278 research outputs found

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Model Based Compressed Sensing Reconstruction Algorithms for ECG Telemonitoring in WBANs

    Get PDF
    Wireless Body area networks (WBANs) consist of sensors that continuously monitor and transmit real time vital signals to a nearby coordinator and then to a remote terminal via the Internet. One of the most important signals for monitoring in WBANs is the electrocardiography (ECG) signal. The design of an accurate and energy efficient ECG telemonitoring system can be achieved by: i) reducing the amount of data that should be transmitted ii) minimizing the computational operations executed at any transmitter/receiver in a WBAN. To this end, compressed sensing (CS) approaches can offer a viable solution. In this paper, we propose two novel CS based ECG reconstruction algorithms that minimize the samples that are required to be transmitted for an accurate reconstruction, by exploiting the block structure of the ECG in the time domain (TD) and in an uncorrelated domain (UD). The proposed schemes require the solutions of second-order cone programming (SOCP) problems that are usually tackled by computational demanding interior point (IP) methods. To solve these problems efficiently, we develop a path-wise coordinate descent based scheme. The reconstruction accuracy is evaluated by the percentage root-mean-square difference (PRD) metric. A reconstructed signal is acceptable if and only if PRD<9%PRD<9%. Simulation studies carried out with real electrocardiographic (ECG) data, show that the proposed schemes, operating in both the TD and in the UD as compared to the conventional CS techniques, reduce the Compression Ratio (CR) by 20%20% and 44%44% respectively, offering at the same time significantly low computational complexity

    Diseños de capa cruzada para redes inalámbricas de área corporal energéticamente eficientes: una revisión

    Get PDF
    RESUMEN: El diseño de capa cruzada se considera una poderosa alternativa para dar solución a las complejidades introducidas por las comunicaciones inalámbricas en redes de área corporal (WBAN), donde el modelo clásico de comunicaciones no ha exhibido un desempeño adecuado. Respecto al problema puntual de consumo de energía, hemos preparado la presente revisión de las publicaciones más relevantes que tratan la eficiencia energética para WBAN usando diseño de capa cruzada. En este artículo se proporciona una revisión exhaustiva de los avances en aproximaciones, protocolos y optimizaciones de capa cruzada cuyo objetivo es incrementar el tiempo de vida de las redes WBAN mediante el ahorro de energía. Luego, se discute los aspectos relevantes y deficiencias de las técnicas de capa cruzada energéticamente eficientes. Además, se introducen aspectos de investigación abiertos y retos en el diseño de capa cruzada para WBAN. En esta revisión proponemos una taxonomía de las aproximaciones de capa cruzada, de modo que las técnicas revisadas se ajustan en categorías de acuerdo a los protocolos involucrados en el diseño. Una clasificación novedosa se incluye para hacer claridad en los conceptos teóricos involucrados en cada esquema de capa cruzada y para luego agrupar aproximaciones similares evidenciando las diferencias con otras técnicas entre sí. Nuestras conclusiones consideran los aspectos de movilidad y modelamiento del canal en escenarios de WBAN como las direcciones para futura investigación en WBAN y en aplicaciones de telemedicina.ABSTRACT: Cross-layer design is considered a powerful alternative to solve the complexities of wireless communication in wireless body area networks (WBAN), where the classical communication model has been shown to be inaccurate. Regarding the energy consumption problem, we have prepared a current survey of the most relevant scientific publications on energy-efficient cross-layer design for WBAN. In this paper, we provide a comprehensive review of the advances in cross-layer approaches, protocols and optimizations aimed at increasing the network lifetime by saving energy in WBANs. Subsequently, we discuss the relevant aspects and shortcomings of these energy-efficient cross-layer techniques and point out the open research issues and challenges in WBAN cross-layer design. In this survey, we propose a taxonomy for cross-layer approaches to fit them into categories based on the protocols involved in the cross-layer scheme. A novel classification is included to clarify the theoretical concepts behind each cross-layer scheme; and to group similar approaches by establishing their differences from the other strategies reviewed. Our conclusion considers the aspects of mobility and channel modeling in WBAN scenarios as the directions of future cross-layer research for WBAN and telemedicine applications

    Energy efficient mobile video streaming using mobility

    Get PDF
    Undeniably the support of data services over the wireless Internet is becoming increasingly challenging with the plethora of different characteristic requirements of each service type. Evidently, about half of the data traffic shifted across the Internet to date consists of multimedia content such as video clips or music files that necessitate stringent real-time constraints in playback and for which increasing volumes of data should be shifted with the introduction of higher quality content. This work recasts the problem of multimedia content delivery in the mobile Internet. We propose an optimization framework with the major tenet being that real-time playback constraints can be satisfied while at the same time enabling controlled delay tolerance in packet transmission by capitalizing on pre-fetching and data buffering. More specifically two strategies are proposed amenable for real time implementation that utilize the inherent delay tolerance of popular applications based on different flavors of HTTP streaming. The proposed mechanisms have the potential of achieving many-fold energy efficiency gains at no cost on the perceived user experience

    Low power body sensor network design based on relaying of creeping waves in the unlicensed 2.4GHz band

    Get PDF
    Body Sensor Networks are an important enabling technology for future applications in remote medical diagnostics. Practical deployments of these systems have only recently edged closer to viability, due in part to advances in low power electronics and System-On-Chip devices. Wireless communication between these sensors remains a daunting challenge, and designers typically leverage existing industrial standards designed for applications with significantly different communications requirements. This Thesis proposes a wireless communications platform designed specifically for body mounted sensors, exploiting a phenomenon in electromagnetic wave propagation known as a creeping wave. Relaying of these waves leads to a highly reliable body sensor network with very low power consumption in the unlicensed 2.4 GHz band. A link budget is derived based on the creeping wave component of the transmitted signal, which is then used to design a spread spectrum wireless transceiver. Significant attention is given to interference mitigation, allowing the system to co-exist with other wireless devices on the internationally unlicensed band. Fading statistics from both anechoic and high multipath scenarios are used to define a channel model for the system. The link budget and channel model lead to the proposed use of relaying as a power savings technique, and this concept is a core feature of the design. This technique is shown to provide reliable total body coverage with very low transmission power, a result that has eluded body sensor networks to date. Various relaying topologies are discussed, and robust operation for highly mobile users is achieved via sensor handoffs, a concept that resembles a similar solution in cellular networks. The design extends to define a polling protocol and packet structures. Objective performance metrics are defined, and the proposed system is evaluated in line with these metrics. The power reduction of the suggested approach is analyzed by comparing the network lifetime and energy-per-bit to those of a reference system offering the same quality of service without relaying. The analysis results in generic closed form expressions of significant gains. The improvement in network lifetime increases with the number of sensors and settles at approximately 8x104, 7x106, 7x107 and 3x108 for 2,4,6 and 8 relaying nodes respectively. The energy-per-bit is shown to decrease by 2, 116, 828 and 2567 for 2, 4, 6 and 8 relay nodes respectively

    A Power efficient pulsed MAC protocol for body area networks

    Get PDF
    The need for a reduction in healthcare cost has escalated over the past decade. Therefore, preventive medicine through remote health monitoring and Body Area Networks has gained more attention. This paper presents a novel Medium Access Control (MAC) protocol called Pulsed-MAC or simply PMAC to efficiently manage wireless communications in Body Area Networks. PMAC drastically extends the network life time by augmenting sensor nodes with charge pumping circuitry which harvest energy from a pulsed signal used to orchestrate communications. By measuring the average radio power consumption in a sensor node over a 24 hour simulation period, results show that PMAC outperforms conventional SMAC by up to three times and will easily allow for a Body Area Network to last beyond 200 days
    corecore