22 research outputs found

    Reconfigurable architecture for very large scale microelectronic systems

    Get PDF

    Testability and redundancy techniques for improved yield and reliability of CMOS VLSI circuits

    Get PDF
    The research presented in this thesis is concerned with the design of fault-tolerant integrated circuits as a contribution to the design of fault-tolerant systems. The economical manufacture of very large area ICs will necessitate the incorporation of fault-tolerance features which are routinely employed in current high density dynamic random access memories. Furthermore, the growing use of ICs in safety-critical applications and/or hostile environments in addition to the prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability. A fault-tolerant IC must be able to detect and correct all possible faults that may affect its operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance, but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing is selected for this research because it achieves better coverage of physical faults and it requires less extra hardware than on-line error detection techniques. Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence generation procedures for the detection of all faults are derived. The test sequences generated by these procedures produce a trivial output, thereby, greatly simplifying the task of test response analysis. A further advantage of the proposed test generation procedures is that they do not require the enumeration of faults. The implementation of built-in self-test is considered and it is shown that the hardware overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques while achieving a much higher fault coverage through-the use of the proposed test generation procedures. The consideration of the problem of testing the test circuitry led to the conclusion that complete test coverage may be achieved if separate chips cooperate in testing each other's untested parts. An alternative approach towards complete test coverage would be to design the test circuitry so that it is as distributed as possible and so that it is tested as it performs its function. Fault correction relies on the provision of spare units and a means of reconfiguring the circuit so that the faulty units are discarded. This raises the question of what is the optimum size of a unit? A mathematical model, linking yield and reliability is therefore developed to answer such a question and also to study the effects of such parameters as the amount of redundancy, the size of the additional circuitry required for testing and reconfiguration, and the effect of periodic testing on reliability. The stringent requirement on the size of the reconfiguration logic is illustrated by the application of the model to a typical example. Another important result concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing can achieve approximately the same level of reliability as on-line testing, even when the time between tests is many hundreds of hours

    Magnetometric techniques for the measurement of initial susceptibility and for non-contact sensing of displacement

    Get PDF
    PhD ThesisPart 1 of the thesis describes a new instrument that simultaneously measures the real magnetic susceptibility X' and the imaginary magnetic susceptibility X". The instrument measures the temperature dependences of X' and X" in rock samples between 16°C and 800°C; natural developments are working down to -200°C and measuring the anisotropy of susceptibility. The instrument's heart is a tuned circuit driven at its natural frequency by a 5MHz crystal oscillator. The tuned circuit's inductance is a sample coil that encloses-a furnace. The random noise level in the signal for X' is 7.4 x l0-13 m3 r. m. s., the noise level in the signal for X" is 2x 10 ^12 m3 r. m. s. Sample volumes are 0.1 cm3 or less. Equations describing the instrument are derived and verified, particular attention is paid to the sample coil. Circuit diagrams are included. Some results are presented and equations that broadly describe the observed temperature dependences of X' and X" are developed. Some methods for substantially improving the instrument's performance are outlined. Part 2 of the thesis describes a new method for non-contact sensing of displacement. A magnet is mounted on the object whose displacement is to be measured. The magnet's field is sensed and fed to a 6502 microprocessor programmed to display the distance between the magnet and the sensor; intervening barriers with a permeability very close to unity do not affect the readings. The accuracy is better than 2.0% of full scale deflection (FSD) over the useful range of 250 mm and better than 0.1% FSD over a range of 110 mm. The magnet's volume is 4.00 mm3 and the moment is 3.1 x 10-7 Vbm. Circuit diagrams are presented and a complete software listing is included, the design will work with any magnet and magnetometer. There are directions for greatly improving the instrument's performance.Natural Environment Research Council

    Real-time algorithms for optimal CCD data reduction in high energy astronomy

    Get PDF
    This thesis presents novel and reusable algorithms and philosophies for the reduction of data produced by CCD detectors used for space astronomy. Some of the techniques described can be extended to other two-dimensional data sets, and all of them have relevance beyond the particular spacecraft on which they are currently being used. The author began the work described in this thesis in January 1993, looking at ways in which the data produced from a spectroscopic instrument on the XMM-Newton spacecraft could be reduced sufficiently to fit into the comparatively meagre telemetry bandwidth available to it. The work was also constrained by the use of a processor system with many fewer resources available than ideal, but chosen for its reliability and tolerance to radiation, both important factors in a ten-year mission. Chapter one introduces the need for spacecraft onboard data reduction, and the XMM-Newton spacecraft, and its instruments. Chapter two focusses on the principles of operation of CCDs, briefly considering the sources of noise that affect them in use. Chapter three examines the mechanics of the onboard software designed by the author, and arguments are made for trading data quality against data quantity. Chapter four describes the construction of a software, standalone instrument simulator able to quantify the quality of the existing onboard software, provide feedback to settings used, and analyse the impact of future modifications. Chapter five presents results from the testing of the onboard software and early data from the commissioning phase of XMM-Newton. The thesis concludes with some suggestions for further improvements to the onboard software, and hints at possible applications to other observational scenarios involving large data-sets

    NASA Tech Briefs, June 1987

    Get PDF
    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences
    corecore