4 research outputs found

    Convex separable problems with linear and box constraints

    Full text link
    In this work, we focus on separable convex optimization problems with linear and box constraints and compute the solution in closed-form as a function of some Lagrange multipliers that can be easily computed in a finite number of iterations. This allows us to bridge the gap between a wide family of power allocation problems of practical interest in signal processing and communications and their efficient implementation in practice.Comment: 5 pages, 2 figures. Published at IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014

    On Solving Convex Optimization Problems with Linear Ascending Constraints

    Full text link
    In this paper, we propose two algorithms for solving convex optimization problems with linear ascending constraints. When the objective function is separable, we propose a dual method which terminates in a finite number of iterations. In particular, the worst case complexity of our dual method improves over the best-known result for this problem in Padakandla and Sundaresan [SIAM J. Optimization, 20 (2009), pp. 1185-1204]. We then propose a gradient projection method to solve a more general class of problems in which the objective function is not necessarily separable. Numerical experiments show that both our algorithms work well in test problems.Comment: 20 pages. The final version of this paper is published in Optimization Letter

    A Decomposition Algorithm for Nested Resource Allocation Problems

    Full text link
    We propose an exact polynomial algorithm for a resource allocation problem with convex costs and constraints on partial sums of resource consumptions, in the presence of either continuous or integer variables. No assumption of strict convexity or differentiability is needed. The method solves a hierarchy of resource allocation subproblems, whose solutions are used to convert constraints on sums of resources into bounds for separate variables at higher levels. The resulting time complexity for the integer problem is O(nlogmlog(B/n))O(n \log m \log (B/n)), and the complexity of obtaining an ϵ\epsilon-approximate solution for the continuous case is O(nlogmlog(B/ϵ))O(n \log m \log (B/\epsilon)), nn being the number of variables, mm the number of ascending constraints (such that m<nm < n), ϵ\epsilon a desired precision, and BB the total resource. This algorithm attains the best-known complexity when m=nm = n, and improves it when logm=o(logn)\log m = o(\log n). Extensive experimental analyses are conducted with four recent algorithms on various continuous problems issued from theory and practice. The proposed method achieves a higher performance than previous algorithms, addressing all problems with up to one million variables in less than one minute on a modern computer.Comment: Working Paper -- MIT, 23 page

    Separable Convex Optimization with Nested Lower and Upper Constraints

    Full text link
    We study a convex resource allocation problem in which lower and upper bounds are imposed on partial sums of allocations. This model is linked to a large range of applications, including production planning, speed optimization, stratified sampling, support vector machines, portfolio management, and telecommunications. We propose an efficient gradient-free divide-and-conquer algorithm, which uses monotonicity arguments to generate valid bounds from the recursive calls, and eliminate linking constraints based on the information from sub-problems. This algorithm does not need strict convexity or differentiability. It produces an ϵ\epsilon-approximate solution for the continuous problem in O(nlogmlognBϵ)\mathcal{O}(n \log m \log \frac{n B}{\epsilon}) time and an integer solution in O(nlogmlogB)\mathcal{O}(n \log m \log B) time, where nn is the number of decision variables, mm is the number of constraints, and BB is the resource bound. A complexity of O(nlogm)\mathcal{O}(n \log m) is also achieved for the linear and quadratic cases. These are the best complexities known to date for this important problem class. Our experimental analyses confirm the good performance of the method, which produces optimal solutions for problems with up to 1,000,000 variables in a few seconds. Promising applications to the support vector ordinal regression problem are also investigated
    corecore