3,961 research outputs found

    Powers of Tensors and Fast Matrix Multiplication

    Full text link
    This paper presents a method to analyze the powers of a given trilinear form (a special kind of algebraic constructions also called a tensor) and obtain upper bounds on the asymptotic complexity of matrix multiplication. Compared with existing approaches, this method is based on convex optimization, and thus has polynomial-time complexity. As an application, we use this method to study powers of the construction given by Coppersmith and Winograd [Journal of Symbolic Computation, 1990] and obtain the upper bound ω<2.3728639\omega<2.3728639 on the exponent of square matrix multiplication, which slightly improves the best known upper bound.Comment: 28 page

    Plethysm and fast matrix multiplication

    Get PDF
    Motivated by the symmetric version of matrix multiplication we study the plethysm Sk(sln)S^k(\mathfrak{sl}_n) of the adjoint representation sln\mathfrak{sl}_n of the Lie group SLnSL_n. In particular, we describe the decomposition of this representation into irreducible components for k=3k=3, and find highest weight vectors for all irreducible components. Relations to fast matrix multiplication, in particular the Coppersmith-Winograd tensor are presented.Comment: 5 page

    Faster Algorithms for Rectangular Matrix Multiplication

    Full text link
    Let {\alpha} be the maximal value such that the product of an n x n^{\alpha} matrix by an n^{\alpha} x n matrix can be computed with n^{2+o(1)} arithmetic operations. In this paper we show that \alpha>0.30298, which improves the previous record \alpha>0.29462 by Coppersmith (Journal of Complexity, 1997). More generally, we construct a new algorithm for multiplying an n x n^k matrix by an n^k x n matrix, for any value k\neq 1. The complexity of this algorithm is better than all known algorithms for rectangular matrix multiplication. In the case of square matrix multiplication (i.e., for k=1), we recover exactly the complexity of the algorithm by Coppersmith and Winograd (Journal of Symbolic Computation, 1990). These new upper bounds can be used to improve the time complexity of several known algorithms that rely on rectangular matrix multiplication. For example, we directly obtain a O(n^{2.5302})-time algorithm for the all-pairs shortest paths problem over directed graphs with small integer weights, improving over the O(n^{2.575})-time algorithm by Zwick (JACM 2002), and also improve the time complexity of sparse square matrix multiplication.Comment: 37 pages; v2: some additions in the acknowledgment

    Which groups are amenable to proving exponent two for matrix multiplication?

    Get PDF
    The Cohn-Umans group-theoretic approach to matrix multiplication suggests embedding matrix multiplication into group algebra multiplication, and bounding ω\omega in terms of the representation theory of the host group. This framework is general enough to capture the best known upper bounds on ω\omega and is conjectured to be powerful enough to prove ω=2\omega = 2, although finding a suitable group and constructing such an embedding has remained elusive. Recently it was shown, by a generalization of the proof of the Cap Set Conjecture, that abelian groups of bounded exponent cannot prove ω=2\omega = 2 in this framework, which ruled out a family of potential constructions in the literature. In this paper we study nonabelian groups as potential hosts for an embedding. We prove two main results: (1) We show that a large class of nonabelian groups---nilpotent groups of bounded exponent satisfying a mild additional condition---cannot prove ω=2\omega = 2 in this framework. We do this by showing that the shrinkage rate of powers of the augmentation ideal is similar to the shrinkage rate of the number of functions over (Z/pZ)n(\mathbb{Z}/p\mathbb{Z})^n that are degree dd polynomials; our proof technique can be seen as a generalization of the polynomial method used to resolve the Cap Set Conjecture. (2) We show that symmetric groups SnS_n cannot prove nontrivial bounds on ω\omega when the embedding is via three Young subgroups---subgroups of the form Sk1×Sk2×⋯×SkℓS_{k_1} \times S_{k_2} \times \dotsb \times S_{k_\ell}---which is a natural strategy that includes all known constructions in SnS_n. By developing techniques for negative results in this paper, we hope to catalyze a fruitful interplay between the search for constructions proving bounds on ω\omega and methods for ruling them out.Comment: 23 pages, 1 figur

    Nondeterministic quantum communication complexity: the cyclic equality game and iterated matrix multiplication

    Get PDF
    We study nondeterministic multiparty quantum communication with a quantum generalization of broadcasts. We show that, with number-in-hand classical inputs, the communication complexity of a Boolean function in this communication model equals the logarithm of the support rank of the corresponding tensor, whereas the approximation complexity in this model equals the logarithm of the border support rank. This characterisation allows us to prove a log-rank conjecture posed by Villagra et al. for nondeterministic multiparty quantum communication with message-passing. The support rank characterization of the communication model connects quantum communication complexity intimately to the theory of asymptotic entanglement transformation and algebraic complexity theory. In this context, we introduce the graphwise equality problem. For a cycle graph, the complexity of this communication problem is closely related to the complexity of the computational problem of multiplying matrices, or more precisely, it equals the logarithm of the asymptotic support rank of the iterated matrix multiplication tensor. We employ Strassen's laser method to show that asymptotically there exist nontrivial protocols for every odd-player cyclic equality problem. We exhibit an efficient protocol for the 5-player problem for small inputs, and we show how Young flattenings yield nontrivial complexity lower bounds

    Asymptotic tensor rank of graph tensors: beyond matrix multiplication

    Get PDF
    We present an upper bound on the exponent of the asymptotic behaviour of the tensor rank of a family of tensors defined by the complete graph on kk vertices. For k≥4k\geq4, we show that the exponent per edge is at most 0.77, outperforming the best known upper bound on the exponent per edge for matrix multiplication (k=3k=3), which is approximately 0.79. We raise the question whether for some kk the exponent per edge can be below 2/32/3, i.e. can outperform matrix multiplication even if the matrix multiplication exponent equals 2. In order to obtain our results, we generalise to higher order tensors a result by Strassen on the asymptotic subrank of tight tensors and a result by Coppersmith and Winograd on the asymptotic rank of matrix multiplication. Our results have applications in entanglement theory and communication complexity

    A note on the gap between rank and border rank

    Get PDF
    We study the tensor rank of the tensor corresponding to the algebra of n-variate complex polynomials modulo the dth power of each variable. As a result we find a sequence of tensors with a large gap between rank and border rank, and thus a counterexample to a conjecture of Rhodes. At the same time we obtain a new lower bound on the tensor rank of tensor powers of the generalised W-state tensor. In addition, we exactly determine the tensor rank of the tensor cube of the three-party W-state tensor, thus answering a question of Chen et al.Comment: To appear in Linear Algebra and its Application
    • …
    corecore