101 research outputs found

    Practical Complexity Cube Attacks on Round-Reduced Keccak Sponge Function

    Get PDF
    In this paper we mount the cube attack on the Keccak sponge function. The cube attack, formally introduced in 2008, is an algebraic technique applicable to cryptographic primitives whose output can be described as a low-degree polynomial in the input. Our results show that 5- and 6-round Keccak sponge function is vulnerable to this technique. All the presented attacks have practical complexities and were verified on a desktop PC

    Improving security of lightweith SHA-3 against preimage attacks

    Get PDF
    In this article we describe the SHA-3 algorithm and its internal permutation in which potential weaknesses are hidden.  The hash algorithm can be used for different purposes, such as pseudo-random bit sequences generator, key wrapping or one pass authentication, especially in weak devices (WSN, IoT, etc.). Analysis of the function showed that successful preimage attacks are possible for low round hashes, protection from which only works with increasing the number of rounds inside the function. When the hash function is used for building lightweight applications, it is necessary to apply a small number of rounds, which requires additional security measures. This article proposes a variant improved hash function protecting against preimage attacks, which occur on SHA-3. We suggest using an additional external randomness sources obtained from a lightweight PRNG or from application of the source data permutation

    Conditional Cube Attack on Reduced-Round Keccak Sponge Function

    Get PDF
    The security analysis of Keccak, the winner of SHA-3, has attracted considerable interest. Recently, some attention has been paid to the analysis of keyed modes of Keccak sponge function. As a notable example, the most efficient key recovery attacks on Keccak-MAC and Keyak were reported at EUROCRYPT\u2715 where cube attacks and cubeattack- like cryptanalysis have been applied. In this paper, we develop a new type of cube distinguisher, the conditional cube tester, for Keccak sponge function. By imposing some bit conditions for certain cube variables, we are able to construct cube testers with smaller dimensions. Our conditional cube testers are used to analyse Keccak in keyed modes. For reduced-round Keccak-MAC and Keyak, our attacks greatly improve the best known attacks in key recovery in terms of the number of rounds or the complexity. Moreover, our new model can also be applied to keyless setting to distinguish Keccak sponge function from random permutation.We provide a searching algorithm to produce the most efficient conditional cube tester by modeling it as an MILP (mixed integer linear programming) problem. As a result, we improve the previous distinguishing attacks on Keccak sponge function significantly. Most of our attacks have been implemented and verified by desktop computers. Finally we remark that our attacks on the the reduced-round Keccak will not threat the security margin of Keccak sponge function

    Cube attacks on cryptographic hash functions

    Get PDF
    Cryptographic hash functions are a vital part of our current computer sys- tems. They are a core component of digital signatures, message authentica- tion codes, file checksums, and many other protocols and security schemes. Recent attacks against well-established hash functions have led NIST to start an international competition to develop a new hashing standard to be named SHA-3. In this thesis, we provide cryptanalysis of some of the SHA-3 candidates. We do this using a new cryptanalytical technique introduced a few months ago called cube attacks. In addition to summarizing the technique, we build on it by providing a framework for estimating its potential effectiveness for cases too computationally expensive to test. We then show that cube at- tacks can not only be applied to keyed cryptosystems but also to hash func- tions by way of a partial preimage attack. We successfully apply this attack to reduced-round variants of the ESSENCE and Keccak SHA-3 candidates and provide a detailed analysis of how and why the cube attacks succeeded. We also discuss the limits of theoretically extending these attacks to higher rounds. Finally, we provide some preliminary results of applying cube attacks to other SHA-3 candidates

    Security of the SHA-3 candidates Keccak and Blue Midnight Wish: Zero-sum property

    Get PDF
    The SHA-3 competition for the new cryptographic standard was initiated by National Institute of Standards and Technology (NIST) in 2007. In the following years, the event grew to one of the top areas currently being researched by the CS and cryptographic communities. The first objective of this thesis is to overview, analyse, and critique the SHA-3 competition. The second one is to perform an in-depth study of the security of two candidate hash functions, the finalist Keccak and the second round candidate Blue Midnight Wish. The study shall primarily focus on zero-sum distinguishers. First we attempt to attack reduced versions of these hash functions and see if any vulnerabilities can be detected. This is followed by attacks on their full versions. In the process, a novel approach is utilized in the search of zero-sum distinguishers by employing SAT solvers. We conclude that while such complex attacks can theoretically uncover undesired properties of the two hash functions presented, such attacks are still far from being fully realized due to current limitations in computing power

    TurboSHAKE

    Get PDF
    In a recent presentation, we promoted the use of 12-round instances of Keccak, collectively called “TurboSHAKE”, in post-quantum cryptographic schemes, but without defining them further. The goal of this note is to fill this gap: The definition of the TurboSHAKE family simply consists in exposing and generalizing the primitive already defined inside KangarooTwelve

    Preimage Attacks on Round-reduced Keccak-224/256 via an Allocating Approach

    Get PDF
    We present new preimage attacks on standard Keccak-224 and Keccak-256 that are reduced to 3 and 4 rounds. An allocating approach is used in the attacks, and the whole complexity is allocated to two stages, such that fewer constraints are considered and the complexity is lowered in each stage. Specifically, we are trying to find a 2-block preimage, instead of a 1-block one, for a given hash value, and the first and second message blocks are found in two stages, respectively. Both the message blocks are constrained by a set of newly proposed conditions on the middle state, which are weaker than those brought by the initial values and the hash values. Thus, the complexities in the two stages are both lower than that of finding a 1-block preimage directly. Together with the basic allocating approach, an improved method is given to balance the complexities of two stages, and hence, obtains the optimal attacks. As a result, we present the best theoretical preimage attacks on Keccak-224 and Keccak-256 that are reduced to 3 and 4 rounds. Moreover, we practically found a (second) preimage for 3-round Keccak-224 with a complexity of 2^{39.39}

    New Insights into Divide-and-Conquer Attacks on the Round-Reduced Keccak-MAC

    Get PDF
    Keccak is the final winner of SHA-3 competition and it can be used as message authentic codes as well. The basic and balanced divide-and-conquer attacks on Keccak-MAC were proposed by Dinur et al. at Eurocrypt 2015. The idea of cube attacks is used in the two attacks to divide key bits into small portions. In this paper, by carefully analysing the mappings used in Keccak-MAC, it is found that some cube variables could divide key bits into smaller portions and so better divide-and-conquer attacks are obtained. Furthermore, in order to evaluate the resistance of Keccak-MAC against divide-and-conquer attacks based on cubes, we theoretically analyse the lower bounds of the complexities of divide-and-conquer attacks. It is shown that the lower bounds of the complexities are still not better than those of the conditional cube tester proposed by Senyang Huang et al.. This indicates that Keccak-MAC can resist the divide-and-conquer attack better than the conditional cube tester. We hope that these techniques still could provide some new insights on the future cryptanalysis of Keccak

    Cryptographic Applications of the Duplex Construction

    Get PDF
    Assured security is the desirable feature of modern cryptography. Most of moderncryptography primitives have no provably secure constructions. Their safety is defined on the basis ofwell-known in the given time cryptanalytic attacks. The duplex construction equipped with one idealpermutation and appropriate security parameters is suitable for building provably secure cryptographicprimitives. The constructions can be used for unclassified information of different sensitivity levelsprotection. Some of them can secure classified information up to the TOP SECRET level. Theapplications based on the duplex construction can be used for key wrapping, authenticated encryptionand can work as a pseudo-random bit sequence generator. They are not covered by any knownintellectual property
    corecore