. In total, there are ∼13m messages, of
which 3.7% are spam

No. Topic Total Lifespan # of messages

1 #SomeWhereInTheHood 12 hrs 48 mins 93,871 (2.5% spam)

2 #ThatOneEx 10 hrs 21 mins 58,217 (3.0% spam)

3 #thewayiseeit 18 hrs 06 mins 201,682 (4.6% spam)

4 #LawsMenShouldFollow 16 hrs 30 mins 181,524 (4.0% spam)

5 #DearOOMF 18 hrs 18 mins 139,559 (1.1% spam)

6 #stupidquestion 7 hrs 38 mins 60,139 (0.7% spam)

7 #EnoughIsEnough 10 hrs 20 mins 71,259 (1.6% spam)

8 #DearHair 17 hrs 06 mins 123,823 (4.5% spam)

9 #fightingwords 15 hrs 37 mins 123,953 (3.3% spam)

10 #ThingsMenShouldntTextEachOther 10 hrs 21 mins 91,398 (2.9% spam)

11 #ThatHighMoment 23 hrs 37 mins 169,632 (2.3% spam)

12 #TheyNeedToBringBack 34 hrs 34 mins 222,175 (2.1% spam)

13 #YouNeedToShutUp 24 hrs 45 mins 94,464 (3.0% spam)

14 #WhatYouShouldKnowAboutMe 23 hrs 48 mins 249,534 (2.1% spam)

15 #ThingsThatGetMePissed 23 hrs 28 mins 236,488 (1.9% spam)

16 #MeAndYouCantDate 21 hrs 49 mins 209,341 (2.4% spam)

17 #HowToMakeItInAmerica 30 hrs 57 mins 124,608 (4.5% spam)

... ... ... ...

84 #ThingsIAlwaysSeeOnMyTL 19 hrs 20 mins 88,685 (3.5% spam)

85 #FavoriteWaleLyric 6 hrs 00 mins 50,577 (1.2% spam)

86 Happy Halloween Everyone 7 hrs 54 mins 72,799 (1.5% spam)

87 #GamesToDescribeSex 6 hrs 24 mins 32,106 (3.0% spam)

88 #ThingsLongerThanKimsMarriage 41 hrs 22 mins 302,389 (3.4% spam)

89 #ThingsOnMyMind 17 hrs 38 mins 154,335 (2.5% spam)

90 #6wordstories 13 hrs 14 mins 119,558 (1.2% spam)

91 #10ThingsIFindAttractive 14 hrs 22 mins 101,741 (1.3% spam)

92 #GrandTheftAutoMemories 19 hrs 49 mins 118,261 (3.1% spam)

93 #2011musictaughtme 21 hrs 10 mins 187,845 (2.3% spam)

94 #LiesThatAlwaysWorked 26 hrs 28 mins 219,382 (6.3% spam)

95 #TwitterPeopleILove 39 hrs 12 mins 153,024 (2.0% spam)

96 #ivealwayswantedto 47 hrs 42 mins 350,043 (1.1% spam)

97 #ThingsICantLiveWithout 19 hrs 27 mins 140,761 (2.5% spam)

98 #DoctorsBetterThanConradMurray 12 hrs 02 mins 68,370 (12.2% spam)

99 #WhaILove 24 hrs 02 mins 174,695 (3.1% spam)

100 #hometownslogans 22 hrs 02 mins 59,529 (5.5% spam)

101 #ThingsThatYouShouldKnow 13 hrs 09 mins 95,542 (3.6% spam)
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messages from Twitter between September and November 2011. We polled Twitter’s

trending topics every 5 minutes and collected the messages associated with each

trending topic. In total, we collected 19,275,961 messages posted by 3,989,563 users

across 354 trending topics.

But how many of these messages are actually spam? It is important to find a

baseline estimate so that the model parameters can be seeded realistically. To as-

sess the amount of spam in the dataset, we systematically checked whether a user

associated with a message had been suspended by Twitter for engaging in spam be-

haviors. If an account is suspended, Twitter will redirect the request to a standard

“suspension” page: http://twitter.com/account/suspended. Not all suspended ac-

counts may have actually engaged in spam, so we further assessed these accounts.

Concretely, we randomly sampled 200 messages each from the messages posted by

suspended accounts and from those posted by non-suspended accounts. Two human

judges manually labeled the 400 messages as either spam or non-spam. From the

non-suspended accounts, 199 out of 200 messages sampled were labeled as non-spam

messages. From the suspended accounts, 187 out of 200 messages sampled were

labeled as spam messages. Based on this high accuracy, we make the simplifying

assumption that all messages posted by suspended users are indeed spam so that all

∼19 million messages can be automatically labeled.

A sample from the top-101 topics with the most messages is shown in Table 5.1.

Together, these topics account for 12,954,965 messages. A topic has on average

132,725 messages and 3.7% of them are generated by spammers, who account for

around 1.5% of all accounts in the dataset.

Following the observed spam amount in the real data, we set the fraction of spam-

mers in the system as 1.5%. We then varied the content generation probability (γ),

and probability of picking popular topics (δ) to find an initial model setting that em-
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(a) Topic distribution

(b) Log-log graph

Figure 5.6: The left figure depicts a topic distribution generated by the model. Each
color denotes a topic. The right figure depicts a log-log graph showing the frequency
of number of content items associated with each topic in the simulation data. The
heavy-tailed distribution is similar to bursty social media.
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Figure 5.7: Evaluating the impact of increasing the fraction of spammers in the
system from 0 to 5% (i.e., 0 ∼ 0.05 in the x -axis)

ulated the real data distribution. Arriving at initial settings of γ+ = 0.1, γ− = 1.0,

δ+ = 0.4, and γ− = 0.75, we arrive at a topic distribution shown in Figure 5.6(a)

following the heavy-tailed distribution as shown in Figure 5.6(b), which is similar to

the expected distribution of bursty social media. Note that these initial settings fit

our intuition, with bad users posting more often than good users and posting exclu-

sively to popular topics. We find that small changes to these parameters make little

qualitative difference to the conclusions drawn in the following. Based on these initial

parameter settings, we next explore the following research questions: how susceptible

are social systems to malicious attacks? what strategies by malicious users are most

effective (e.g., individual attack, group-based coordinated attack, or combination of

individual attack and coordinated attack)? What kinds of countermeasures can be

deployed and how effective are they at limiting the effectiveness of malicious users?
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Figure 5.8: Evaluating the impact of increasing the fraction of spammers in the
system from 0 to 100% (i.e., 0 ∼ 1 in the x -axis)

5.2.6 Threats from Individual Spammers

We’ve seen in one example system (Twitter) that about 1.5% of users are collec-

tive attention spammers. Suppose this fraction of spammers increases. What impact

will this have on the amount of spam that legitimate users are exposed to? For this

first experiment, we vary the fraction of spammers from 0 to 100%, (we keep the same

γ and δ, but increase the fraction of spammers). We see in Figure 5.7 that natu-

rally, the spamness of the system increases with an increasing number of spammers.

Interestingly, the recency-based access approach fairs significantly worse than the

relevance-based one, crossing the spamness threshold of 0.2 when less than 1% of all

users are spammers. The relevance-based approach is less susceptible to spam since

individual spammers cannot selectively push particular items; in contrast so long as

users access the most-recent items, spammers can easily insert spam items that will
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be viewed. Although the relevance-based approach is more resistant to spammers,

if the fraction of spammers were to increase only slightly to 2%, then the spamness

threshold would be passed. As the fraction of spammers increases beyond 5%, we

see in Figure 5.8 that neither access approach can significantly limit the amount of

spam in the system, with both approaches near or above a spamness of 0.5 with just

20% spammers. At even higher ranges, presumably the social system would become

unusable and unappealing to legitimate users, with spam dominating.

5.2.7 Threats from Coordinated Spammers

The threat so far has considered individual spammers who do not coordinate their

actions; that is, there is no common spam payload shared across multiple spammers

for perhaps increasing its reach. Hence, in this next experiment we consider a coordi-

nated spam approach in which spammers are assigned to a group which is associated

with a common pool of spam payloads. For the following experiment, we assume

that spammers share a common pool of spam payloads, and we vary the number of

spam payloads.

Using this coordinated approach, we observe in Figure 5.9 that the recency-based

approach is largely unaffected, but that it remains highly susceptible to spam. The

relevance-based approach shows that spammers have a potential “sweet spot” for

targeting spam. At a low number of payloads, the spamness is relatively low since

the spammers promote a few payloads which possibly pollute one or two out of the

top-k results. As the number of payloads increases, the coordinating spam group can

achieve an impact equal to or even better than under the recency-based approach.

However, as the number of payloads continues to increase, the effectiveness for the

coordinating spam group falls, because the power promoting payloads is distributed

across too many payloads, meaning no single one can penetrate the top-k, and hence
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Figure 5.9: Coordinated Spam: By focusing their efforts, groups can achieve even
higher impact.

be exposed to end users interested in the topic.

What if spammers adopt a mixed strategy, balancing between the individual and

the coordinated approach? Figure 5.10 compares the robustness of the two access

approaches to a mixed spam strategy. We observe the continued poor resistance

of the recency-based approach. To effectively target the relevance-based approach,

spammers need only adopt very little collusion (i.e., with 20% adopting the group

strategy, spamness passes the 0.20 threshold). At even higher-levels of collusion

(≥80%), spammers are even more effective than under the recency-based approach,

further confirming the dangers of strategically organized spammers.

5.2.8 Countermeasures

So far we have seen that the relevance-based access approach is generally more

resistant than recency to collective attention spam, but that both are extremely
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Figure 5.10: With as few as 20% adopting the group strategy, spamness passes the
0.20 threshold.

susceptible to only slight changes in the fraction of spammers and to strategic efforts

to coordinate spam behavior. We now consider the impact of countermeasures to

collective attention spam to better understand under what scenarios spam may be

detected and filtered. We consider two countermeasures:

5.2.8.1 Countermeasure 1: Rule-Based Filtering

The first is a rule-based filtering approach, which is potentially easy to deploy in

a real-system, but that may not be adaptable to changes in behavior by malicious

users. We consider a simple rule that considers the ratio of users to content items:

PayloadScore(t, p) = 1− # of distinct users

# of content items

where t and p denote a topic and a payload, respectively. The rule-based filtering

approach counts # of content items containing a payload p in the topic t and #
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Figure 5.11: Applying a simple rule-based countermeasure greatly reduces spamness,
but is not effective against strategic behavior.

of distinct users who generate the content items, and then filters out content items

exceeding a threshold. The intuition is that collective attention spammers may

strategically use common payloads, so if fewer users post more of the same item

(e.g., a common URL or spam image) they can be filtered out.

Setting a threshold of 0.1 and applying this countermeasure to the recency-based

approach makes little difference since the spamness is already so high (as we saw

in previous experiments). However, applying this countermeasure to the relevance-

based approach results in a dramatic reduction in spamness as shown in Figure 5.11.

While encouraging, it is not obvious that such improvements could be observed

in practice, with spammers strategically changing their behavior. We’ll revisit the

effectiveness of such a rule-based countermeasure in the following section.
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5.2.8.2 Countermeasure 2: Supervised Classification

A second countermeasure is a spam detector relying on supervised classification

principles. The intuition is that system operators may be able to sample evidence of

spam early in the lifecycle of a collective attention phenomenon (e.g., sampling and

labeling spam tweets from a trending topic). Based on this early evidence, perhaps

an effective classifier can be quickly deployed for filtering out subsequent spam. To

evaluate such an approach, we consider two detectors: a low-accuracy spam detector

that can only filter out 40% of all spam items as they enter the system, and a high-

accuracy spam detector that can filter out 90% of all spam items. As an example, a

low-accuracy detector may be built on imperfect crowdsourced spam labeling, while

a high-accuracy detector may have been refined over large carefully curated spam

datasets.

We show in Table 5.2, the hypothetical performance of two detectors versus the

baseline (no countermeasure) case over a 90 minute “run” of the system model. At

each one-minute time unit, users post content, the detectors are applied, and the

spamness of the results from the access approaches are calculated. We see over the

90 minutes that even the low-accuracy spam detector achieves good results, pushing

the spamness well below the 0.2 threshold. The high-accuracy performs very well,

with spamness below 0.06 in all cases. When increasing the fraction of spammers in

the system, we find similarly robust results suggesting that effective countermeasures

are a necessity for countering threats to collective attention in social media.

5.3 Countermeasure Deployment on Twitter

Based on the data-driven model, we have identified the need for collective at-

tention spam countermeasures. Though effective in simulation, it is unclear of such

countermeasures are achievable in real social systems. Since many instances of col-
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Table 5.2: Evaluating the potential effectiveness of a low-accuracy (40%) and a high-
accuracy (90%) collective spam detector

Access Approach Avg Min Max

Recency 0.228 0.198 0.279

+ low-accuracy detection (40%) 0.120 0.102 0.156

+ high-accuracy detection (90%) 0.041 0.030 0.052

Relevance 0.176 0.148 0.215

+ low-accuracy detection (40%) 0.115 0.099 0.138

+ high-accuracy detection (90%) 0.036 0.027 0.044

lective attention are bursty and unexpected, it is difficult to build spam detectors

to pre-screen them before they arise. Hence, in this section we study the viability

of quickly deploying collective spam countermeasures based on the first moments of

a bursting phenomenon. We examine the Twitter trace described in Section 5.2.5,

consisting of 101 topics associated with 13 million messages. We investigate when a

countermeasure may be optimally deployed to a trending topic. Early deployment

of a supervised classifier has the potential to greatly reduce spam subsequently asso-

ciated with the topic, but at a risk of learning only a limited model and resulting in

less robust classification (resulting in higher false positives and false negatives). Late

deployment has less potential to reduce the total amount of spam (since presumably

most of it will have already arrived by the time of deployment), but will be more

robust in its detection.

5.3.1 Metrics

To evaluate the quality of a countermeasure, we augment the spamness measure

with several standard spam metrics: accuracy, false positive rate (FP) and false

negative rate (FN). In the confusion matrix in Table 5.3, a represents the number of

correctly classified spam items, b represents the number of spam items misclassified

as non-spam, c represents the number of non-spam items misclassified as spam, and
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d represents the number of correctly classified non-spam items. Accuracy is the

fraction of correct classifications: (a+ d)/(a+ b+ c+ d). The False Positive rate is

c/(c+ d), and the False Negative rate is b/(a+ b).

Table 5.3: Confusion matrix
Predicted

Spam Non-spam

Actual Spam a b
Non-spam c d

Additionally, we measure the total spam detected (TSD) over a topic’s lifespan:

TSDtopic(%) =
# of detected spam

total # of spam in the topic

The goal of a countermeasure is to reduce the most amount of spam, so total

spam detected complements the traditional measures of accuracy, false positive rate,

and false negative rate. For example, a countermeasure that is deployed late in the

lifecycle of a topic may be very robust, with high accuracy and low false positives

and false negatives, but may only detect a small fraction of all spam. Why? Because

most of the spam occurred before the countermeasure was ever deployed. An effective

countermeasure should balance accuracy and the other measures with the total spam

detected, so that unsuspecting users are shielded from spam.

5.3.2 Countermeasure 1: Rule-Based Filtering

We begin by considering a static rule-based filtering approach, based on the prin-

ciples described in the previous section. In our observations of Twitter trending

topics, we see that many spam messages contain a common advertisement or URL
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payload. In contrast, messages posted by legitimate users are more varied. For ex-

ample, for the topic #DearHair, we noticed similar messages of the form:

@9rappermode9 OMG, #DearHair RT Have you seen this??WTF how could it hap-

pen with hair?? : http://t.co/xcPx6JFe

@ enoughsaid OMG, #DearHair RT Have you seen this??WTF how could it happen

with hair?? : http://t.co/fVD4UAbC

where both URLs redirect to the same spam destination.†

We can define the payload as the message content after eliminating all hashtags,

usernames, and URLs. In the example, the payload is OMG, RT Have you seen

this? ?WTF how could it happen with hair??. With this payload definition and the

simple payload score rule as presented in the previous section: PayloadScore(t, p) =

1− # of distinct users
# of contents

, we evaluate how many spam messages can be detected from the

Twitter trace. In the best case, with a threshold of 0.1, we find that only 20% of all

spam messages across all 13 million messages can be filtered (i.e., the average TSD

is 20%).

While the space of all potential rules is large, we can see that a rule-based

approach is likely to be insufficient by itself to reduce collective attention spam.

Hence, we next explore in greater detail the supervised classification approach, which

promises potentially more adaptability to ongoing collective spam prevention.

†To further illustrate the potential impact of collective attention spam, we accessed the bitly
records for these URLs. URLs in 102 messages redirect to the same destination via various bitly
URLs. One of the bitly URLs had been clicked a total of 1,424 times, indicating the effectiveness
of targeting collective attention (available at http://bitly.com/usaend+).
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5.3.3 Countermeasure 2: Supervised Classification

We next investigate the viability of a supervised classifier for detecting collective

attention spam that targets popular topics. Our goal is to predict whether a message

m posted to a trending topic (i.e., by including the associated hashtag or keyword)

is a spam message through a classifier c:

c : m→ {spam, non− spam}

Our classification approach is that given a set of messages associated with a popu-

lar topic, we create a training set containing messages generated before a deployment

time x since the topic has become popular, and the rest of the messages associated

with the topic belong to a testing set. We create multiple pairs of training and testing

sets for different hourly deployment times. For example, for a trending topic with

a 10-hour lifespan, we consider deploying the countermeasure at hour 1, at hour 2,

and so on up to hour 9. In this way, we independently create 9 training sets, each

of which contains messages posted during the first 1 hour, 2 hours, and so on up to

9 hours, respectively. Corresponding to the training sets, we create 9 testing sets

containing the rest of messages.

Since collective attention spam targets topics as they become popular, detecting

these spam messages as soon as possible is very important. Our goal is to explore the

trade-off between early deployment and late deployment. Under what circumstances

does a supervised classifier filter collective attention spam? For the classifier, we

adopt a decision tree based Random Forest classifier as a supervised learning method

following previous success reported in [77].
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Table 5.4: Top 10 features
Feature χ2 Value Avg Spam Avg Good

# of URLs 56,795 0.67 0.01

length of message 13,700 85.27 75.7

length of payload 11,398 46.86 48.43

# of words in payload 6,497 9.13 10.31

# of words in message 6,407 10.63 11.03

# of hashtags 3,343 1.25 1.1

# of @mentions 3,162 0.1 0.54

is retweet 2,115 0.06 0.38

has exclamation mark 1,797 0.23 0.14

has question mark 843 0.08 0.04

5.3.3.1 Feature Selection

Before building a classifier, finding good features is very important for high ac-

curacy. We build classifiers based on 10 features extracted from each message: (1)

# of URLs; (2) # of hashtags; (3) # of @mentions; (4) is a message retweeted?; (5)

does a message contain a question mark?; (6) does a message contain an exclamation

mark?; (7) the length of a message; (8) the number of words in a message; (9) the

length of a payload (again, given a message, we first remove @mention, URLs and

hashtags and call the remaining text a payload); and (10) the number of words in a

payload.

In order to measure whether each feature has power to distinguish between spam

and non-spam messages, we compute its χ2 value. If a feature has a positive χ2 value,

it will have distinguishing power. Table 5.4 presents the average χ2 values of the 10

features across 101 topics. We observed that all features have power to distinguish

between spam and non-spam messages. For example, we see that the number of

URLs per message is 0.67 for spam, but only 0.01 for non-spam messages.
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(a) Accuracy

(b) False positive rate

Figure 5.12: Evaluating Countermeasure 2: Supervised Classification. Average ac-
curacy and false positive rate reported across 101 topics.
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Table 5.5: On average, the supervised classifier countermeasure achieves 98% accu-
racy, detecting 50% of all spam messages

Topic Tr. Time Acc FP FN TSD

#SomeWhere... 2 hrs 99.09 0.003 0.247 72.43

#ThatOneEx 8 hrs 98.85 0.002 0.152 62.11

#thewayiseeit 5 hrs 99.29 0.003 0.113 47.67

#LawsMenSh... 4 hrs 99.51 0.003 0.083 49.01

#DearOOMF 11 hrs 99.42 0.001 0.231 57.39

#stupidque... 7 hrs 99.83 0 0.055 41.33

#EnoughIsE... 2 hrs 99.38 0.001 0.241 67.93

#DearHair 2 hrs 98.71 0.002 0.248 70.98

#fightingw... 6 hrs 99.4 0.001 0.092 73.04

#ThingsMen... 1 hr 99.72 0.001 0.064 81.54

#ThatHighM... 10 hrs 99.37 0.002 0.195 61.19

#TheyNeedT... 5 hrs 99.48 0.001 0.163 71.11

#YouNeedTo... 1 hr 99.24 0.001 0.216 74.89

#WhatYouSh... 3 hrs 99.19 0.001 0.324 62.35

#ThingsTha... 6 hrs 99.41 0.001 0.24 63.28

#MeAndYouC... 8 hrs 98.71 0.001 0.391 48.1

#HowToMake... 13 hrs 98.71 0.001 0.288 55.4

... ... ... ... ... ...

#FavoriteW... 4 hrs 98.32 0.004 0.401 55.41

Happy Hallo... 5 hrs 99.07 0.002 0.484 21.03

#GamesToDe... 3 hrs 97.9 0.004 0.46 47.95

#ThingsLon... 10 hrs 97.08 0.004 0.624 34.78

#ThingsOnM... 2 hrs 97.75 0.004 0.709 28.49

#6wordstor... 5 hrs 98.6 0.001 0.916 6.14

#10ThingsI... 12 hrs 98.23 0.008 0.261 48.59

#GrandThef... 1 hrs 97.23 0.003 0.769 22.52

#2011music... 10 hrs 96.6 0.008 0.682 26.17

#LiesThatA... 16 hrs 86.7 0.002 0.922 6.93

#TwitterPe... 6 hrs 99.41 0.003 0.187 64.2

#ivealways... 15 hrs 98.99 0.002 0.75 17.84

#ThingsICa... 3 hrs 98.66 0.005 0.331 54.59

#DoctorsBe... 3 hrs 97.75 0.006 0.096 76.82

#WhatILove 3 hrs 98.17 0.005 0.496 36.33

#hometowns... 5 hrs 96.97 0.013 0.344 46.61

#ThingsTha... 8 hrs 98 0.006 0.312 33.09

Average 5 hrs 97.57 0.007 0.384 50.16
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5.3.3.2 Detection Across 101 Topics

Next, we build a collective attention spam classifier over each of the 101 popular

topics and evaluate them. For each topic, we build a classifier every hour since the

topic has become popular. In total, we built 2,020 classifiers for 101 topics (i.e.,

2,020 classifiers = 101 topics * 20 classifiers). The first question is whether spam

messages detected in the early stages may accurately identify spam that follows as a

topic becomes popular. Hence, in Figure 5.12(a) we report the average classification

accuracy for training sets of varying time windows. We measure accuracy for each

topic independently and then report the average accuracy in each hour. That is, 1

hour in the x -axis means that the training set consists of messages posted within 1

hour after the topic became a trending topic (and hence, made available to spammers

as a potential target), and the testing set consists of messages posted after 1 hour.

The y-axis shows the accuracy when we use the training set to build a classifier and

predict labels of the messages in the testing set. This experiment emulates a real

deployment scenario of such a collective attention spam detector, in which partial

data is available for predicting future spam. Notice that as the training set grows in

size the classification result becomes better. Figure 5.12(b) shows the false positive

rate – indicating how many real non-spam messages are classified as spam messages

by the classifier. Overall, the false positive rate is low.

As we have discussed, however, the goal is not only to have high accuracy and

low false positives, but also to detect more spam messages as early as possible.

In Table 5.5 we present a sample of the detection results, along with the average

result across all 101 topics. Each topic’s best training time varies depending on

the volume of generated messages and the number of spam messages before the

training time. Overall, building a classifier with the first five hours’ messages gives
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us 97.57% accuracy, 0.006 FP, 0.384 FN and 50.16% total spam detected (i.e., how

many spam messages out of all spam messages in the topic a classifier detected

correctly). Not only does this countermeasure outperform the rule-based filtering

approach (50% TSD versus 20% TSD), but it has the advantage of being adaptable

to future spammer behaviors (so long as the feature set is maintained). We also

observe a high variability in the TSD across topics; some topics are easy for spam

detection (with TSD > 80%), while others are very difficult. This suggests that

our preliminary feature set could be refined to better target these difficult-to-detect

cases.

To provide a bit more insight into the performance of this countermeasure, we

show in Figure 5.13 the total spam detection percent of each topic per hour. Consid-

ering the TSD of the first topic #SomeWhereInTheHood in the red arrow from 1st

to 6th hour, its TSD values increase initially (from 0 → 72) and then progressively

decrease (from 72 → 64 → 58 → 45 → 38%). As the deployment time is delayed,

the number of spam messages and detected spam messages by the classifier decreases

since most have already been inserted into the system and viewed by users.‡

5.3.4 Combining Countermeasures

Finally, we consider the effectiveness of combining both countermeasures (rule-

based + supervised classification). Does rule-based filtering detect spam messages

that a classifier would misclassify? For this combination, we first apply the rule-based

filter and then apply the supervised classifier to the remaining messages.

Table 5.6 presents the evaluation result of the combined spam detection approach

across 101 topics, achieving 97.63% accuracy, 0.007 FP, 0.359 FN and 54.89% TSD.

We can observe that the combined approach outperformed either the rule-based

‡Note that the reason why TSD in the 1st hour is 0 in this case is because no spam messages
have been observed yet.
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(a) 1st hour (b) 2nd hour

(c) 3rd hour (d) 4th hour

(e) 5th hour (f) 6th hour

Figure 5.13: Evaluating Countermeasure 2: Supervised Classification. Figures illus-
trate the total spam detected across all 101 topics for increasing deployment times.
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Table 5.6: Combining countermeasures. We see a slight improvement in total spam
detected compared to strictly applying the supervised classifier (from 50% to 55%)

Accuracy (%) FP FN TSD (%)

97.63 0.007 0.359 54.89

filtering approach and the supervised classification approach. Compared to the su-

pervised classifier alone, the combined approach results in: accuracy is increased

by 0.06%, false negative rate decreases by 0.025 (lower is better), and total spam

detected increases by 4.73%. The false positive rate is the same in both cases.

Finally, we evaluate this combined approach from the perspective of our users

accessing collective attention information in the system. Returning to the spamness

measure (again, which indicates the prevalence of spam items in the top-k results

accessed by users), we evaluate the quality of the recency-based and relevance-based

information access approaches both with and without the combined countermeasure.

For this experiment, we assume that a user issues a topic as a query (a hashtag in

Twitter domain or a phrase) once per minute. For the recency approach, the system

returns the 10-most recently posted messages. For the relevance-based approach, the

system first retrieves all relevant messages posted within the past one hour and then

ranks messages (by grouping popular payloads, ranking by their occurrence count,

and then removing duplicates to maintain diversity). For each approach, we measure

the spamness once per minute.

Figure 5.14 shows the average spamness reduction change rate for each access

method (recency and relevance) by comparing the spamness without the combined

countermeasure (A) to the spamness with the combined countermeasure (B). The

spamness change rate is averaged across all 101 topics as (A−B)
A

. In the aggregate, we

find that the combined countermeasure reduces spamness by 59% for the recency-
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Figure 5.14: (Color) Spamness reduction change rate after applying the combined
countermeasure. Spamness falls by 59% for the recency-based approach and by 73%
for the relevance-based one.

based approach and by 73% for the relevance-based approach.

5.3.5 Summary and Discussion

Through our twofold approach – data-driven modeling coupled with evaluation

over a system trace – we have seen that social systems are extremely susceptible

to collective attention spam. With spammers accounting for only 5% of all users,

we have found that every legitimate user can be exposed to spam. At even higher

spammer penetration, the social system becomes unusable with spam dominating.

We have also seen how this threat to collective attention can be augmented through

strategically coordinated spammer behaviors to selectively push particular spam pay-

loads, increasing the exposure of legitimate users to spam content. While daunting,

we have seen preliminary evidence that carefully-crafted countermeasures may be
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effective deterrents to collective attention spam – based on high accuracy (up to

98%) and total spam detected (up to 73%) with a low false positive rate (meaning

few non-spam messages are incorrectly labeled). We found that it is possible to filter

collective attention spam messages by learning from early-age spam messages in a

topic. And since the countermeasures using rules and supervised classification are

relatively lightweight, these methods can be applied for near real-time spam filtering.

An open question is how to verify that the spam messages in the first few hours

used to bootstrap the learning approach are indeed spam. In our continuing work,

we’re considering two approaches:

• Blacklists and URL Filtering: One possible approach is filtering spam messages

by URLs because most spam messages contain URLs. In one encouraging line,

Thomas et al. [132] revealed that spammers forming major spam campaigns

have reused URLs in their spam messages. In a similar direction, Grier et al.

[49] estimated whether blacklists can filter spam on social networking sites and

found that 8% of spam messages on these sites can be filtered by blacklists.

Since new URLs are often generated and propagated through social networking

sites before these URLs are included to the blacklists, Thomas et al. [131]

proposed a real-time system that crawls URLs as they are submitted to web

services and determines whether the URLs direct to spam. Hence, there is an

opportunity to bootstrap this URL-based evidence to protect against collective

attention spam.

• Crowd Workers: Another possible approach is using crowd workers in crowd-

sourcing sites to label samples of early messages containing a popular topic. In

recent years, researchers have studied how to use crowds for such large-scale

distributed labeling tasks. Early promise has been reported in the information
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retrieval (e.g., [1]) and database communities (e.g., [40]), signaling the potential

of crowd-labels as a viable source. One possibility is to integrate a collective

attention early warning monitor akin to Bernstein’s work [9] on integrating

crowds into a word processor.

While using crowd workers to bootstrap the detection of collective attention spam

seems promising, researchers have recently identified the use of these systems to

create and propagate spam campaigns. As Thomas et al. [132] found that major

spam campaigns on Twitter are related with affiliates services such as Clickbank and

Amazon where spammers get some money when users click URLs connecting to the

affiliated service pages. Wang et al. [143] discovered that spammers have started

recruiting workers in crowdsourcing sites and ask them to propagate URLs or memes

like a phrase promoting a product or website. These human-powered spammers (in

contrast to traditional script or bot-controlled spam accounts) are potentially quite

troublesome to detect. And yet, integrating evidence from crowdsourcing sites (e.g.,

which accounts in a crowdsourcing site are linked to spammers in a social media

site) with a collective attention spam detector could provide an additional signal for

continued detection success.

5.4 Summary

In this chapter, we have presented a dual study of the robustness of social systems

to collective attention threats through both a data-driven modeling approach and

deployment over a real system trace. We have explored the resilience of large-scale

social systems to threats to collective attention, observing that relevance-based ac-

cess methods are more robust than recency-based ones and that only slight increases

in the fraction of spammers in a system can fundamentally disrupt the quality of

information. We have identified two countermeasures – rule-based filtering and su-
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pervised classification – and demonstrated their effectiveness at filtering spam during

the early development of a bursting phenomenon in a real system.
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6. TRACKING AND REVEALING CROWDSOURCED MANIPULATION∗

6.1 Introduction

Complementing our development and countermeasures to three threats – (i) social

spam; (ii) coordinated campaigns; and (iii) collective attention spam, we now inves-

tigate one emerging source of these threats. Our goal is to uncover the ecosystem of

crowdturfers.

Crowdsourcing systems have successfully leveraged the attention of millions of

“crowdsourced” workers to tackle traditionally vexing problems. From specialized

systems like Ushahidi (for crisis mapping), Foldit (for protein folding) and Duolingo

(for translation) to general-purpose crowdsourcing platforms like Amazon Mechanical

Turk and Crowdflower – these systems have shown the effectiveness of intelligently

organizing large numbers of people.

However, these positive opportunities have a sinister counterpart: large-scale

“crowdturfing,” wherein masses of cheaply paid shills can be organized to spread

malicious URLs in social media, form artificial grassroots campaigns (“astroturf”),

and manipulate search engines. For example, it has been recently reported that

Vietnamese propaganda officials deployed 1,000 crowdturfers to engage in online dis-

cussions and post comments supporting the Communist Party’s policies [104]. Sim-

ilarly, the Chinese “Internet Water Army” can be hired to post positive comments

for the government or commercial products, as well as disparage rivals [125, 148].

Mass organized crowdturfers are also targeting popular services like iTunes [22] and

attracting the attention of US intelligence operations [38]. And increasingly, these

∗Reprinted with permission from “Crowdturfers, Campaigns, and Social Media: Tracking and
Revealing Crowdsourced Manipulation of Social Media” by Kyumin Lee, Prithivi Tamilarasan, and
James Caverlee, 2013. Proceedings of the 7th International AAAI Conference on Weblogs and Social
Media, Copyright 2013 by AAAI.
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campaigns are being launched from commercial crowdsourcing sites, potentially lead-

ing to the commoditization of large-scale turfing campaigns. In a recent study of the

two largest Chinese crowdsourcing sites Zhubajie and Sandaha, Wang et al. [143]

found that ∼90% of all tasks were for crowdturfing.

Hence, in this chapter we are interested to explore the ecosystem of crowdturfers.

Who are these participants? What are their roles? And what types of campaigns

are they engaged in? Unfortunately, crowdsourcing sites typically only reveal very

limited information about each worker – like a username and a date joined – mean-

ing that detailed analysis is inherently challenging. As a result, we propose to link

workers to their activity in social media. By using this linkage, can we find crowd

workers in social media? Can we uncover the implicit power structure of crowd-

turfers? Can we automatically distinguish between the behaviors of crowdturfers

and regular social media users? Toward answering these questions, we make the

following contributions in this chapter:

• We first analyze the types of malicious tasks and the properties of requesters

and workers on Western crowdsourcing sites such as Microworkers.com, Short-

Task.com and Rapidworkers.com. Previous researchers have investigated Chinese-

based crowdsourcing sites; to our knowledge this is the first study to focus

primarily on Western crowdsourcing sites.

• Second, we propose a framework for linking tasks (and their workers) on crowd-

sourcing sites to social media, by monitoring the activities of social media par-

ticipants on Twitter. In this way, we can track the activities of crowdturfers

in social media where their behavior, social network topology, and other cues

may leak information about the underlying crowdturfing ecosystem.

• Based on this framework, we identify the hidden information propagation struc-
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ture connecting these workers in social media, which can reveal the implicit

power structure of crowdturfers identified on crowdsourcing sites. Specifically,

we identify three classes of crowdturfers – professional workers, casual work-

ers, and middlemen – and we demonstrate how their roles and behaviors are

different in social media.

6.2 Analysis of Crowdturfing Tasks and Participants

In this section, we begin our study through an examination of the different types

of crowdturfing campaigns that are posted in Western crowdsourcing sites and study

the characteristics of both requesters (who post jobs) and workers (who actually

perform the jobs).

We collected 505 campaigns by crawling three popular Western crowdsourcing

sites that host clear examples of crowdturfing campaigns: Microworkers.com, Short-

Task.com, and Rapidworkers.com during a span of two months in 2012. Almost all

campaigns in these sites are crowdturfing campaigns, and these sites are active in

terms of number of new campaigns. Note that even though Amazon Mechanical Turk

is one of the most popular crowdsourcing sites, we excluded it in our study because it

has only a small number of crowdturfing campaigns and its terms of service officially

prohibits the posting of crowdturfing campaigns.† For the 505 sampled campaigns,

each has multiple tasks, totaling 63,042 tasks.

6.2.1 Types of Crowdturfing Campaigns

Analyzing the types of crowdturfing campaigns available in crowdsourcing sites

is essential to understand the tactics of the requesters. Hence, we first manually

grouped the 505 campaigns into the following five categories:

†Perhaps surprisingly, Microworkers.com is ranked by Alexa.com at the 4,699th most popular
website while Amazon Mechanical Turk is ranked 7,173.
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• Social Media Manipulation [56%]: The most popular type of campaign targets

social media. Example campaigns request workers to spread a meme through

social media sites such as Twitter, click the “like” button of a specific Facebook

profile/product page, bookmark a webpage on Stumbleupon, answer a question

with a link on Yahoo! Answers, write a review for a product at Amazon.com,

or write an article on a personal blog. An example campaign is shown in

Figure 6.1, where workers are requested to post a tweet including a specific

URL.

Figure 6.1: An example social media manipulation campaign

• Sign Up [26%]: Requesters ask workers to sign up on a website for several

reasons, for example to increase the user pool, to harvest user information like

name and email, and to promote advertisements.

• Search Engine Spamming [7%]: For this type of campaign, workers are asked

to search for a certain keyword on a search engine, and then click the specified

link (which is affiliated with the campaign’s requester), toward increasing the

rank of the page.

• Vote Stuffing [4%]: Requesters ask workers to cast votes. In one example, the

requester asked workers to vote for “Tommy Marsh and Bad Dog” to get the
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best blue band award in the Ventura County Music Awards (which the band

ended up winning!).

• Miscellany [7%]: Finally, a number of campaigns engaged in some other ac-

tivity: for example, some requested workers to download, install, and rate a

particular software package; others requested workers to participate in a survey

or join an online game.

We see that most crowdturfing campaigns target social media; for this reason, we

will return in the following section with a framework for harvesting user activity in

social media for further exploring the ecosystem of crowdturfing.

6.2.2 Requesters and Workers

We now turn to an analysis of the requesters who have posted these jobs and

the workers who have actually completed them. Since this type of information is

potentially quite revealing, both ShortTask.com and Rapidworkers.com do not reveal

any information about their requesters and workers (aside from username). Luckily,

Microworkers.com does provide payment information, country of origin, and other

detailed characteristics of both requesters and workers. Hence, we collected 144

requesters’ profiles and 4,012 workers’ profiles from Microworkers.com – where all

campaigns in our sample data are crowdturfing campaigns and other researchers have

found that 89% of campaigns hosted at Microworkers.com are indeed crowdturfing

[143].

6.2.2.1 Worker Characteristics

First, we analyzed the workers’ profile information consisting of the country,

account longevity, number of tasks done and profit (how much they have earned).

We found that the workers are from 75 countries. Figure 6.2(a) shows the top-10
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Figure 6.2: Top 10 countries of workers and requesters

Table 6.1: Characteristics of crowdturfing workers
# of Tasks Total Earned ($) Longevity (day)

Max 24,016 3,699 1,215

Avg 738 117 368

Median 166 23 320

Min 10 1 5

countries which have the highest portion of workers. 83% of the workers are from

these countries. An interesting observation is that a major portion of the workers in

Microworkers.com are from Bangladesh – where 38% workers (1,539 workers) come

from – whereas in Amazon Mechanical Turk over 90% workers are from the United

States and India [119].

The 4,012 workers have completed 2,962,897 tasks and earned $467,453 so far,

which suggests the entirety of the crowdturfing market is substantial. Interestingly,

the average price per task is higher on a crowdturfing site (for Microworkers.com, the
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average is $0.51) than on the legitimate Amazon Mechanical Turk where 90 percent

of all tasks pay less than $0.10 [58].

Table 6.1 presents the maximum, average, median and minimum number of tasks

done, how much they have earned, and the account longevity for the sampled workers.

We observe that there are professional workers who have earned reasonable money

from the site to survive. For example, a user who earned $3,699 for slightly more than

3 years (1,215 days) lives in Bangladesh where the GNI (Gross National Income) per

capita is $770 in 2011 as estimated by the World Bank [134]. Surprisingly, she has

earned even more money per year ($1,120) than the average income per year ($770)

of a person in Bangladesh.

6.2.2.2 Requester Characteristics

Next, we examine the characteristics of those who post the crowdturfing jobs.

We found that requesters are from 31 countries. Figure 6.2(b) shows the top-

10 countries which have the highest portion of requesters. Interestingly, 55% of

all requesters are from the United States, and 70% of all requesters are from the

English-speaking countries: United States, UK, Canada, and Australia. We can see

an imbalance between the country of origin of requesters and of the workers, but that

the ultimate goal is to propagate artificial content through the English-speaking web.

The requesters’ profile information reveals their account longevity, number of paid

tasks and expense/cost for campaigns. As shown in table 6.2, many workers have

created multiple campaigns with lots of tasks (on an average – 68 campaigns and

7,030 paid tasks). The most active requester in our dataset initiated 4,137 campaigns

associated with 455,994 paid tasks. In other words, he has spent a quarter million

dollar ($232,557) – again a task costs $0.51 on an average. In total, 144 requesters

have created 9720 campaigns with 1,012,333 tasks and have paid a half million dollars
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Table 6.2: Characteristics of crowdturfing requesters
# of campaigns # of paid tasks Longevity (day)

Max 4,137 455,994 1,091

Avg 68 7,030 329

Median 7 306 259

Min 1 0 3

Crowdsourcing Sites Perform crowdturfing Social Media Site

Requester

Worker

Middleman

Worker 
(Pro + Casual)

Non-Worker

M
M

Figure 6.3: Linking crowdsourcing workers to social media

($516,289). This sample analysis shows us how the dark market is big enough to

tempt users from the developing countries to become workers.

6.3 Down the Rabbit Hole: Linking Crowdsourcing Workers to Social Media

So far, we have seen that most crowdturfers target social media and that the

crowdturfing economy is significant: with hundreds of thousands of tasks and dollars

supporting it, based on just a fairly small sample. We now propose a framework

for beginning a more in-depth study of the ecosystem of crowdturfing by linking

crowdsourcing workers to social media. Specifically, we focus on Twitter-related

campaigns and their workers. Of the social media targets of interest by crowdturfers,

Twitter has the advantage of being open for sampling (in contrast to Facebook and
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others). Our goal is to better understand the behavior of Twitter workers, how they

are organized, and to find identifying characteristics so that we may potentially find

workers “in the wild”.

6.3.1 Following Crowd Workers onto Twitter

Based on our sample of 505 campaigns, we found that 65 specifically targeted

Twitter. Of these, there were two types:

• Tweeting about a Link: These tasks ask the Twitter workers to post a tweet

including a specific URL (as in the example in Figure 6.1). The objective is

to spread a URL to other Twitter users, and thereby increase the number of

clicks on the URL.

• Following a Twitter User: The second task type requires a Twitter worker

to follow a requester’s Twitter account. These campaigns can increase the

visibility of the requester’s account (for targeting larger future audiences) as

well as impacting link analysis algorithms (like PageRank and HITS) used

in Twitter search or in general Web search engines that incorporate linkage

relationships in social media.

Next we identified the Twitter accounts associated with these workers (see the

overall framework in Figure 6.3). For campaigns of the first type, we used the Twit-

ter search API to find all Twitter users who had posted the URL. For campaigns

of the second type, we identified all users who had followed the requester’s Twitter

account. In total, we identified 2,864 Twitter workers. For these workers, we ad-

ditionally collected their Twitter profile information, most recent 200 tweets, and

social relationships (followings and followers). The majority of the identified Twit-

ter workers participated in multiple campaigns; we assume that the probability that
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Table 6.3: Twitter dataset
Class |User Profiles| |Tweets|

Workers 2,864 364,581

Non-Workers 9,878 1,878,434

they tweeted a requester’s URL or followed a requester’s account by chance is very

low.

In order to compare how these workers’ properties are different from non-workers,

we randomly sampled 10,000 Twitter users. Since we have no guarantees that these

sampled users are indeed non-workers, we monitored the accounts for one month to

see if they were still active and not suspended by Twitter. After one month, we

found that 9,878 users were still active. In addition, we randomly selected 200 users

out of the 9,878 users and manually checked their profiles, and found that only 6 out

of 200 users seemed suspicious. Based on these verifications, we labeled the 9,878

users as non-workers. Even though there is a chance of a false positive in the non-

worker set, the results of any analysis should give us at worst a lower bound since

the introduction of possible noise would only degrade our results.

The basic property information of the workers and non-workers are shown in

Table 6.3. In total, we collected 2,864 twitter workers’ profile information, their

364,581 messages and their social relationships, and 9,878 twitter non-workers’ profile

information, their 1,878,434 messages and their social relationships.

6.3.2 Analysis of Twitter Workers: By Profile, Activity, and Linguistic

Characteristics

In this section we conduct a deeper analysis regarding the Twitter workers and

non-workers based on their profile information, activity within Twitter, and linguistic

information revealed in their tweets. Are workers on Twitter fundamentally different

146



(a) |@username| in tweets / |recent days|

(b) |rt| in tweets / |tweets|

(c) |links| in RT tweets / |RT tweets|

Figure 6.4: Three activity-based characteristics of workers (red line with stars) and
non-workers (blue line with circles). Workers tend to mention few other users, but
retweet more often, and include links more often than non-workers.
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Table 6.4: Properties of workers
|Followings| |Followers| |Tweets|

Min. 0 0 0

Max. 300,385 751,382 189,300

Avg. 5,519 6,649 2,667

Median 429 213 194

Table 6.5: Properties of non-workers
|Followings| |Followers| |Tweets|

Min. 0 0 0

Max. 50,496 1,097,911 655,556

Avg. 511 1,000 10,128

Median 244 231 4,018

from regular users? And if so, in what ways? Note that our analysis that follows

considers the entirety of the characteristics of these workers and not just the messages

associated with crowdturfing campaigns.

First, we compare profile information of workers and non-workers, especially fo-

cusing on the number of following, the number of followers, and the number of tweets.

In Table 6.4 and 6.5, we can clearly observe that the average number of followings

and followers of the workers are much larger than non-workers, but the average num-

ber of tweets of the workers is smaller than non-workers. Interestingly, workers are

well connected with other users, and potentially their manipulated messages will be

exposed to many users.

Next, we study how workers’ activity-based characteristics differ from non-workers.

We analyzed many activity-based features, including the average number of links per

tweet, the average number of hashtags per tweet, and the average number of @user-

name per tweet. In Figure 6.4, we report the cumulative distribution function for

three clearly distinct activity-based characteristics: the average number of @user-
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names per day during the recent days (in this case, the past month), the average

number of retweet message per tweet, and the average number of links per retweet

message.

We can clearly observe that workers rarely communicate with other users via

@username while non-workers are often communicating with other users. This dis-

tinctive behavior makes sense because workers mostly post a message containing a

meme or a URL instead of personally talking to another user. However, workers

often retweet messages so that these messages may reach their followers and include

links more often than non-workers.

Next, we study the linguistic characteristics of the tweets posted by workers

and non-workers. Do workers engage in different language use? To answer this

question, we used the Linguistic Inquiry and Word Count (LIWC) dictionary, which

is a standard approach for mapping text to psychologically-meaningful categories

[102]. LIWC-2001 defines 68 different categories, each of which contains several

dozens to hundreds of words. Given each user’s tweets, we measured his linguistic

characteristics in the 68 categories by computing his score of each category based

on LIWC dictionary. First we counted the total number of words in his tweets (N ).

Next we counted the number of words in his tweets overlapped with the words in

each category i on LIWC dictionary (Ci). Then, we computed his score of a category

i as Ci/N . In Figure 6.5, we show the cumulative distribution functions for three of

the most distinguishing linguistic characteristics: Swearing, Anger, and Use of 1st

Person Singular. Interestingly, we see that workers tend to swear less, use anger less

(e.g., they don’t use words like “hate” or “pissed”), and use the 1st-person singular

less than non-workers. That is, this linguistic analysis shows that workers are less

personal in the messages they post than are non-workers. On one hand, this seems

reasonable since workers intend to spread pre-defined manipulated content and URLs
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(a) Swearing in LIWC

(b) Anger in LIWC

(c) 1st Person Singular

Figure 6.5: Three linguistic characteristics of workers (red line with stars) and non-
workers (blue line with circles). Workers tend to swear less, use anger less, and use
the 1st-person singular less than non-workers.
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Figure 6.6: Network structure of all workers

(and hence worker tweets should not focus on themselves). However, recall that our

data collection includes for each worker all of their recent tweets and not just their

crowdturfing-related tweets; so this result may be surprising that the entirety of a

worker’s tweets show such a clear linguistic division from non-workers.

6.3.3 Network Structure of Twitter Workers

We next explore the network structure of workers by considering the social net-

work topology of their Twitter accounts. What does this network look like? Are

workers connected? More generally, can we uncover the implicit power structure of

crowdturfers?

6.3.3.1 A Close-Knit Network

We first analyzed the Twitter workers’ following-follower relationship to check

whether they were connected to each other. Figure 6.6 depicts the induced network
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structure, where a node represents a worker and an edge between two nodes rep-

resents that at least one of workers is following the other (in some cases both of

them follow each other). Surprisingly, we observed that some workers are densely

connected to each other, forming a closely knit network. We measured the graph

density of the workers as |E|
|V |×|V−1| to compare whether these workers form a denser

network than the average graph density of users in Twitter. Confirming what visual

observation of the network indicates, we found that the workers’ graph density was

0.0039 while Yang et al. [158] found the average graph density of users on Twitter

to be 0.000000845, many orders of magnitude less dense.

6.3.3.2 Hubs and Authorities

We next examine who in the network is significant. Concretely, we adopted the

well-known HITS [67] algorithm to identify the hubs (workers who follow many other

workers) and authorities (workers who are followed by many other workers) of the

network:

−→a ← AT−→h
−→
h ← A−→a

where
−→
h and −→a denote the vectors of all hub and all authority scores, respectively.

A is a square matrix with one row and one column for each worker (user) in the

worker graph. If there is an edge between worker i and worker j, the entry Aij is 1

and otherwise 0. We iterate the computation of
−→
h and −→a until both

−→
h and −→a are

converged. We initialized each worker’s hub and authority scores as 1/n – where n

is the number of workers in the graph – and then computed HITS until the scores

converged.
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Table 6.6 and 6.7 present the top-10 hubs and top-10 authorities in the workers’

following-follower graph. Interestingly, most top-10 hubs are top-10 authorities. It

means that these workers are very well connected with other workers, following them

and followed by them. The top hub and top authority is NannyDotNet, a user who

has been both a requester of crowdturfing jobs and a worker on the jobs of others. The

other nine workers have a large number of followings and followers. This behavior is

similar with “social capitalists”, who are eager to follow other users and increase a

number of followers as noted in [45]. Even Woman health’s profile description shows

“Always follow back within 24 hours”, indicating her intention increasing a number

of followers. Interestingly, their Twitter profiles are fully filled, sharing what they

are working for or why they are using Twitter, location information and a profile

photo.

Table 6.6: Top-10 hubs of the workers
Screen Name |Followings| |Followers| |Tweets|
NannyDotNet 1,311 753 332

Woman health 210,465 207,589 33,976

Jet739 290,624 290,001 22,079

CollChris 300,385 300,656 8,867

familyfocusblog 40,254 39,810 22,094

tinastullracing 171,813 184,039 73,004

drhenslin 98,388 100,547 10,528

moneyartist 257,773 264,724 1,689

pragmaticmom 30,832 41,418 21,843

Dede Watson 37,397 36,833 47,105

6.3.3.3 Professional Workers

In our examination of workers, we noticed that some workers engaged in many

jobs, while others only participated in one or two. We call these workers who oc-
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Table 6.7: Top-10 authorities of the workers
Screen Name |Followings| |Followers| |Tweets|
NannyDotNet 1,311 753 332

Woman health 210,465 207,589 33,976

CollChris 300,385 300,656 8,867

familyfocusblog 40,254 39,810 22,094

tinastullracing 171,813 184,039 73,004

pragmaticmom 30,832 41,418 21,843

Jet739 290,624 290,001 22,079

moneyartist 257,773 264,724 1,689

drhenslin 98,388 100,547 10,528

ceebee308 283,301 296,857 169,061

casionally participate “casual workers”, while we refer to workers in three or more

campaigns as “professional workers”. Since these professional workers often worked

for multiple campaigns, understanding their behaviors is important to discern the

characteristics of the quasi-permanent crowdturfing workforce.

Of the 2,864 workers in total, there were 187 professional workers who participated

in at least 3 Twitter campaigns in our collection. Figure 6.7 depicts their network

structure. We can clearly observe that these professional workers are also densely

connected. Surprisingly, their graph density is 0.028 which is even higher than all

workers’ graph density (0.0039).

So far, we only looked at the relationship between these professional workers

in their following-follower relationship (i.e., the restricted graph). Next we extend

the following-follower relationship to all users (i.e., the open graph including all

followings and followers of these professional workers). Table 6.8 and 6.9 present

top-10 followings and followers of these professional workers, respectively.

One observation from Table 6.8 is that these professional workers commonly

retweeted messages generated by the two users named Alexambroz and 0boy. We

conjecture that these users are middlemen who create messages to promote a web-
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Figure 6.7: Network structure of professional workers

site or a meme. Since the professional workers follow the middlemen, they will

receive the messages automatically (if a user A follows a user B, A will receive B’s

postings/messages automatically in Twitter) and retweet them to their followers so

that the messages are exposed to these workers’ followers. The middlemen and pro-

fessional workers strategically use Twitter as a tool to effectively propagate targeted

messages. In another perspective, since these professional workers follow the mid-

dlemen and retweet the middlemen’s messages, the middlemen get higher rank in a

link analysis method such as PageRank [14] and HITS [67]. As the result, the mid-
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Table 6.8: Top-10 followings of the professional workers
Screen Name Fre. |Followings| |Followers| |Tweets|
Alexambroz 52 53 51,463 307

Talenthouse 51 14,369 99,880 13,356

Thestoryvine 47 230 127 97

Nettime 42 307 401 1,305

0boy 41 847 108,929 10,827

TheRealAliLee 38 323 9,060 1,509

consumeraware 37 10 845 60

WebsiteBuilderr 36 509 235 81

Ijsfondue 35 100 900 98

ProveeduriaT 33 87 171 312

Table 6.9: Top-10 followers of the professional workers
Screen Name Fre. |Followings| |Followers| |Tweets|
TrueTobacco 29 1,893 866 150

Honest Solution 28 9,759 14,620 440

Choroibati 27 1,676 567 77

Mostafizurrr 26 34,229 36,809 1,612

YourSjop 24 3,610 3,236 6

SunnieBrees 23 89 56 7

TeamHustleBunny 21 88,331 99,038 9,129

Tarek0593 21 1,055 546 2,302

TinyGems 21 112,417 102,181 8,704

Checkdent 20 2,923 4,002 334

dlemen’s profiles and messages will be ranked in the top position in a search result

returned by a search engine like Google. These middlemen and professional workers

are difficult to detect as evidences by the long lifespan of their accounts, compared

with traditional Twitter spammers. For example, while middlemen’s average lifespan

and professional workers’ average lifespan in our dataset are 1,067 days and 614 days,

respectively (which are similar or even longer than regular users), twitter spammers’

average lifespan is 279 days [77].

Table 6.9 shows the top-10 followers of the professional workers. Honest Solution,
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Choroibati, Mostafizurrr and Tarek0593 followed many professional workers and they

are also professional workers in our dataset, demonstrating that these professional

workers are connected to each other. Why? We conjecture that they can increase

their number of followers and pretend to be legitimate users. Another reason is

that some crowdturfing tasks require a minimum number of followers to become

eligible workers for certain tasks (e.g., at least larger than 100 followers) because

these requesters want their URLs to reach more users. In addition, these professional

workers are followed by some business accounts and random user accounts who will

be potential victims.

6.3.4 Digging Deeper: Middlemen

We have seen that workers (and especially, professional workers) often retweet

middlemen’s messages so that more people including the followers of the workers

were exposed to the messages. This observation naturally led us to study how to

reveal middlemen. First, we investigated the messages of 187 professional workers

and extracted retweeted messages containing a URL because the intention of mid-

dlemen and professional workers for spreading messages is not only to share the

message, but also to tempt the message recipient (e.g., a follower of a professional

worker) to visit a web page of the URL. Second, we counted how many professional

workers retweeted each one of the extracted retweeted messages. Third, we sorted

the extracted retweeted messages by descending order of the number of frequen-

cies. Then, extracted an origin, who is a user (a potential middleman) creating and

posting the original message of a retweeted message, from each retweeted message.

Our hunch is that the more professional workers retweeted an origin’s message, the

higher probability to become a middleman the origin has because these professional

workers make profit by posting or retweeting an astroturfing (artificial) meme or
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Table 6.10: Top-10 middlemen with the number of professional workers
Middleman |Pro-Workers| |Followings| |Followers|
0boy 139 847 108,929

louiebaur 95 285 68,772

hasai 63 6,360 41,587

soshable 57 956 22,676

virtualmember 56 5,618 5,625

scarlettmadi 55 5,344 26,439

SocialPros 54 10,775 22,985

cqlivingston 54 6,377 28,556

huntergreene 49 27,390 25,207

TKCarsitesInc 48 1,015 18,661

message, so if many professional workers retweeted an origin’s message, he will be a

middleman. By using our approach, we found 575 potential middlemen, and one or

two professional workers retweeted messages of 486 out of 575 potential middlemen.

Because sometimes a few professional workers retweet the same user’s message by

chance, we considered the potential middlemen, whose messages are retweeted by

at least 10 professional workers, the middlemen. Then there were 41 middlemen.

Table 6.10 shows the top-10 middlemen whose messages are retweeted the most by

the professional workers.

Interestingly, the top-10 middlemen have a large number of followers (5,625 ∼

108,929), and most of the middlemen disclosed they are interested in social media

strategy, social marketing and SEO on their profiles. hasai and SocialPros have

the same homepage on their profiles which is http://hasai.com/ advertising social

media marketing. Several middlemen opened their location as Orange County, CA.

Some of these middlemen also often retweeted other middlemen’s messages. These

observations led us to conclude that some of these middlemen accounts are connected

or controlled by the same people/organization.

Next, we measured which messages are most retweeted by professional workers,
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and 10 most retweeted messages are shown in Table 6.11. Nine messages except

the first one have promoting and advertising flavors. We conjecture that sometimes

middlemen post regular messages like the first message in the table and professional

workers retweet them so that they can pretend a regular user, avoid spam detection

from Twitter Safety team and be alive longer on Twitter.

Table 6.11: 10 most retweeted messages by professional workers
Freq. Message

29 RT @alexambroz: RT @Twitter for our beautiful planet #earth with #peace
and #happiness to all people. One retweet could change Our world.

23 RT @viawomen: Check out the great pregnancy info on
http://t.co/5NiVbh6v. Love the celeb parenting blog posts! #preg-
nancy #pregnancysy ...

22 RT @BidsanityDeals: Bid now! Auctions are ending. Get DVDs, gift cards,
jewelry, IPad accessories, books, handmade goods, and much more! ...

20 RT @ik8sqi: Family Tracker free iPhone app lets you track friends and family,
even shows past GPS locations as breadcrumbs on map http:/ ...

17 RT @0boy: Here’s an interesting marketing idea with lots of #flavor
http://t.co/EPl24WZ2 #BucaVIP

17 RT @JeremyReis: 7 Reasons to Sponsor a Child - http://t.co/weg0Tq0y
#childsponsorship @food4thehungry

17 RT @louiebaur: StumbleUpon Paid Discovery Is Getting Massive
http://t.co/OvYJv2ne via @0boy

16 RT @evaporizing: #ECigarette Save EXTRA @v2cigs today
http://t.co/BNbJl1cX use V2 Cigs Coupon EVAPE15 or EVAPE10
plus 20% Memorial Day S ...

16 RT @evaporizing: The Best #ECIGARETTE Deal Of The YEAR
Today Only @V2Cigs 4th July Sale + Coupon EVAPE15 40% OFF
http://t.co/yrrhTYDy

15 RT @DoYouNeedaJob: Internet Millionaire Looking For Students! Give me
30 days & I will mold you into my next success story!...Visit http ...

In summary, by finding professional workers we can potentially find middlemen,

and by finding the most retweeted messages from professional workers we can poten-

tially find hidden workers who retweeted the messages many times.
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6.4 Summary

In this chapter, we have presented a framework for “pulling back the curtain” on

crowdturfers to reveal their underlying ecosystem. We have analyzed the types of

malicious tasks and the properties of requesters and workers on Western crowdsourc-

ing sites. By linking tasks and their workers on crowdsourcing site to social media,

we have traced the activities of crowdturfers in social media and have identified three

classes of crowdturfers – professional workers, casual workers, and middlemen – and

their relationship structure connecting these workers in social media. We have re-

vealed that these workers’ profile, activity and linguistic characters are different from

regular social media users.
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7. CONCLUSIONS AND FUTURE WORK

In this chapter, we present the conclusion of this dissertation and future research

opportunities.

7.1 Conclusion

In the recent years, large-scale social systems including Web-based social net-

works, online social media sites and Web-scale crowdsourcing systems have contin-

ued to grow and to become popular with the number of users who generate, share

and consume information. But the openness and reliance of users caused malicious

participants can easily participate in these systems and threaten information quality

in these systems.

In this dissertation, we have developed algorithms and architectures to improve

information quality for the reliable and secure use of these systems. We identified

three classes of threats to these systems: (i) content pollution by social spammers, (ii)

coordinated campaigns for strategic manipulation, and (iii) threats to collective at-

tention. To combat these threats, we propose four inter-related methods for detecting

evidence of these threats, mitigating their impact, and improving the quality of in-

formation in social systems. We augment this three-fold defense with an exploration

of their origins in “crowdturfing” – a sinister counterpart to the enormous positive

opportunities of crowdsourcing. In particular, this dissertation research made four

unique contributions:

First, we have presented the design and real-world evaluation of a novel social

honeypot-based approach to social spam detection. Our overall research goal is to

investigate techniques and develop effective tools for automatically detecting and

filtering spammers who target social systems. By focusing on two different commu-
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nities, we have seen how the general principles of (i) social honeypot deployment,

(ii) robust spam profile generation, and (iii) adaptive and ongoing spam detection

can effectively harvest spam profiles and support the automatic generation of spam

signatures for detecting new and unknown spam. Our empirical evaluation over

both MySpace and Twitter has demonstrated the effectiveness and adaptability of

the honeypot-based approach to social spam detection. In addition, we have con-

ducted seven-month long study to automatically detect and profile content polluters

on Twitter with the extension of the social honeypot approach. During the study we

were able to lure approximately 36,000 abusive Twitter accounts into following our

collection of social honeypots. We have seen how these content polluters reveal key

distinguishing characteristics in their behavior, leading to the development of robust

classifiers.

Second, we have investigated the problem of campaign detection in social media.

We have proposed and evaluated an efficient content-driven graph-based framework

for identifying and extracting campaigns from the massive scale of real-time social

systems. We have found six campaign types (spam, promotion, template, celebrity,

news and babble), and analyzed temporal behaviors of various campaign types.

Third, we have presented a dual study of the robustness of social systems to

collective attention threats through both a data-driven modeling approach and de-

ployment over a real system trace. We have explored the resilience of large-scale

social systems to threats to collective attention, observing that relevance-based ac-

cess methods are more robust than recency-based ones and that only slight increases

in the fraction of spammers in a system can fundamentally disrupt the quality of

information. We have identified two countermeasures – rule-based filtering and su-

pervised classification – and demonstrated their effectiveness at filtering spam during

the early development of a bursting phenomenon in a real system.
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Finally, we have presented a framework for “pulling back the curtain” on crowd-

turfers to reveal their underlying ecosystem. We have analyzed the types of malicious

tasks and the properties of requesters and workers on Western crowdsourcing sites.

By linking tasks and their workers on crowdsourcing site to social media, we have

traced the activities of crowdturfers in social media and have identified three classes

of crowdturfers – professional workers, casual workers, and middlemen – and their re-

lationship structure connecting these workers in social media. We have revealed that

these workers’ profile, activity and linguistic characters are different from regular

social media users.

7.2 Future Research Opportunities

We have two future research plans:

• New Types of Collective Attention Threats: Recently, location based social

networks (e.g., Foursquare and Google Latitude) have grown rapidly in terms

of the number of users and check-ins, and have become very popular. They

allow users to share their locations with friends, and post a comment on a

venue. Foursquare in January 2013 has reached over 30 millions users who

have created over 3 billion check-ins [39]. But, with the growth and popularity

of location based social networks, there is an emerging threat to these networks

– geo-spatial collective attention spam. In Chapter 5, we have observed that

collective attention spam relies on users themselves to seek out the content

where the spam will be encountered. In the direction of complementing our

work on collective attention spam, we are interested in studying an investigation

of alternative types of collective attention threats, including manipulations of

the geo-spatial footprint and temporal dynamics of collective attention (e.g.,

to selectively “push” certain topics in particular locations or at specific times).
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• Adversarial Propaganda: These days social systems have become one of the

main targets for online marketers and government workers to propagate mis-

leading information or persuade users regarding a product or a government.

For example, people in an anti-US government may spread rumors and mis-

information to US residents, some of whom may eventually believe that the

misinformation is true. Understanding underlying ecosystem of adversarial

propaganda and identifying it in these social systems has become important.

In our previous work investigated in Chapter 4, we have found inorganic cam-

paigns (e.g., spam and promotion). We are interested in studying an investiga-

tion of adversarial propaganda, extending our work in campaign detection to

consider models and methods of mass interpersonal persuasion.
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Blaž Zupan. Spam filtering using statistical data compression models. J. Mach.

Learn. Res., 7:2673–2698, 2006.

[13] Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, 1996.

[14] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual

web search engine. In Proceedings of the 7th International Conference on World

Wide Web, pages 107–117. Elsevier Science Publishers B. V., 1998.

166



[15] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.

Syntactic clustering of the web. Comput. Netw. ISDN Syst., 29(8-13):1157–

1166, 1997.

[16] Garrett Brown, Travis Howe, Micheal Ihbe, Atul Prakash, and Kevin Borders.

Social networks and context-aware spam. In Proceedings of the 2008 ACM

Conference on Computer Supported Cooperative Work, pages 403–412. ACM,

2008.

[17] Carlos Castillo, Marcelo Mendoza, and Barbara Poblete. Information credibil-

ity on twitter. In Proceedings of the 20th International Conference on World

Wide Web, pages 675–684. ACM, 2011.

[18] James Caverlee and Ling Liu. Countering web spam with credibility-based link

analysis. In Proceedings of the 26th Annual ACM Symposium on Principles of

Distributed Computing, pages 157–166. ACM, 2007.

[19] James Caverlee, Ling Liu, and Steve Webb. Socialtrust: tamper-resilient trust

establishment in online communities. In Proceedings of the 8th ACM/IEEE-CS

Joint Conference on Digital Libraries, pages 104–114. ACM, 2008.

[20] James Caverlee and Steve Webb. A large-scale study of myspace: Observa-

tions and implications for online social networks. In Proceedings of the 2nd

International Conference on Weblogs and Social Media. AAAI, 2008.

[21] CCTV. Uncovering online promotion. http://news.cntv.cn/china/

20101107/102619.shtml, November 2010.

[22] Casey Chan. How a fake erotic fiction ebook hit the top 5 of

itunes. http://gizmodo.com/5933169/how-a-fake-crowdsourced-erotic-

ebook-hit-the-top-5-of-itunes, August 2012.

167



[23] Zhicong Cheng, Bin Gao, Congkai Sun, Yanbing Jiang, and Tie-Yan Liu. Let

web spammers expose themselves. In Proceedings of the 4th ACM International

Conference on Web Search and Data Mining, pages 525–534. ACM, 2011.

[24] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where you tweet: a

content-based approach to geo-locating twitter users. In Proceedings of the 19th

ACM International Conference on Information and Knowledge Management,

pages 759–768. ACM, 2010.

[25] Abdur Chowdhury, Ophir Frieder, David Grossman, and Mary Catherine Mc-

Cabe. Collection statistics for fast duplicate document detection. ACM Trans.

Inf. Syst., 20(2):171–191, 2002.

[26] W. W. Cohen. Learning rules that classify e-mail. In Proceedings of 1996

AAAI Spring Symposium on Machine Learning and Information Access, pages

18–25. AAAI Press, 1996.

[27] Gordon V. Cormack. Email spam filtering: A systematic review. Found. Trends

Inf. Retr., 1(4):335–455, 2008.

[28] Microsoft Corporation. Exchange intelligent message filter. http://technet.

microsoft.com/en-us/exchange/bb288484.aspx, 2003.

[29] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma.

Adversarial classification. In Proceedings of the 10th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, pages 99–108.

ACM, 2004.

[30] Anirban Dasgupta, Kunal Punera, Justin M. Rao, and Xuanhui Wang. Impact

of spam exposure on user engagement. In Proceedings of the 21st USENIX

Conference on Security Symposium. USENIX Association, 2012.

168



[31] Brian D. Davison. Recognizing nepotistic links on the Web. In Proceedings of

the AAAI-2000 Workshop on AI for Web Search, pages 23–28. AAAI, 2000.

[32] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing

on large clusters. In Proceedings of the 6th Symposium on Operating System

Design and Implementation, pages 137–150. USENIX Association, 2004.

[33] A.P. Dempster, N.M. Laird, D.B. Rubin, et al. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), 39(1):1–38, 1977.

[34] Isabel Drost and Tobias Scheffer. Thwarting the nigritude ultramarine: Learn-

ing to identify link spam. In Proceedings of the 16th European Conference on

Machine Learning, pages 96–107. Springer-Verlag, 2005.

[35] Facebook. Key facts. http://newsroom.fb.com/Key-Facts, December 2012.

[36] Adrienne Felt and David Evans. Privacy protection for social networking plat-

forms. In Web 2.0 Security and Privacy 2008 in Conjunction with 2008 IEEE

Symposium on Security and Privacy, 2008.

[37] Dennis Fetterly, Mark Manasse, and Marc Najork. Spam, damn spam, and

statistics. In Proceedings of the 7th International Workshop on the Web and

Databases, pages 1–6, 2004.

[38] Nick Fielding and Ian Cobain. Revealed: US spy operation that manipulates

social media. http://www.guardian.co.uk/technology/2011/mar/17/us-

spy-operation-social-networks, March 2011.

[39] Foursquare. About foursquare. https://foursquare.com/about/, January

2013.

169



[40] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and

Reynold Xin. Crowddb: answering queries with crowdsourcing. In Proceedings

of the 2011 ACM SIGMOD International Conference on Management of Data,

pages 61–72. ACM, 2011.

[41] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–

139, 1997.

[42] Liz Gannes. Estimate: 20% of web videos are spam. http://gigaom.com/

2009/06/10/estimate-20-of-web-videos-are-spam/, June 2009.

[43] Hongyu Gao, Yan Chen, Kathy Lee, Diana Palsetia, and Alok Choudhary.

Towards online spam filtering in social networks. In Proceedings of the 19th

Network & Distributed System Security Symposium. The Internet Society, 2012.

[44] Hongyu Gao, Jun Hu, Christo Wilson, Zhichun Li, Yan Chen, and Ben Y.

Zhao. Detecting and characterizing social spam campaigns. In Proceedings of

the 10th ACM SIGCOMM Conference on Internet Measurement, pages 35–47.

ACM, 2010.

[45] Saptarshi Ghosh, Bimal Viswanath, Farshad Kooti, Naveen Kumar Sharma,
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