50 research outputs found

    Power Minimization Resource Allocation for Underlay MISO-NOMA SWIPT Systems

    Get PDF
    The combination of cognitive radio and non-orthogonal multiple access (NOMA) has tremendous potential to achieve high spectral efficiency in the IoT era. In this paper, we focus on the energy-efficient resource allocation of a cognitive multiple-input single-output NOMA system with the aid of simultaneous wireless information and power transfer. Specifically, a non-linear energy harvesting (EH) model is adopted to characterize the non-linear energy conversion property. In order to achieve the green design goal, we aim for the minimization of the system power consumption by jointly designing the transmit beamformer and the receive power splitter subject to the information transmission and EH harvesting requirements of second users (SUs), and the maximum tolerable interference constraints at primary users. However, the formulated optimization problem is non-convex and hard to tackle. By exploiting the classic semi-definite relaxation and successive convex approximation, we propose a penalty function-based algorithm to solve the non-convex problem. The convergence of the proposed algorithm is further proved. Finally, simulation results demonstrate that the non-linear EH model is able to strongly reflect the property of practical energy harvester and the performance gain of the proposed algorithm than the baseline scheme

    State of the Art, Taxonomy, and Open Issues on Cognitive Radio Networks with NOMA

    Get PDF
    The explosive growth of mobile devices and the rapid increase of wideband wireless services call for advanced communication techniques that can achieve high spectral efficiency and meet the massive connectivity requirement. Cognitive radio (CR) and non-orthogonal multiple access (NOMA) are envisioned to be important solutions for the fifth generation wireless networks. Integrating NOMA techniques into CR networks (CRNs) has the tremendous potential to improve spectral efficiency and increase the system capacity. However, there are many technical challenges due to the severe interference caused by using NOMA. Many efforts have been made to facilitate the application of NOMA into CRNs and to investigate the performance of CRNs with NOMA. This article aims to survey the latest research results along this direction. A taxonomy is devised to categorize the literature based on operation paradigms, enabling techniques, design objectives and optimization characteristics. Moreover, the key challenges are outlined to provide guidelines for the domain researchers and designers to realize CRNs with NOMA. Finally, the open issues are discussed.Comment: This paper has been accepted by IEEE Wireless Communications Magazine. Pages 16, Figures

    Spectral, Energy and Computation Efficiency in Future 5G Wireless Networks

    Get PDF
    Wireless technology has revolutionized the way people communicate. From first generation, or 1G, in the 1980s to current, largely deployed 4G in the 2010s, we have witnessed not only a technological leap, but also the reformation of associated applications. It is expected that 5G will become commercially available in 2020. 5G is driven by ever-increasing demands for high mobile traffic, low transmission delay, and massive numbers of connected devices. Today, with the popularity of smart phones, intelligent appliances, autonomous cars, and tablets, communication demands are higher than ever, especially when it comes to low-cost and easy-access solutions. Existing communication architecture cannot fulfill 5G’s needs. For example, 5G requires connection speeds up to 1,000 times faster than current technology can provide. Also, from transmitter side to receiver side, 5G delays should be less than 1ms, while 4G targets a 5ms delay speed. To meet these requirements, 5G will apply several disruptive techniques. We focus on two of them: new radio and new scheme. As for the former, we study the non-orthogonal multiple access (NOMA) and as for the latter, we use mobile edge computing (MEC). Traditional communication systems allow users to communicate alternatively, which clearly avoids inter-user interference, but also caps the connection speed. NOMA, on the other hand, allows multiple users to transmit simultaneously. While NOMA will inevitably cause excessive interference, we prove such interference can be mitigated by an advanced receiver side technique. NOMA has existed on the research frontier since 2013. Since that time, both academics and industry professionals have extensively studied its performance. In this dissertation, our contribution is to incorporate NOMA with several potential schemes, such as relay, IoT, and cognitive radio networks. Furthermore, we reviewed various limitations on NOMA and proposed a more practical model. In the second part, MEC is considered. MEC is a transformation from the previous cloud computing system. In particular, MEC leverages powerful devices nearby and instead of sending information to distant cloud servers, the transmission occurs in closer range, which can effectively reduce communication delay. In this work, we have proposed a new evaluation metric for MEC which can more effectively leverage the trade-off between the amount of computation and the energy consumed thereby. A practical communication system for wearable devices is proposed in the last part, which combines all the techniques discussed above. The challenges for wearable communication are inherent in its diverse needs, as some devices may require low speed but high reliability (factory sensors), while others may need low delay (medical devices). We have addressed these challenges and validated our findings through simulations

    Transmitter Optimization Techniques for Physical Layer Security

    Get PDF
    Information security is one of the most critical issues in wireless networks as the signals transmitted through wireless medium are more vulnerable for interception. Although the existing conventional security techniques are proven to be safe, the broadcast nature of wireless communications introduces different challenges in terms of key exchange and distributions. As a result, information theoretic physical layer security has been proposed to complement the conventional security techniques for enhancing security in wireless transmissions. On the other hand, the rapid growth of data rates introduces different challenges on power limited mobile devices in terms of energy requirements. Recently, research work on wireless power transfer claimed that it has been considered as a potential technique to extend the battery lifetime of wireless networks. However, the algorithms developed based on the conventional optimization approaches often require iterative techniques, which poses challenges for real-time processing. To meet the demanding requirements of future ultra-low latency and reliable networks, neural network (NN) based approach can be employed to determine the resource allocations in wireless communications. This thesis developed different transmission strategies for secure transmission in wireless communications. Firstly, transmitter designs are focused in a multiple-input single-output simultaneous wireless information and power transfer system with unknown eavesdroppers. To improve the performance of physical layer security and the harvested energy, artificial noise is incorporated into the network to mask the secret information between the legitimate terminals. Then, different secrecy energy efficiency designs are considered for a MISO underlay cognitive radio network, in the presence of an energy harvesting receiver. In particular, these designs are developed with different channel state information assumptions at the transmitter. Finally, two different power allocation designs are investigated for a cognitive radio network to maximize the secrecy rate of the secondary receiver: conventional convex optimization framework and NN based algorithm

    Robust Secure Wireless Powered MISO Cognitive Mobile Edge Computing

    Get PDF
    Wireless power transfer (WPT) and cognitive radio (CR) are two promising techniques in designing mobile-edge computing (MEC) systems. In this paper, we study a robust secure wireless powered multiple-input single-output (MISO) cognitive MEC system, which integrates several techniques: physical-layer security, WPT, CR, underlay spectrum sharing and MEC. Three optimization problems are formulated to minimize the total transmission power (TTP) of the primary transmitter (PT) and the secondary base station (SBS) under perfect channel state information (CSI) model, bounded CSI error model and the probabilistic CSI error model, respectively. The formulated problems are nonconvex and hard to solve. Three two-phase iterative optimization algorithms combined with Lagrangian dual, semidefinite relaxation (SDR), S-Procedure and Bernstein-type inequalities are proposed to jointly optimize the beamforming vectors of the PT and the SBS, the central processing unit (CPU) frequency and the transmit power of the MD. Simulation results are provided to verify the effectiveness of the proposed algorithms
    corecore