23,254 research outputs found

    POWAR: Power-Aware Routing in HPC Networks with On/Off Links

    Full text link
    [EN] In order to save energy in HPC interconnection networks, one usual proposal is to switch idle links into a low-power mode after a certain time without any transmission, as IEEE Energy Efficient Ethernet standard proposes. Extending the low-power mode mechanism, we propose POWer-Aware Routing (POWAR), a simple power-aware routing and selection function for fat-tree and torus networks. POWAR adapts the amount of network links that can be used, taking into account the network load, and obtaining great energy savings in the network (55%-65%) and the entire system (9%-10%) with negligible performance overhead.This work has been supported by the Spanish MINECO and European Commission (FEDER funds) under project TIN2015-66972-C5-1-R. Francisco J. Andujar has been partially funded by the Spanish MICINN and by the ERDF program of the European Union: PCAS Project (TIN2017-88614-R), CAPAP-H6 (TIN2016-81840-REDT), and Junta de Castilla y Leon FEDER Grant VA082P17 (PROPHET Project).Andújar-Muñoz, FJ.; Coll, S.; Alonso Díaz, M.; López Rodríguez, PJ.; Martínez-Rubio, J. (2019). POWAR: Power-Aware Routing in HPC Networks with On/Off Links. ACM Transactions on Architecture and Code Optimization. 15(4):1-22. https://doi.org/10.1145/3293445S122154Abts, D., Marty, M. R., Wells, P. M., Klausler, P., & Liu, H. (2010). Energy proportional datacenter networks. Proceedings of the 37th annual international symposium on Computer architecture - ISCA ’10. doi:10.1145/1815961.1816004Adiga, N. R., Blumrich, M. A., Chen, D., Coteus, P., Gara, A., Giampapa, M. E., … Vranas, P. (2005). Blue Gene/L torus interconnection network. IBM Journal of Research and Development, 49(2.3), 265-276. doi:10.1147/rd.492.0265M. Alonso S. Coll J. M. Martínez V. Santonja and P. López. 2015. Power consumption management in fat-tree interconnection networks. Parallel Comput. 48 C (Oct. 2015) 59--80. 10.1016/j.parco.2015.03.007 M. Alonso S. Coll J. M. Martínez V. Santonja and P. López. 2015. Power consumption management in fat-tree interconnection networks. Parallel Comput. 48 C (Oct. 2015) 59--80. 10.1016/j.parco.2015.03.007Marina Alonso, Coll, S., Martínez, J.-M., Santonja, V., López, P., & Duato, J. (2010). Power saving in regular interconnection networks. Parallel Computing, 36(12), 696-712. doi:10.1016/j.parco.2010.08.003Bob Alverson Edwin Froese Larry Kaplan and Duncan Roweth. 2012. Cray XC series network. Cray Inc. White Paper WP-Aries01-1112 (2012). Bob Alverson Edwin Froese Larry Kaplan and Duncan Roweth. 2012. Cray XC series network. Cray Inc. White Paper WP-Aries01-1112 (2012).Anderson, T. E., Owicki, S. S., Saxe, J. B., & Thacker, C. P. (1993). High-speed switch scheduling for local-area networks. ACM Transactions on Computer Systems, 11(4), 319-352. doi:10.1145/161541.161736Andujar, F. J., Villar, J. A., Sanchez, J. L., Alfaro, F. J., & Escudero-Sahuquillo, J. (2015). VEF Traces: A Framework for Modelling MPI Traffic in Interconnection Network Simulators. 2015 IEEE International Conference on Cluster Computing. doi:10.1109/cluster.2015.141Barroso, L. A., & Hölzle, U. (2007). The Case for Energy-Proportional Computing. Computer, 40(12), 33-37. doi:10.1109/mc.2007.443Camacho, J., & Flich, J. (2011). HPC-Mesh: A Homogeneous Parallel Concentrated Mesh for Fault-Tolerance and Energy Savings. 2011 ACM/IEEE Seventh Symposium on Architectures for Networking and Communications Systems. doi:10.1109/ancs.2011.17Chen, D., Parker, J. J., Eisley, N. A., Heidelberger, P., Senger, R. M., Sugawara, Y., … Steinmacher-Burow, B. (2011). The IBM Blue Gene/Q interconnection network and message unit. Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’11. doi:10.1145/2063384.2063419Chen, L., & Pinkston, T. M. (2012). NoRD: Node-Router Decoupling for Effective Power-gating of On-Chip Routers. 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. doi:10.1109/micro.2012.33Christensen, K., Reviriego, P., Nordman, B., Bennett, M., Mostowfi, M., & Maestro, J. (2010). IEEE 802.3az: the road to energy efficient ethernet. IEEE Communications Magazine, 48(11), 50-56. doi:10.1109/mcom.2010.5621967Dally, & Seitz. (1987). Deadlock-Free Message Routing in Multiprocessor Interconnection Networks. IEEE Transactions on Computers, C-36(5), 547-553. doi:10.1109/tc.1987.1676939Das, R., Narayanasamy, S., Satpathy, S. K., & Dreslinski, R. G. (2013). Catnap. Proceedings of the 40th Annual International Symposium on Computer Architecture - ISCA ’13. doi:10.1145/2485922.2485950Derradji, S., Palfer-Sollier, T., Panziera, J.-P., Poudes, A., & Atos, F. W. (2015). The BXI Interconnect Architecture. 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects. doi:10.1109/hoti.2015.15Jack Dongarra Hans W. Meuer and Erich Strohmaier. 2018. TOP500 Supercomputer Sites. Retrieved from https://www.top500.org. Jack Dongarra Hans W. Meuer and Erich Strohmaier. 2018. TOP500 Supercomputer Sites. Retrieved from https://www.top500.org.Duato, J. (1993). A new theory of deadlock-free adaptive routing in wormhole networks. IEEE Transactions on Parallel and Distributed Systems, 4(12), 1320-1331. doi:10.1109/71.250114José Duato Sudhakar Yalamanchili and Lionel Ni. 2003. Interconnection Networks. An Engineering Approach. Morgan Kaufmann Publishers Inc. San Francisco CA. José Duato Sudhakar Yalamanchili and Lionel Ni. 2003. Interconnection Networks. An Engineering Approach. Morgan Kaufmann Publishers Inc. San Francisco CA.GALGO 2017. GALGO—Albacete Research Institute of Informatics Supercomputer Center homepage. Retrieved from http://www.i3a.uclm.es/galgo. GALGO 2017. GALGO—Albacete Research Institute of Informatics Supercomputer Center homepage. Retrieved from http://www.i3a.uclm.es/galgo.Greenberg, A., Hamilton, J., Maltz, D. A., & Patel, P. (2008). The cost of a cloud. ACM SIGCOMM Computer Communication Review, 39(1), 68-73. doi:10.1145/1496091.1496103HPCC {n.d.}. HPC Challenge Benchmark. Retrieved from http://icl.cs.utk.edu/hpcc/index.html. HPCC {n.d.}. HPC Challenge Benchmark. Retrieved from http://icl.cs.utk.edu/hpcc/index.html.Hluchyj, M. G., & Karol, M. J. (1988). Queueing in high-performance packet switching. IEEE Journal on Selected Areas in Communications, 6(9), 1587-1597. doi:10.1109/49.12886Koibuchi, M., Otsuka, T., Hiroki Matsutani, & Amano, H. (2009). An on/off link activation method for low-power ethernet in PC clusters. 2009 IEEE International Symposium on Parallel & Distributed Processing. doi:10.1109/ipdps.2009.5161069Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. doi:10.1002/jcc.20289Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845-854. doi:10.1093/bioinformatics/btt055Reviriego, P., Hernandez, J., Larrabeiti, D., & Maestro, J. (2009). Performance evaluation of energy efficient ethernet. IEEE Communications Letters, 13(9), 697-699. doi:10.1109/lcomm.2009.090880K. P. Saravanan and P. Carpenter. 2018. PerfBound: Conserving energy with bounded overheads in on/off-based HPC interconnects. IEEE Trans. Comput. (2018) 1--1. 10.1109/TC.2018.2790394 K. P. Saravanan and P. Carpenter. 2018. PerfBound: Conserving energy with bounded overheads in on/off-based HPC interconnects. IEEE Trans. Comput. (2018) 1--1. 10.1109/TC.2018.2790394Saravanan, K. P., Carpenter, P. M., & Ramirez, A. (2013). Power/performance evaluation of energy efficient Ethernet (EEE) for High Performance Computing. 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). doi:10.1109/ispass.2013.6557171Soteriou, V., & Li-Shiuan Peh. (s. f.). Dynamic power management for power optimization of interconnection networks using on/off links. 11th Symposium on High Performance Interconnects, 2003. Proceedings. doi:10.1109/conect.2003.1231472Totoni, E., Jain, N., & Kale, L. V. (2013). Toward Runtime Power Management of Exascale Networks by on/off Control of Links. 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum. doi:10.1109/ipdpsw.2013.191VEF 2017. VEF traces homepage. Retrieved from http://www.i3a.info/VEFtraces. VEF 2017. VEF traces homepage. Retrieved from http://www.i3a.info/VEFtraces

    Migration energy aware reconfigurations of virtual network function instances in NFV architectures

    Get PDF
    Network function virtualization (NFV) is a new network architecture framework that implements network functions in software running on a pool of shared commodity servers. NFV can provide the infrastructure flexibility and agility needed to successfully compete in today's evolving communications landscape. Any service is represented by a service function chain (SFC) that is a set of VNFs to be executed according to a given order. The running of VNFs needs the instantiation of VNF instances (VNFIs) that are software modules executed on virtual machines. This paper deals with the migration problem of the VNFIs needed in the low traffic periods to turn OFF servers and consequently to save energy consumption. Though the consolidation allows for energy saving, it has also negative effects as the quality of service degradation or the energy consumption needed for moving the memories associated to the VNFI to be migrated. We focus on cold migration in which virtual machines are redundant and suspended before performing migration. We propose a migration policy that determines when and where to migrate VNFI in response to changes to SFC request intensity. The objective is to minimize the total energy consumption given by the sum of the consolidation and migration energies. We formulate the energy aware VNFI migration problem and after proving that it is NP-hard, we propose a heuristic based on the Viterbi algorithm able to determine the migration policy with low computational complexity. The results obtained by the proposed heuristic show how the introduced policy allows for a reduction of the migration energy and consequently lower total energy consumption with respect to the traditional policies. The energy saving can be on the order of 40% with respect to a policy in which migration is not performed

    Balancing the Migration of Virtual Network Functions with Replications in Data Centers

    Full text link
    The Network Function Virtualization (NFV) paradigm is enabling flexibility, programmability and implementation of traditional network functions into generic hardware, in form of the so-called Virtual Network Functions (VNFs). Today, cloud service providers use Virtual Machines (VMs) for the instantiation of VNFs in the data center (DC) networks. To instantiate multiple VNFs in a typical scenario of Service Function Chains (SFCs), many important objectives need to be met simultaneously, such as server load balancing, energy efficiency and service execution time. The well-known \emph{VNF placement} problem requires solutions that often consider \emph{migration} of virtual machines (VMs) to meet this objectives. Ongoing efforts, for instance, are making a strong case for migrations to minimize energy consumption, while showing that attention needs to be paid to the Quality of Service (QoS) due to service interruptions caused by migrations. To balance the server allocation strategies and QoS, we propose using \emph{replications} of VNFs to reduce migrations in DC networks. We propose a Linear Programming (LP) model to study a trade-off between replications, which while beneficial to QoS require additional server resources, and migrations, which while beneficial to server load management can adversely impact the QoS. The results show that, for a given objective, the replications can reduce the number of migrations and can also enable a better server and data center network load balancing
    • …
    corecore