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Abstract

This thesis aims to enhance the anticipated performance of sixth-generation (6G) com-

munication networks by integrating non-orthogonal multiple access (NOMA) and multiple-

input multiple-output (MIMO) techniques using the generalized singular value decom-

position (GSVD)-based linear beamforming method. To do so, the thesis explores dif-

ferent scenarios with specific objectives, including minimizing mobile edge comput-

ing (MEC) offloading delay, maximizing the sum secrecy rate in a MIMO-NOMA sys-

tem, minimizing the total energy consumption of a MIMO-NOMA-MEC system, and

maximizing the sum data rate of the secondary network in a cognitive radio (CR)-based

NOMA-MIMO system.

To minimize the offloading delay in a MIMO-MEC system, the Dinkelbach transform

and the GSVD method are employed. Analytical and simulation-based evaluations are

conducted to assess the performance of the proposed Hybrid-NOMA-MIMO-MEC sys-

tem. The simulation results show that this system achieves superior delay performance

and lower energy consumption than conventional orthogonal multiple access (OMA) ap-

proaches.

To improve the sum rate of confidential transmission in an uplink MIMO-NOMA sys-

tem, the thesis focuses on maximizing the secrecy sum rate (SSR). By leveraging the

GSVD method and first-order Taylor approximation, a suboptimal concave problem for-

mulation is derived to tackle the non-convex nature of the SSR problem. The SSR is

compared with other algorithms, including conventional orthogonal multiple access, and

the simulation results demonstrate the effectiveness of the proposed method.

To minimize the total energy consumption of local computing, task offloading, and MEC

computing in a NOMA-MIMO-based system, the base station optimizes power alloca-

tion vectors and task assignment coefficients under time and power constraints. The non-

convex problem is addressed through successive convex optimization (SCA) and alter-
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nating optimization (AO) techniques. The impact of various factors, such as delay toler-

ance, task size, and user distance, on energy consumption is investigated. Simulation re-

sults indicate that the proposed method outperforms orthogonal multiple access (OMA)

schemes, particularly for large data sizes and stringent delay requirements.

Finally, the thesis presents a novel approach for wireless-powered NOMA-MIMO sys-

tems. This approach is designed for cognitive underlay radio (CR) scenarios where the

primary network requires predefined QoS. Given that requirement, the main objective

is to maximize the sum rate of the secondary network. A joint beamforming vector for

primary and secondary networks and a time-switching coefficient for energy harvesting

and information transfer are optimized to achieve this objective. The problem formula-

tion is non-convex. Therefore, we use of semi-definite programming, successive convex

approximation, and alternating optimization techniques to solve this problem. The simu-

lation results show that the NOMA-based solution outperforms the TDMA-based bench-

mark scheme, particularly at low transmit power levels.

In conclusion, this thesis investigates integrating NOMA and MIMO technologies in

6G networks. It addresses delay minimization, maximization of secrecy sum rate, en-

ergy consumption optimization, and sum rate in CR scenarios. The proposed solutions

demonstrate significant improvements in spectral efficiency, energy efficiency, data rate,

and overall system performance, making them valuable contributions to the field of 6G

communication networks.
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Chapter 1

Overview

Data plays a critical role in shaping our world and is a driving factor for developing wire-

less communications. Due to the rapid increase in the number of connected devices and

data traffic in wireless mediums, which is expected to continue growing, academia and

industry are giving attention to developing next-generation wireless networks.

Improving multiple access techniques has been considered a crucial way to keep up with

cutting-edge network services. Historically, these advancements have been revealed as

follows [1]. First-generation (1G) cellular networks utilized frequency division multiple

access (FDMA) for transmitting analog voice calls. FDMA involves dividing the fre-

quency band into sub-bands allocated to individual users. However, FDMA has some

drawbacks, such as low spectral efficiency, high inter-channel interference, and limited

capacity. In second-generation (2G) networks, time division multiple access (TDMA)

and code division multiple access (CDMA) technologies were introduced. TDMA al-

locates different time slots to users, allowing them to share the same frequency band.

However, TDMA requires precise synchronization and complex network planning, which

limits its flexibility. On the other hand, CDMA assigns a unique code to each user to

modulate their signals, enabling simultaneous transmission without interference. How-

ever, CDMA is vulnerable to near-far problems, energy inefficiency, and jamming or

eavesdropping. Despite these problems, third-generation (3G) networks widely use CDMA

due to their high spectral efficiency and improved capacity compared to the aforemen-

tioned techniques. Fourth-generation (4G) and fifth-generation (5G) networks host or-

thogonal frequency division multiple access (OFDMA) and spatial division multiple ac-

cess (SDMA) technologies, providing a significant improvement in data rate, network

architecture, and support services. SDMA separates signals from different users by uti-
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lizing multiple antennas based on their spatial locations, while OFDMA allocates mul-

tiple sub-carriers from a wide frequency band to different users. OFDMA systems face

a problem with peak-to-average power ratios, while SDMA can be expensive because it

needs more antennae than the number of users who want to transmit simultaneously [2],

[3]. These problems have prompted scientists to develop a new multiple-access method

that uses signal quality distinctions and serves multiple users with a single resource block

[4].

Non-orthogonal multiple access (NOMA) is gaining momentum as a well-suited tech-

nology to meet the requirements of modern communication systems due to its ability

to provide high spectral efficiency and support massive connectivity [5]. Additionally,

NOMA is compatible with OFDMA, which makes NOMA a natural progression to-

ward sixth-generation (6G) networks. Multiple-input multiple-output (MIMO) is another

wireless communication technology that offers various advantages, such as improved

data rates, increased spatial diversity, and enhanced spectral efficiency, making it essen-

tial for mobile devices [6]. This thesis aims to integrate NOMA and MIMO technologies

for different scenarios. To this end, the thesis mainly focuses on the generalized singu-

lar value decomposition technique to combine NOMA and MIMO. In NOMA, multi-

ple users share the same frequency and time resources, leading to user interference. The

motivation behind using the generalized singular value decomposition (GSVD) tech-

nique in NOMA systems is to enhance user signals separation and reduce system inter-

ference. We provide numerical results showing that applying GSVD to NOMA can help

improve the performance of the NOMA-based systems over orthogonal multiple access

(OMA)-based systems.

1.1 The Aims and Objectives of the Thesis

To propose a GSVD-based MIMO-NOMA transmission system built on OFDMA in 5G,

enhancing system performance compared to existing literature.

• Minimize the transmission delay in the MIMO-MEC to improve spectral efficiency,

energy efficiency, and data rate of MEC offloading.
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• Maximize the secrecy sum rate (SSR) for a MIMO-NOMA uplink network under

maximum total transmit power and QoS constraints.

• Minimize total energy consumption during local computing, task offloading, and

MEC computing in a MIMO-MEC system.

• Maximize the sum rate of the secondary network in a cognitive underlay radio (CR)

scenario, where the primary network requires a certain level of QoS and secondary

network users can download their data using the same spectrum.

1.2 The main contributions of the Thesis

In this thesis, we go beyond the previous studies on NOMA-based systems, which pri-

marily focused on SISO transmission. Instead, we incorporate both NOMA and MIMO

technologies through the GSVD technique, leading to significant advancements in the

contribution chapters. The main contributions of this thesis can be listed as follows:

• A hybrid NOMA-based MIMO-MEC system is introduced to minimize the offload-

ing delay. The system model is formulated and transformed into an easily manage-

able form using mathematical manipulations, the Dinkelbach, the GSVD, and the

KKT methods. Performance evaluation of the Hybrid-NOMA-MIMO-MEC system

is conducted through numerical results. Simulation results further demonstrate the

system’s superiority, showcasing improved delay performance and reduced energy

consumption compared to OMA.

• We investigate a novel uplink MIMO-NOMA network using GSVD in PLS sce-

narios, considering multiple external eavesdroppers and a friendly jammer. The

system configuration and adopted schemes set it apart from previous studies. A

non-concave problem of maximizing SSR is formulated to enhance the system’s

performance. Through an equivalent transformation of norm functions to trace

functions in logarithmic expressions, the problem is reformulated as a difference

of convex (DC) programs. The first-order Taylor approximation method is then ap-

plied to convert the DC problem into a suboptimal concave problem, and an SCA

(successive convex approximation) based algorithm is proposed. The algorithm’s
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properties, including complexity and convergence, are analyzed. Simulation results

demonstrate that the GSVD-based MIMO-NOMA system outperforms conven-

tional MIMO-NOMA regarding SSR. The performance gap between NOMA and

OMA schemes is revealed using the same optimization method.

• Another contribution is in a scenario where two multiple antenna-equipped NOMA

users collaboratively offload their data to the MEC server, aiming to minimize total

energy consumption. The energy minimization problem is formulated by consid-

ering various factors such as offloading time limitations, power allocation, task as-

signment, and energy losses in RF chains. To integrate NOMA, MIMO, and MEC

technologies, the GSVD linear beamforming method is also employed. Given the

non-convex nature of the problem, an alternating optimization approach is utilized

to jointly optimize task assignment coefficients and power allocation vectors, with

the task assignment problem solved in the outer layer. The inner layer employs the

successive convex approximation method to convert the non-convex power allo-

cation problem into a first-order linear form, enabling the determination of power

allocation vectors. Numerical results are provided, analyzing the impact of fac-

tors such as offloading time, power budget, users’ locations, and data rate on energy

consumption. Comparative analysis with OMA as the benchmark scheme demon-

strates the significant energy-saving benefits of NOMA-based MIMO-NOMA net-

works, particularly at high SINR rates with a higher number of antennas. Addition-

ally, the findings emphasize the importance of optimal user pairing in reducing en-

ergy consumption within the NOMA framework.

• We introduce an underlay network incorporating cognitive radio and MISO-NOMA

technologies. Both the primary and secondary transmitters harvest wireless energy

and employ a time-switching protocol to transmit information signals to their re-

spective users. QoS constraints are satisfied, even with potential interference expe-

rienced by the far user from the primary user. The secondary transmitter optimizes

the sum data rate of the secondary network while considering these constraints.

The wireless power transfer in the first time slot is performed through GSVD beam-

forming. Semi-definite programming and the first-order Taylor series expansion are

utilized in the second time slot to optimize the split time variable and the beam-
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forming vectors for both the primary and secondary networks. Simulations analyze

the impact of QoS and power constraints on the sum rate of the secondary users.

The proposed model outperforms the TDMA-based benchmark scheme due to its

higher spectral efficiency, allowing the primary users to operate at lower power

levels, thus reducing interference for the secondary users. However, as the QoS re-

quirements of the primary users become more stringent, the available transmission

time for the secondary users decreases, leading to a widening performance gap be-

tween the proposed method and the benchmark.

1.3 Organization of the Thesis

This thesis is motivated by the aforementioned aims and objectives to explore the appli-

cation of GSVD-based MIMO-NOMA networks. To compare the performance of the

proposed schemes with the conventional OMA schemes, we formulated different scenar-

ios with specific objectives: delay minimization, secrecy sum rate maximization, energy

minimization, and sum-rate maximization. The formulated problems are solved using

convex optimization techniques. The organization of the thesis is outlined as follows:

Chapter 2: This chapter provides an in-depth explanation and comprehensive compar-

ison of the basic concept of NOMA with OMA schemes. The chapter investigates the

GSVD method and explores its combination with NOMA while offering a relevant re-

view of GSVD-based NOMA systems. Furthermore, the chapter introduces the concept

of MEC and thoroughly discusses its key parameters, accompanied by a comprehensive

review of NOMA MEC. Mathematical tools such as the Karush–Kuhn–Tucker (KKT)

method, fractional programming, the first-order Taylor approximation, semi-definite pro-

gramming, and semi-definite relaxation are explained.

Chapter 3: In the context of sixth-generation communication networks, this chapter

focuses on three key technologies: NOMA, MIMO, and MEC. These technologies are

prominent in satisfying modern communication systems’ high data rate demands. The

primary objective of this chapter is to minimize transmission delay within the MIMO-

MEC system, thereby improving spectral efficiency, energy efficiency, and data rate of

MEC offloading.
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Chapter 4: NOMA, as a well-qualified candidate for 6G mobile networks, has been

attracting remarkable research interests due to high spectral efficiency and massive con-

nectivity. This chapter aims to maximize the secrecy sum rate (SSR) for a MIMO-NOMA

uplink network under the maximum total transmit power and quality of service (QoS)

constraints. Thanks to the generalized singular value decomposition method, the SSR

of NOMA is compared with conventional orthogonal multiple access and other baseline

algorithms in different MIMO scenarios.

Chapter 5: MEC is a distributed computing paradigm that brings computing and data

storage closer to the network’s edge. This chapter considers a MIMO uplink scenario

where NOMA users partially offload their data to a MEC server. This chapter aims to

minimize the total energy consumption during local computing, task offloading, and

MEC computing. To this end, the base station optimizes power allocation vectors and

task assignment coefficients under time and power constraints.

Chapter 6: The need for physically charging mobile devices is anticipated to become a

thing of the past in the not-too-distant future. In this chapter, a novel approach for wireless-

powered mobile devices is presented, which is based on NOMA and multi-user multiple-

input multiple-output (MU-MIMO) antenna systems. The proposed method is specif-

ically designed for use in a cognitive underlay radio (CR) scenario, where the primary

network requires a certain level of QoS. Meanwhile, secondary network users can down-

load their data using the same spectrum. The main objective of this chapter is to maxi-

mize the sum rate of the secondary network.

Chapter 7: This chapter summarizes the conclusions drawn from this thesis and ex-

plores potential research topics concerning NOMA-based MIMO systems for 6G net-

works.
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Chapter 2

Background Information

This chapter serves as an introductory overview of the key concepts explored in this the-

sis. Initially, the chapter examines uplink and downlink NOMA systems, specifically in

the context of a SISO antenna configuration. Following this, the chapter explores the

GSVD technique and its relevance to beamforming frameworks. To clarify these con-

cepts, an illustrative example is provided. Furthermore, the chapter encompasses a con-

cise review of GSVD-based applications in MIMO systems, thereby establishing the

context for the subsequent discussions.

The chapter then explains the MEC concept and presents the basic formulations related

to MEC. Moreover, a summary of existing works on NOMA MEC is provided, high-

lighting its significance within the research domain.

Finally, the chapter addresses the mathematical tools used in this thesis. Various tech-

niques, including the Karush-Kuhn-Tucker (KKT) method, fractional programming, suc-

cessive convex approximation, semi-definite programming, and semi-definite relaxation,

are introduced, and their relevance within the research framework is established. These

mathematical tools serve as foundational elements for the subsequent analyses presented

in the thesis.

2.1 Non-orthogonal Multiple Access

Non-orthogonal multiple access (NOMA) is a multiple access technique that allows mul-

tiple users to simultaneously share the same frequency, time, or code resources to com-

municate with a base station or access point. There are several NOMA schemes in the
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literature [3]. Some of the well-known ones are summarized as follows. The sparse code

multiple access (SCMA) technique enables multiple users to communicate with a base

station simultaneously by utilizing separate sparse codes assigned to each user, based

on a multi-dimensional codebook [7]. In pattern division multiple access (PDMA), the

available bandwidth is divided into multiple non-overlapping frequency patterns or slots.

Thus, the users have a unique pattern or slot to modulate their signals [8]. Resource spread

multiple access employs a distinct spreading sequence for users to disperse their data

over the frequency band. The receiver then reverses the spreading process by applying

the identical spreading sequence to recover the user’s information [9]. Multi-user shared

access (MUSA) is based on code-domain multiplexing, where symbols are multiplexed

using the same spreading code. These symbols are transmitted over an orthogonal chan-

nel, such as a sub-carrier, as in OFDMA. At the receiver end, SIC decodes the received

symbols [10]. Interleave-grid multiple access (IGMA) is another technique in which the

user’s data is segmented and interleaved based on a specific pattern, creating a grid-like

structure that helps minimize user interference and improves the overall spectral effi-

ciency of the system [11]. Rate-splitting multiple access (RSMA) is also getting huge

research interest. In rate-splitting multiple access, users partition their data into shared

and exclusive components [12]. The shared components of each user are aggregated and

modulated jointly, while each user’s unique components are modulated separately. This

results in a transmitted signal with shared and unique components for all users. Both

users initially decode the shared component at the receiver, treating any interference

from the unique signals as noise. Both users use SIC to decode their exclusive signals

in the subsequent stage.

In 3GPP Release 13, the standardization of power domain NOMA (PD-NOMA), known

as MUST (Multi-User Superposition Transmission), has been introduced for a broad-

cast channel. In PD-NOMA, multiple users use different power levels to share the same

time and frequency resources. At the transmitter, superposition coding is employed to

multiplex the users, while the receiver uses successive interference cancellation to de-

code the superposed signals [13]. PD-NOMA is considered a promising technique for

5G and beyond wireless communication systems, as it can significantly increase spectral

efficiency and support multiple users with diverse communication requirements. PD-
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NOMA can also improve user fairness and energy efficiency, enabling users with weaker

channel conditions to share the same resources with stronger users without sacrificing

their quality of service [14].

2.1.1 An overview of Power-Domain NOMA

This section introduces the basic concepts of PD-NOMA for downlink and uplink net-

works. Additionally, we analyze and compare the sum rate and signal-to-interference-

plus-noise ratio (SINR) of NOMA and OMA.

Downlink NOMA Network

Figure 2.1 illustrates a downlink NOMA scheme consisting of a BS/AP and K receivers,

where the BS broadcasts a superposed signal to all the receivers. The BS combines complex-

valued symbols with superposition coding (SC), and the receivers employ the succes-

sive interference cancellation (SIC) technique to decode their respective signals. Each

receiver, except for the weakest or those without SIC capabilities, performs the SIC pro-

cess at the receiver side. Even though there is a tendency for the SIC process as follows:

the users first extract the strongest signal from the combined signal and then subtract

it to eliminate the interference from the remaining signals, and the SIC process is re-

peated until the receiver’s signal is decoded. This strategy may not be optimal. Ding et

al. showed that dynamic decoding orders according to users’ QoS and CSI-based SIC

orders might improve the system’s performance [15].
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n

Frequency/Time/Code

Base Station

signal decoding

Ordered Users

SIC of

signal signal decoding

SIC of

 signal
signal decoding

Figure 2.1. A basic concept of downlink NOMA [14]

To simplify the analysis, we consider a downlink NOMA system with a base station and
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two users to derive the SINRs and sum rates. Additionally, we assume that the base sta-

tion and users are equipped with a single antenna and the system bandwidth (B) is one.

The information-bearing signals, xN for the near user (UE1) and xF for the far user (UE2),

are superimposed at the transmitter as follows:

x =
√︁

PNxN +
√︁
PFxF , (2.1)

where PN and PF denote the transmission power allocation coefficients for the near and

far users, respectively. Ptot represents the total transmit power which equals the sum of

PN and PF . The received signal at the receivers are

yi = hix+ ni, i ∈ {N,F}, (2.2)

hi denotes the channel coefficient between the BS and user UEi, and ni represents the

additive white Gaussian noise (AWGN) with zero mean and σ2
i variance for UEi. Let’s

assume the users are ordered using the CSI-based method at the receiver and the near

user has a strong signal than of the far user, i.e., |hN |2
σ2
N

≥ |hF |2
σ2
F

. Therefore, the SINR ex-

pression of the near user and far user are given by

SNRN =
PN |hN |2

σ2
N

, (2.3)

SINRF =
PF |hF |2

PN |hN |2 + σ2
F

. (2.4)

Accordingly, the data rate for the near user and far user can be written as follows:

RN = log2

(︃
1 +

PN |hN |2

σ2
N

)︃
, (2.5)

RF = log2

(︃
1 +

PF |hF |2

PN |hN |2 + σ2
F

)︃
. (2.6)

Uplink NOMA Network

As illustrated in Figure 2.2, an uplink NOMA system allows K users to simultaneously

transmit their data to the BS using the same spectrum. The base station employs SIC to

decode the signals from different users. We again assume that the near user has better
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channel gain than the far user, i.e., |hN |2
σ2
N

≥ |hF |2
σ2
F

. The received signal at the receiver is

y = hNxN + hFxF + nB, (2.7)

where nB is a AWGN with zero mean and σ2
N variance at the receiver. If the BS decodes

the received signal in descending order, the data rate for the near and far users are:

RN = log2

(︃
1 +

PN |hN |2

PF |hF |2 + σ2
B

)︃
, (2.8)

RF = log2

(︃
1 +

PF |hF |2

σ2
B

)︃
. (2.9)

On the other hand, if the BS decodes the received signal in ascending order, the data rate

for the near and far users becomes:

RN = log2

(︃
1 +

PN |hN |2

σ2
B

)︃
, (2.10)

RF = log2

(︃
1 +

PF |hF |2

PN |hN |2 + σ2
B

)︃
. (2.11)

It is worth mentioning that in each case, the sum rate for the users is the same as given in

Equation 2.12. In other words, the sum rate in the uplink NOMA does not depend on the

order of SIC, assuming no error propagation occurs in the SIC process.

RN +RF = log2

(︃
PN |hN |2 + PF |hF |2 + σ2

B

σ2
B

)︃
(2.12)

However, according to Benjebbour [13], performing SIC in the descending order of chan-

nel quality is more practical.
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Ordered Users
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Figure 2.2. A basic concept of uplink NOMA [14]

An example for sum rate comparison between NOMA, TDMA, and FDMA Networks

This section compares NOMA with TDMA and FDMA schemes for an uplink scenario

as illustrated in Fig. 2.3. The data rate of the near and far users in the NOMA, FDMA,

and TDMA systems are given as follows [16]:
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Figure 2.3. Sum rate comparison between NOMA, TDMA, and FDMA networks
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NOMA =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
RNOMA

N = B log2

(︂
1 + PN |hN |2

Bσ2
B

)︂
RNOMA

F = B log2

(︂
1 + PF |hF |2

PN |hN |2+Bσ2
B

)︂
0 ≤ PN , PF ≤ P,

(2.13)

TDMA =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
RTDMA

N = B(1− τ) log2

(︂
1 + PN |hN |2

Bσ2
B

)︂
RTDMA

F = Bτ log2

(︂
1 + PF |hF |2

Bσ2
B

)︂
0 ≤ τ ≤ 1,

(2.14)

FDMA =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
RFDMA

N = B(1− ω) log2

(︂
1 + PN |hN |2

B(1−ω)σ2
B

)︂
RFDMA

F = Bω log2

(︂
1 + PF |hF |2

Bωσ2
B

)︂
0 ≤ ω ≤ 1,

(2.15)

Assuming two uplink users UEN and UEF with channel gains of hN

σ2
B

= 18 dB and
hF

σ2
B
= 0 dB, respectively, the total power is the same in all schemes such that PN + PF =

P , where P is the maximum transmit power [13]. In the TDMA scheme, the users are

allocated equal time slots, i.e., τ = 0.5. The data rates for the near and far users are

RTDMA
N = 3.0011 bps and RTDMA

F = 0.5 bps, respectively. In the FDMA scheme, the

bandwidth is split equally between the users, i.e., ω = 0.5, and the resulting data rates

are RFDMA
N = 3.0011 bps and RFDMA

F = 0.5 bps for the near and far users, respectively.

In the NOMA case, the power is split between the users by δ, with two out of five for the

near user and three out of five for the far user. Thus, the data rates for the near and far

users are RNOMA
N = 4.0682 bps and RNOMA

F = 0.6781 bps. The total sum rates achieved

by the TDMA, FDMA, and NOMA schemes are 3.5011 bps, 3.5011 bps, and 4.7463 bps,

respectively. Based on this example, it can be concluded that NOMA offers a significant

advantage over OMA schemes in terms of spectral efficiency, resulting in 35.57% higher

sum data rates.
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2.2 Enhancing MIMO-NOMA Systems through GSVD: Leveraging Joint

Precoding, Interference Mitigation, and Power Optimization

Generalized singular value decomposition (GSVD) is a powerful matrix factorization

technique that extends the standard singular value decomposition (SVD) to accommo-

date rectangular matrices of potentially different dimensions. This technique encom-

passes two primary types: real-valued GSVD and complex-valued GSVD. Real GSVD

is utilized for real-valued matrices, while complex GSVD is tailored for complex-valued

matrices. Various algorithms, such as Van Loan’s, which was first introduced in 1976,

and Paige and Sounders’ algorithms [17], facilitate the computation of GSVD. By de-

composing matrices into their singular components, GSVD finds widespread applica-

tion across diverse domains. It is employed in signal processing tasks like adaptive fil-

tering, blind source separation, and channel estimation and in analyzing biological data

in bioinformatics [18], [19]. In wireless communication, the GSVD decomposes MIMO

channels into orthogonal SISO channels. In other words, the main use case of the GSVD

is beamforming design. Table 2.1 lists various studies that employ the GSVD to solve

some problems in wireless communication.

2.2.1 A definition of GSVD

Let us consider two matrices, H1 ∈ Cm×n and H2 ∈ Cm×n. By applying the GSVD

method, we can decompose these matrices into three components: a unitary matrix, a

non-singular matrix, and a non-negative singular matrix. The decomposition can be ex-

pressed as follows [28]:

Σ1 = UH1Q and Σ2 = VH2Q, (2.16)

where the matrices U ∈ Cm×m and V ∈ Cm×m are unitary, while Q ∈ Cn×n is non-

singular, and Σ1 ∈ Cm×n and Σ2 ∈ Cm×n are diagonal matrices with non-negative

elements. The dimension of the matrices form Σ1 and Σ2 as follows:
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Table 2.1. GSVD-based MIMO applications

Ref. Objective Tech-
nology

System
analy-
sis/Opti-
mization

Opti-
mization
Variable

Con-
straints

UL/DL Result

[20] To minimize outage
probability while
improving physical
layer security

NOMA-
MIMO

Perfor-
mance
analysis
and opti-
mization

Power al-
location
coeffi-
cients

N/A DL Compared with GSVD-
OMA based transmission,
NOMA has superior outage
performance

[21] To design low com-
plexity and highly
efficient GSVD-
based beamforming
to maximize secrecy
capacity

OMA-
MIMO

Optimiza-
tion

Power al-
location
coeffi-
cients

Average
power con-
sumption

DL GSVD-MIMO achieves
nearly identical performance
with secure dirty paper cod-
ing (S-DPC)

[22] Maximize secrecy
rate

OMA-
MIMO

Optimiza-
tion

Sub-
channel
and power
allocation

Quality of
service

DL GSVD-based precoding
outperforms a TDMA-based
system

[23] To obtain the expres-
sions of the average
data rate and outage
in a MIMO-NOMA
relaying

NOMA-
MIMO

Perfor-
mance
analysis

N/A Finite num-
ber of users

DL GSVD-NOMA achieves a
higher sum rate than GSVD-
OMA

[24] Maximize minimum
data rate

NOMA-
MIMO

Optimiza-
tion

Power al-
location
coeffi-
cients

Imperfect
channel
estimation

DL The SINR balancing prob-
lem was solved using error
bounds. The proposed solu-
tion has better performance
than non-robust or OMA-
based solutions

[25] Minimize offloading
delay

H-
NOMA-
MIMO

Optimiza-
tion

Power al-
location
coeffi-
cients

Total power UL Hybrid NOMA-MIMO
based solution has better
delay performance compared
with OMA-based solution

[26] Minimize energy
consumption

NOMA-
MIMO

Optimiza-
tion

Task as-
signment
and power
allocation
coeffi-
cients

Total
power,
offloading
time, and
RF chains
energy con-
sumption

UL NOMA-MIMO performs
better than OMA, especially
when the data is high and
time is stringent

[27] Secrecy sum rate
maximization

NOMA-
MIMO

Optimiza-
tion

Power al-
location
coeffi-
cients

Total power
and QoS

UL NOMA has better SSR per-
formance than OMA
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• If m ≥ n, then Σ1 =

⎛⎜⎝0(m−n)×n

S1

⎞⎟⎠ and Σ2 =

⎛⎜⎝ S2

0(m−n)×n

⎞⎟⎠.

• If m ≤ n ≤ 2m, r = n−m and q = 2m− n, then

Σ1 =

⎛⎜⎝ Ir 0r×q 0r×r

0q×r S1 0q×r

⎞⎟⎠ and Σ2 =

⎛⎜⎝0q×r S2 0q×r

0r×r 0r×q Ir

⎞⎟⎠.

• If 2m ≥ n, then Σ1 =

(︃
Im 0m×(n−m)

)︃
and Σ2 =

(︃
0m×(n−m) Im

)︃
,

where 0 and I represent the zero and identity matrices, respectively. Moreover, S1 and

S2 are non-negative diagonal matrices, with elements between zero and one. Notably,

the elements of S1 are sorted in descending order, while those of S2 are sorted in ascend-

ing order. Table 2.2 illustrates the key distinctions between the SVD, the GSVD, and the

multi-linear GSVD methods.

Multilinear GSVD (ML-GSVD) is an advanced variant of GSVD, specifically designed

to handle multiple tensors rather than just two matrices. Multilinear GSVD identifies a

shared underlying structure among them, which is then represented through common

factor matrices. Multilinear GSVD finds applications in various domains such as multi-

linear subspace learning, tensor factorization, and MU-MIMO systems.

2.2.2 Application of GSVD in MIMO-NOMA

We consider a base station (BS) with n antennas communicating with two downlink

users, each equipped with m antennas. The channels between the BS and the users can

be represented by Gi =
Hi√︁
dτi

, where Hi denotes the small-scale fading coefficients. The

near user denoted as UEN , and the far user, denoted as UEF , are sorted based on their

large-scale fading element
√︁

dτi . Here, d represents the distance of the ith user, and τ

represents their path loss component. The received signals at the receivers are:

yN =
HNx√︁
dτN

+ nN and yF =
HFx√︁
dτF

+ nF , (2.17)

The noise at the ith receiver, ni, i ∈ N,F , modeled by the additive white Gaussian

noise, is given by mutually independent and identically distributed elements with zero

31



Ta
bl

e
2.

2.
K

ey
di

ffe
re

nc
e

be
tw

ee
n

SV
D

,G
SV

D
an

d
M

L-
G

SV
D

SV
D

G
SV

D
M

L-
G

SV
D

A
pp

lic
at

io
n

D
om

ai
n

Si
ng

le
m

at
rix

fa
ct

or
iz

at
io

n
fo

rv
ar

io
us

ap
pl

ic
at

io
ns

(i.
e.

,d
at

a
co

m
pr

es
si

on
,d

ie
m

nt
io

n
re

du
ct

io
n,

et
c.

)

D
ea

ls
w

ith
tw

o
se

ts
of

m
at

ric
es

(i.
e.

,C
an

on
ic

al
C

or
re

la
tio

n
A

na
ly

si
s,

m
ul

ti-
us

er
M

IM
O

,e
tc

.)

A
se

to
fm

at
ric

es
w

ith
on

e
co

m
m

on
di

m
en

si
on

(m
or

e
th

an
tw

o
m

at
ric

es
)

M
at

rix
Ty

pe
s

Si
ng

le
sq

ua
re

or
re

ct
an

gu
la

rm
at

ric
es

Sq
ua

re
or

re
ct

an
gu

la
rt

w
o

m
at

ric
es

w
ith

th
e

sa
m

e
ro

w
si

ze
A

te
ns

or
co

ns
ist

in
g

of
co

m
pl

ex
m

at
ric

es
w

ith
th

e
sa

m
e

nu
m

be
ro

fr
ow

sa
nd

va
rio

us
nu

m
be

ro
fc

ol
um

ns

Pu
rp

os
e

D
ec

om
po

se
sa

si
ng

le
m

at
rix

in
to

th
re

e
se

pa
ra

te
m

at
ric

es
re

pr
es

en
tin

g
its

si
ng

ul
ar

ve
ct

or
sa

nd
si

ng
ul

ar
va

lu
es

To
fin

d
co

m
m

on
str

uc
tu

re
so

rc
or

re
la

tio
ns

be
tw

ee
n

tw
o

se
ts

of
da

ta
To

an
al

yz
e

a
co

lle
ct

io
n

of
m

or
e

th
an

tw
o

m
at

ric
es

So
lu

tio
n

Pr
od

uc
es

un
iq

ue
so

lu
tio

ns
fo

r
sq

ua
re

m
at

ric
es

(th
e

be
st

lo
w

-r
an

k
ap

pr
ox

im
at

io
n)

G
SV

D
m

ay
ha

ve
m

ul
tip

le
so

lu
tio

ns
(n

on
-o

pt
im

al
)

D
es

ig
ne

d
to

ha
nd

le
m

ul
tip

le
te

ns
or

sa
nd

ca
n

re
ve

al
sh

ar
ed

pa
tte

rn
sa

m
on

g
th

em

32



mean and variance σi. The transmitted signal, denoted as x ∈ Cn×1, is subject to inter-

ference mitigation techniques using precoding and decoding matrices Pb ∈ Cn×n and

Di ∈ Cm×m, respectively. The decomposition of channels, as described in Eq. 2.16,

leads to the selection of detection matrices Di as U and V for the near and far users. Ad-

ditionally, the precoding matrix Pb is modified to Q
√
P/t, where P represents the maxi-

mum transmission power and t is a power normalization coefficient [28]. Consequently,

the MIMO receivers obtain the transmitted signal as follows:

UyN = UHNPbx + UnN =
P

t
√︁
dτN

ΣN + UnN , (2.18)

VyF = VHFPbx + VnF =
P

t
√︁

dτF
ΣF + VnF . (2.19)

Please note that U and V are the unitary matrices; therefore, the unitary matrices U and

V preserve the variance of noise after multiplication with them.

Example: In this example, we analyze a basic setup comprising a base station with four

transmitter antennas. The near user is equipped with three receiver antennas, while the

distant users have two receiver antennas. The near, which small-scale channel coefficient

denoted as HN ∈ C3×4, is located dN = 40 meters away from the base station. On the

other hand, the far user, represented by HF ∈ C2×4, is located dF = 75 meters away

from the base station. The value of the path loss component, denoted as α, is 3.2.

HN =

⎡⎢⎢⎢⎢⎣
0.629 + 0.735i 0.066 + 0.931i 0.193 + 0.616i 0.924 + 0.556i

0.210 + 0.772i 0.260 + 0.013i 0.639 + 0.949i 0.263 + 0.915i

0.752 + 0.907i 0.804 + 0.234i 0.524 + 0.950i 0.065 + 0.641i

⎤⎥⎥⎥⎥⎦ ,

HF =

⎡⎢⎣0.390 + 0.173i 0.604 + 0.135i 0.926 + 0.021i 0.394 + 0.827i

0.485 + 0.126i 0.549 + 0.505i 0.918 + 0.947i 0.963 + 0.015i

⎤⎥⎦ .

Decoding matrices U ∈ C3×3 and V ∈ C2×2 can be found as follows:

U =

⎡⎢⎢⎢⎢⎣
0.5886 + 0.0000i 0.0000 + 0.0000i 0.8084 + 0.0000i

0.2571− 0.6199i 0.4855 + 0.2742i −0.1872 + 0.4513i

−0.2400 + 0.3816i 0.6442 + 0.5235i 0.1747− 0.2778i

⎤⎥⎥⎥⎥⎦ ,
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V =

⎡⎢⎣−0.5294 + 0.7844i 0.3201 + 0.0453i

−0.2029− 0.2517i 0.4024− 0.8565i

⎤⎥⎦ .

And the precoding matrix Q becomes

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.2004 + 0.3013i 0.2468− 0.5664i 1.2740− 0.5080i 0.6976− 0.7226i

−0.4527 + 0.5098i −0.0139− 0.7738i 0.7713 + 0.3349i 0.0869− 0.8978i

−0.8984 + 0.6990i −0.1623− 1.2709i 1.4061− 0.6229i 0.2928− 0.3442i

0.2405 + 0.5082i 0.6040− 1.2088i 0.7572− 0.7511i 0.9449− 0.2902i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Let’s rearrange the super-positioned transmitted signal x ∈ C4×1 with power allocation

such that x = Ps, where P ∈ C4×4 is the diagonal nonnegative power allocation matrix

and s ∈ C4×1 contains the coded signals for both users as follows:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p1,1 0 0 0

0 p2,2 0 0

0 0 p3,3 0

0 0 0 p4,4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

P

×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

l1s1,1 +
√︁

(1− l21)s1,2

l2s2,1 +
√︁
(1− l2)2s2,2

l3s3,1 +
√︁
(1− l3)2s3,2

l4s4,1 +
√︁

(1− l24)s4,2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

s

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p1,1(l1s1,1 +
√︁
(1− l21)s1,2)

p2,2(l2s2,1 +
√︁
(1− l2)2s2,2)

p3,3(l3s3,1 +
√︁
(1− l3)2s3,2)

p4,4(l4s4,1 +
√︁
(1− l24)s4,2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where si,1 and si,2 represent the corresponding message, and li,1 and li,2 are the power

allocation coefficients for the near and far users. Also we assume that s encoded with

unit power i.e, ∥si∥2 = 1, i ∈ {1, 2, 3, 4}. After the GSVD is applied to the downlink

channels, the channels become

ΣN =

⎡⎢⎢⎢⎢⎣
0 0.4526 0 0

0 0 1.0000 0

0 0 0 1.0000

⎤⎥⎥⎥⎥⎦ , ΣF =

⎡⎢⎣1.0000 0 0 0

0 0.8917 0 0

⎤⎥⎦ .

The observations at the near user is equal to yN = ΣNx√︁
dαN

+ nN that can be written as
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follows:

yN =

⎡⎢⎢⎢⎢⎣
0 0.4526 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p1,1(l1s1,1 +
√︁

(1− l21)s1,2)

p2,2(l2s2,1 +
√︁

(1− l22)s2,2)

p3,3(l3s3,1 +
√︁

(1− l23)s3,2)

p4,4(l4s4,1 +
√︁

(1− l24)s4,2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
1√︁
dαN

+

⎡⎢⎢⎢⎢⎣
nN,1

nN,2

nN,3

⎤⎥⎥⎥⎥⎦ ,

=

⎡⎢⎢⎢⎢⎣
0.4526× (l2s2,1 +

√︁
(1− l22)s2,2)

√︁
d−α
N + nN,1

1× (l3s3,1 +
√︁

(1− l23)s3,2)
√︁
d−α
N + nN,2

1× (l4s4,1 +
√︁

(1− l24)s4,2)
√︁
d−α
N + nN,3

⎤⎥⎥⎥⎥⎦ .

Similarly, the observations at the far user yF is equal to yF = ΣF x√︁
dαF

+ nF and it can be

given as follows:

yF =

⎡⎢⎣1 0 0 0

0 0.8917 0 0

⎤⎥⎦×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p1,1(l1s1,1 +
√︁

(1− l21)s1,2)

p2,2(l2s2,1 +
√︁

(1− l22)s2,2)

p3,3(l3s3,1 +
√︁

(1− l23)s3,2)

p4,4(l4s4,1 +
√︁

(1− l24)s4,2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
1√︁
dαF

+

⎡⎢⎣nF,1

nF,2

⎤⎥⎦ ,

=

⎡⎢⎣ 1× (l1s1,1 +
√︁
(1− l21)s1,2)

√︁
d−α
F + nF,1

0.8917× (l2s2,1 +
√︁

(1− l22)s2,2)
√︁
d−α
F + nF,2

⎤⎥⎦ .

We can consider each sub-channel an individual SISO channel; therefore, they may re-

quire different SIC ordering regarding their effective channel gains. Furthermore, by ex-

amining the expressions for yN and yF , we can deduce that s1 corresponds to a private

stream intended for the far user. On the other hand, s3 and s4 represent private streams

dedicated to the near user, while s2 serves as the common stream shared by both users.

The OMA transmission strategy can be employed for private streams. For example, the

first steam can equal s1 = s1,2. Chapter 4 will provide an in-depth examination of se-

crecy aspects for further analysis. Now, let us have a look at the decoding of the com-

mon stream. It can be calculated that the near user has a stronger channel gain than the

far user as follows, i.e., 0.4525√
403.2

≥ 0.8917√
753.2

. Therefore, the near and far users decode their

signals as follows:

RN,2 = log2

(︃
1 +

p2,2 × l22
0.4525
403.2

Var(nN,2)

)︃
, (2.20)
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RF,2 = log2

(︃
1 +

p2,2 × (1− l22)× 0.8917
753.2

p2,2 × l22
0.4525
403.2

+ Var(nF,2)

)︃
. (2.21)

Likewise, data rate expressions can be derived for private channels by eliminating inter-

user interference. Additionally, the transmitted power from each antenna, denoted as P,

holds a specific physical interpretation, such as maximum transmit power from each an-

tenna element. Hence, the opportunity for further exploration emerges from optimizing

the elements within P, encompassing enhancing secrecy, improving data rate, ensuring

fairness, and selecting optimal antennas. In Chapter 5, we have conducted additional re-

search on power consumption in RF chains.

2.3 Mobile Edge Computing

Mobile edge computing, also known as multi-access edge computing, brings the pro-

cessing of traffic and services from centralized cloud servers to the edge of the network,

closer to the end-users, as illustrated in Fig. 2.4. Instead of transmitting all the data to

the cloud for analysis, the MEC devices carry out the processing, storage, and analysis of

the data [29]. This approach minimizes latency, improving high-bandwidth applications’

performance in real-time [30]. The combination of NOMA and MEC holds immense

potential, as it not only enhances the spectral efficiency of MEC users but also empowers

IoT devices at the edge to handle computationally intensive tasks. Combining NOMA

and MEC requires optimal resource and power allocation and time management.
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Figure 2.4. NOMA assisted MEC model

In order to minimize offloading time, UE needs to determine the optimal task partition

coefficient (β) and power allocation (poff ). The offloading time (Toff ) can be defined as

follows:

Toff =
βN

R
, s (2.22)

Here, N represents the data size of the task, and R is the data rate of the UE. The en-

ergy consumed during the offloading time (Toff ) can be calculated as:

Eoff = Toff × poff , joule (2.23)

In the above equation, poff denotes the transmit power of the UE. Once the data is of-

floaded to the MEC server, the duration for the mobile execution time Tmec can be deter-

mined using the following equation:

Tmec =
βNCm

fm
, s (2.24)

In this equation, Cm represents the required CPU cycles to execute a bit, and fm is the

CPU frequency of the MEC server. The energy consumption during Tmec can be calcu-

lated as:

Emec = ξβNCmf
2
m, joule (2.25)
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where ξ denotes the energy consumption coefficient for the MEC. Table 2.3 summarizes

existing works on combining NOMA and MEC. It provides valuable insights into differ-

ent research papers that have explored this area regarding the optimization perspective.

2.4 Mathematical Tools Used in the Thesis

2.4.1 Karush-Kuhn-Tucker Method

The KKT (Karush-Kuhn-Tucker) method is a mathematical technique utilized to solve

optimization problems containing equality and inequality constraints, regardless of whether

the problem is linear or nonlinear. The KKT conditions, namely stationary, primal feasi-

bility, dual feasibility, and complementary slackness, are necessary but insufficient to

determine the global optimal solution. In other words, meeting the KKT conditions at

a point does not guarantee that it is the global optimum but a local optimum. Second-

order sufficient conditions must be examined to ascertain a point’s global optimality. In

this part, we will discuss the necessary and sufficient conditions for the following prob-

lem:

min
x

f(x) (2.26a)

s.t. gi(x) ≤ 0 i ∈ {1, 2, ..m}, (2.26b)

hj(x) = 0 j ∈ {1, 2, ..n}, (2.26c)

Necessary conditions

Stationary: The stationary condition states that if a solution point satisfies the stationary

condition, the point is either a local minimum or local maximum, which means that the

first-order derivative of the objective function on this point is equal to zero, i.e.,∇f(x∗) =

0.

Primal feasibility: Primal feasibility refers to the process of verifying whether a candi-

date solution (x∗) fulfills the equality and inequality constraints of an optimization prob-
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Table 2.3. Summary of some existing works on NOMA-MEC

Ref. Objective Method Technol-
ogy

Constraints Optimization parameters Offloading
policy

[31] Minimize task
offloading and
computing delay

Linear problem
using auxiliary
variable

massive
MIMO

Transmit power,
MEC computing
capacity

Power allocation, computa-
tion frequency allocation

Partial

[29] Minimize delay Bisection
search

SISO-
MEC

Energy and of-
floading power,
computation time
at MEC

Task partition coefficient,
power allocation

Partial

[26] Minimize total
energy minimiza-
tion during local
computing task
offloading and
MEC computing

AO-SCA MIMO-
MEC

Total power, time,
energy consump-
tion on RF chains

Task partition coefficient,
power allocation

Partial

[27] Minimize delay Dinkelbach
transform-SCA

MIMO-
MEC

Total power Power allocations Full

[32] Minimize system
energy consump-
tion

SCA SISO-
MEC

Time, transmis-
sion power, decod-
ing power

Power allocation Full

[33] Minimize delay Alternating
optimization
(AO)

UAV
assisted
SISO-
MEC

Energy and QoS Trajectory of UAV, power
allocation, user scheduling

Full

[34] Maximize com-
putation capacity

AO, DC pro-
gramming

Backscatter-
assisted
SISO_NOMA

Energy and QoS Energy harvesting time
coefficient, BackCom time
coefficient, transmission
time, computing resource
allocation

Partial

[35] Maximize com-
putation capacity

AO, Concave-
convex proce-
dure and SDR

IRS and
UAV
assisted
SISO-
NOMA

Total transmit
power

Phase shift of IRS, trans-
mit power, computational
resource allocation, the tra-
jectory of UAV

Binary

[36] Minimize system
energy

AO, Matching
algorithm,
SCA

SISO-
MEC

Latency Power allocation, time,
sub-channel allocation

Binary

[37] Maximize com-
putation capacity

Deep reinforce-
ment learning

SISO-
multi-
MEC

Delay, limited
sub-channel

Task scheduling, power
allocation

Binary

[30] Minimize latency AO WPT, IRS Transmit power Power allocation, phase
shift of IRS

Partial

[38] Minimize total
energy consump-
tion

TD3 SISO-
MEC

Transmit power,
latency

Task partition, power allo-
cation

Binary

[39] Maximize com-
putation probabil-
ity

Meta-heuristic-
based algo-
rithms, PSO,
GA

SISO-
MEC

Transmit power,
computational
resource

Task partition, power allo-
cation

Binary/par-
tial/full

[40] Minimize power
consumption

AO, Riemann
gradient de-
scent

IRS-MEC Delay, computa-
tional resource

Bandwidth allocation,
computational resource
allocation, power alloca-
tion, the phase shift of IRS

Binary
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lem, i.e., gi(x∗) ≤ 0 and hj(x∗) = 0.

Dual feasibility: Dual feasibility requires that the Lagrange multipliers associated with

the inequality constraints are nonnegative, i.e., µj ≥ 0 for i ∈ {1, 2, ..m} where m is the

number of inequality constraint.

Complementary slackness: Complementary slackness establishes a connection between

two key aspects of constrained optimization: primal feasibility and dual feasibility. The

complementary slackness indicates whether the inequality constraints are effective or

not on the objective function. The complementary slackness equations for the inequality

constraints in (2.26b) can be given as follows:

µigi(x∗) = 0 i ∈ {1, 2, ..m}. (2.27)

Eq. 2.27 indicates that if µi > 0, ith inequality is binding; otherwise, µi is not effective

on the objective function. Eq. 2.27 indicates that if the Lagrange multiplier associated

with the ith inequality constraint, denoted as µi, is greater than zero, it indicates that the

ith inequality constraint is binding, meaning it affects the optimization problem’s solu-

tion. Conversely, if µi is zero, it implies that the constraint does not impact the objective

function.

Sufficient conditions

The sufficient condition involves evaluating the second-order derivative of the objec-

tive function with respect to a potential solution point. If the variable x is a vector, the

second-order derivative is represented by the Hessian matrix. A solution point is con-

sidered the global optimum if the Hessian matrix is either positive-definite or negative-

definite. Let’s define the Lagrangian function as follows:

L(x,µi,λj) = f(x) + µTg(x) + λTh(x) (2.28)
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where

g(x) =

⎡⎢⎢⎢⎢⎣
g1(x)

:

gm(x)

⎤⎥⎥⎥⎥⎦ , h(x) =

⎡⎢⎢⎢⎢⎣
h1(x)

:

hl(x)

⎤⎥⎥⎥⎥⎦ , µ(x) =

⎡⎢⎢⎢⎢⎣
µ1(x)

:

µm(x)

⎤⎥⎥⎥⎥⎦ and λ(x) =

⎡⎢⎢⎢⎢⎣
λ1(x)

:

λl(x)

⎤⎥⎥⎥⎥⎦ (2.29)

The sufficient condition states that if the inequality

sT∇2
xxL(x∗,µ∗

i ,λ
∗
j)s ≥ 0 (2.30)

holds for all nonzero vectors s, then the vector x∗ corresponds to the minimum solution

for the given optimization problem (2.26).

An example for the optimal solution using KKT

Let’s find the optimal solution for the following problem.

min
x

f(x) = 4x2
1 + 3x2

2 (2.31a)

s.t. g(x) = 3x1 + 5x2 ≤ 20 (2.31b)

h(x) = 2x1 + x2 = 10 (2.31c)

The Lagrangian function can be formulated as follows:

L(x, µ, λ) = f(x) + µg(x) + λh(x) (2.32)

where µ and λ are the Lagrange multipliers associated with the inequality and equal-

ity constraints, respectively. Substituting the objective function f(x) and the constraint

functions g(x) and h(x), we have:

L(x, µ, λ) = 4x2
1 + 3x2

2 + µ(3x1 + 5x2 − 20) + λ(2x1 + x2 − 10) (2.33)
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Determine the partial derivatives of the Lagrangian with respect to the decision vari-

ables:

∂L
∂x1

= 8x1 + 3µ+ 2λ (2.34)

∂L
∂x2

= 6x2 + 5µ+ λ (2.35)

Set the derivatives equal to zero to find the stationary points:

8x1 + 3µ+ 2λ = 0 (2.36)

6x2 + 5µ+ λ = 0 (2.37)

Solve the above equations along with the equality constraint and complementary slack-

ness:

2x1 + x2 = 10 (2.38)

µ(3x1 + 5x2 − 20) = 0 (2.39)

Case 1 (µ=0): We assume that µ equals zero to solve (2.26). Therefore, we got

8x1 + 2λ = 0 (2.40)

6x2 + λ = 0 (2.41)

2x1 + x2 = 10 (2.42)

From the equations above, x1 = 15
4

, x2 = 5
2

and λ = −15. Check if x satisfies the

KKT conditions. Primal feasibility: 315
4
+ 55

2
≤ 20 is not correct because 23.75 > 20.

Therefore, the given solution is not a feasible solution. Thus, there is no need to check

the other conditions, and we continue to the second case, where µ > 0.

Case 2 (µ>0): From Eq. (2.39) then we can say that 3x1 + 5x2 − 20 = 0. Therefore,

3x1 + 5x2 − 20 = 0 (2.43)

8x1 + 3µ+ 2λ = 0 (2.44)
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6x2 + 5µ+ λ = 0 (2.45)

2x1 + x2 = 10 (2.46)

From the equations above, x1 = 30
7

, x2 = 10
7

, λ = −94.2857 and µ = 17.1429. Check

if x satisfies the KKT conditions. Primal feasibility: g(x1, x2)=3×30
7
+ 5 × 10

7
≤ 20,

and h(x1, x2)=2 × 30
7
+ 10

7
= 10. Therefore, primary feasibility constraints are satisfied.

Dual feasibility: the Lagrange multipliers µ are non-negative (µ ≥ 0). Therefore, the

solution passes the dual feasibility. Finally, the minimum value for f(x) equals 79.5918.

Figure 2.5 provides an illustration of the objective function, as well as the equality and

inequality constraints.

f = 1.75

f = 12

f = 31.75

f = 61

f = 79.59

-5 0 5
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-4

-3

-2

-1

0

1

2

3

4

5

f(x)

g(x)

h(x)

Optimal solution

Figure 2.5. Illustration of the objective and constraint functions

2.4.2 Fractional Programming

Fractional programming is an optimization technique that addresses problems involving

fractional objectives or constraints. In the realm of communication system design, frac-

tional expressions commonly arise in scenarios like power control, beamforming design,

and energy efficiency. These expressions can encompass various types, including linear,

quadratic, polynomial, logarithmic, and exponential forms. Fractional programming can
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be categorized into two groups: single-ratio problems and multiple-ratio problems.

Dinkelbach method

The Dinkelbach method is an iterative approach to solving single-ratio problems, ensur-

ing convergence by updating an auxiliary variable, denoted as y. To begin, let us define

the single-ratio problem as presented in [41]:

max
x

A(x)
B(x)

(2.47a)

s.t. x ∈ X (2.47b)

where A(x) is nonnegative function on the numerator and B(x) is a positive-valued func-

tion on the denominator, i.e., A(x) : Rd → R+ and B(x) : Rd → R++. By introducing

the auxiliary variable y, we can transform (2.47) into the following form:

max
x

A(x)− yB(x) (2.48a)

s.t. x ∈ X (2.48b)

The variable y is updated as follows:

y[t+ 1] =
A(x[t])
B(x[t])

, (2.49)

where t denotes the iteration number. The Dinkelbach method is effective in providing

the optimal solution for single-ratio problems. However, its applicability to multi-ratio

problems is limited. To address this, Shen et al. introduced the quadratic transform for

multi-ratio fractional problems [42].

Quadratic transform

Let us consider a generalized form of a single-ratio problem, also referred to as a multi-

ratio problem [42]:

max
x

M∑︂
m=1

Am(x)
Bm(x)

(2.50a)
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s.t. x ∈ X (2.50b)

where Am(x) is nonnegative function on the numerator and Bm(x) is a positive-valued

function on the denominator, i.e., Am(x) : Rd → R+ and Bm(x) : Rd → R++ and

m = 1, ...,M . By using the quadratic transform, (2.50) can be equivalently rewritten as:

max
x,y

M∑︂
m=1

(2ym
√︁
A(x)− y2m(B(x))) (2.51a)

s.t. x ∈ X , ym ∈ R (2.51b)

where y = {y1 y2 ... yM} is a variable that can be updated as follows:

ym[t+ 1] =

√︁
A(x[t])

B(x[t])
, ∀m = 1, ...,M. (2.52)

The Dinkelbach algorithm and the Quadratic transform are two well-known methods

used to solve fractional programming problems. While the Dinkelbach method is proven

to converge to the optimal solution for single-variable fractional problems, the Quadratic

transform can be applied to multi-variable fractional problems. Another notable differ-

ence is the complexity: the Quadratic transform converts the fractional expression into a

quadratic optimization form, making it more computationally efficient than the iterative

Dinkelbach solution [42].

2.4.3 Successive Convex Approximation

Suppose k ≥ 1 be an integer and the function f : R → R be k times differentiable at the

point a ∈ R. Then, f can be linearly approximated at the point of a as follows [43]:

f(x) ≈ f(a) +
∂f(x)

∂x
|x=a(x− a) (2.53)
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tangent line

Figure 2.6. An illustration of first-order Taylor approximation

The first-order Taylor approximation can be applied to multivariate functions. Let’s as-

sume that f(x) is a multivariate function taking x = [x1, x2, x3]
T as the variable. The

linear approximation of f(x) at the point a = [a1, a2, a3]
T can be written as follows:

f(x) ≈ f(a)+
∂f(x)
∂x1

|x=a(x1− a1)+
∂f(x)
∂x2

|x=a(x2− a2)+
∂f(x)
∂x3

|x=a(x3− a3). (2.54)

Further, the first-order Taylor expansion can be extended for matrix-valued functions.

Let assume that f(X) is a matrix-valued scalar function, at A, it can be linearized as fol-

lows:

f(X) ≈ f(A) +
∂f(A)

∂X
(X − A) (2.55)

where ∂f(A)
∂X is the Jacobian matrix of a function f evaluated at a point A, and it can be

written as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂x1

(A) ∂f
∂x2

(A) · · · ∂f
∂xn

(A)

∂f
∂x1

(A) ∂f
∂x2

(A) · · · ∂f
∂xn

(A)

...
... . . . ...

∂f
∂x1

(A) ∂f
∂x2

(A) · · · ∂f
∂xn

(A)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Example:

Linearize the function f(x) = x3
1 + 3x2

2 − x1 + 6x2 + 7 at a = [3 1]T.

f(x) ≈ f(a) +
∂f(x)
∂x1

|x=a(x1 − a1) +
∂f(x)
∂x2

|x=a(x2 − a2)

f(a) = f([3 1]T) = 40

∂f(x)
∂x1

= 3x2
1 − 1 = 26
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∂f(x)
∂x2

= 6x2 + 6 = 12

f(x) ≈ 40 + 26(x− 3) + 12(x− 1)

The result of the example is illustrated in Fig. 2.7.

Figure 2.7. The first-order Taylor approximation of a vector-valued function

2.4.4 Semi-definite Programming

Semi-definite programming (SDP) is an advanced optimization technique that encom-

passes and extends the capabilities of linear, quadratic, and second-order cone program-

ming. While linear programming typically involves vector decision variables, SDP ex-

tends the scope to positive semi-definite matrices as decision variables. The objective of

SDP is to minimize or maximize an objective function, with positive semi-definite ma-

trices as the decision variables, subject to constraints involving affine combinations of

symmetric matrices [44]. SDP in standard form can be given as follows:

max
X∈Sn

Tr(CX) (2.56a)

s.t. Tr(AiX) ⪰ bi, i = {1, .., p} (2.56b)

Tr(AjX) = bj, j = {p+ 1, ..,m} (2.56c)

X ⪰ 0 (2.56d)
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where X is a square decision variable matrix. The matrices C, Ai, and Aj represent ob-

jective and constraint matrices, all of which have the same size as X. The notation X ⪰

0 indicates that X is positive semi-definite. bi and bj are scalar values. PSD matrix can

be defined as follows. If a symmetric square matrix X ∈ Rn×n satisfies the condition

that v⊤Xv ⪰ 0 where v is a non-zero real vector, X is a semi-definite matrix. In certain

types of QCQP problems, such as principal component analysis or beamforming design

(discussed in Chapter 6), a rank one solution for the matrix variable X is desired. How-

ever, the rank one constraint is non-convex and cannot be directly incorporated into the

SDP formulation.

2.4.5 Semi-definite Relaxation

Semi-definite relaxation efficiently approximates non-convex QCQP problems by ex-

cluding the rank-one constraint. This approach allows for solving vector-valued QCQP

problems via the matrix-valued SDP method. Figure 2.8 illustrates the relationship be-

tween QCQP and SDP. A real-valued homogeneous QCQP problem can be expressed as

[45]:

min
x∈Rn

xTCx (2.57a)

s.t. xTAix ⪰ bi, i = {1, .., p} (2.57b)

xTAjx = bj, j = {p+ 1, ..,m} (2.57c)

where the matrices Ai and Ai are symmetric; however, their definiteness is not specified.

It is important to note that the main distinction between (2.56) and (2.57) lies in the vari-

able that requires optimization. The first step is to reformulate (2.57) as in (2.56). In this

process, the vector variable x is transformed into a new matrix variable X = xxT .
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Figure 2.8. Illustrating the relationship between linear programming, quadratically constraint quadratic
programming, and semi-definite programming

Importantly, it should be noted that the vector x is equivalent to a rank one PSD matrix.

Therefore, (2.57) can be rewritten as follows:

max
X∈Sn

Tr(CX) (2.58a)

s.t. Tr(AiX) ⪰ bi, i = {1, .., p} (2.58b)

Tr(AjX) = bj, j = {p+ 1, ..,m} (2.58c)

X ⪰ 0 (2.58d)

rank(X) = 1. (2.58e)

By relaxing the rank one constraint, (2.58) can be written as follows:

max
X∈Sn

Tr(CX) (2.59a)

s.t. Tr(AiX) ⪰ bi, i = {1, .., p} (2.59b)

Tr(AjX) = bj, j = {p+ 1, ..,m} (2.59c)

X ⪰ 0. (2.59d)

The problem denoted by (2.59) represents a convex optimization problem, which can

be effectively solved using a convex optimization toolbox such as [46]. Upon obtain-

ing the optimal solution X∗, it is necessary to derive the corresponding optimal x∗ from

it. However, the extraction process is not always as straightforward as in the case where

rank(X∗) is equal to one, resulting in X = xxT . In scenarios where rank(X∗) is greater

than one, alternative methods exist to obtain the optimal solution. One commonly used

approach involves considering the largest eigenvalue. By performing eigenvalue decom-
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position, the eigenvalues corresponding to X∗ can be arranged in descending order as

follows: λ1 ≥ λ2 ≥ . . . ≥ λr > 0. The associated eigenvectors are denoted as

q1, . . . , qr ∈ Rn, where r represents the rank of X∗. A sub-optimal solution for prob-

lem (2.59) can be obtained using the largest eigenvalue. Specifically, the approximate

solution is given by x̃ = λ1q1qT
1 . This method provides an effective strategy for scenar-

ios where rank(X∗) exceeds one. The Gaussian randomization method is another widely

used technique. For a more comprehensive explanation and utilization of the Gaussian

randomization method, please refer to Chapter 6, which is discussed in detail.
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Chapter 3

Hybrid NOMA Based MIMO

Offloading for Mobile Edge Computing

in 6G Networks

3.1 Introduction

Increasing demand for both achieving higher data rate to solve computationally intensive

tasks timely and connecting more user equipment (UEs) simultaneously have prompted

researchers to develop new technologies in the area of wireless communications. The

transmission delay time is a comprehensive metric for satisfying these demands.

Table 3.1. Comparison of OMA, NOMA, and H-NOMA

MA Scheme Advantages Disadvantages

OMA Lowest receiver complexity,
Lowest signaling overhead

Lowest spectrum efficiency,
Serve the lowest number of UEs,
Lowest fairness, Near-Far prob-
lem

NOMA Exploit Near-Far problem, Serve
the highest number of UEs, Ful-
fil different QoS requirements,
Lower latency compared with
OMA, Higher spectral efficiency
than OMA

Similar channel gain leads to
SIC error propagation, Higher
receiver complexity than OMA

H-NOMA Combining the advantages of
OMA and NOMA, Balanced
complexity-performance, Lower
latency compared with NOMA
under limited energy constraint

Highest signaling overhead,
Serve a lower number of users
compared with NOMA

Non-orthogonal multiple access (NOMA), multiple-input multiple-output (MIMO), and
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mobile edge computing (MEC) are promising technologies for minimizing the uplink/down-

link transmission delay [47], [5]. Specifically, NOMA, which hosts more than one user

in the same sub-carrier by exploiting the power domain, could play a vital role in the

next-generation communication networks due to its higher spectral efficiency, lower la-

tency, user fairness, and greater connectivity features compared with the traditional or-

thogonal multiple access (OMA) techniques [48]. Motivated by the advantage of high

throughput due to array and spatial diversity gains, several studies have shown that MIMO

will maintain its importance in 5G and beyond [47]. Driven by the increasing applica-

tions with computationally intensive tasks, MEC was proposed to reduce the computa-

tion time. The main idea behind MEC technology is to bring mini cloud computers to

the edge. Therefore, UEs in the cell can enjoy the cloud computing-like facilities by of-

floading their computationally complex tasks to the MEC server [49].

Existing studies with MEC mainly utilized OMA protocols [50], [51]. Joint optimiza-

tion of radio and computation resources have been investigated to reduce energy con-

sumption with latency constraints for the OMA-based MIMO-MEC system [50]. In [52],

the weighted sum of energy consumption and round transmission delay for OMA-based

multi-user MIMO-MEC offloading was minimized by using the semi-definite relaxation

(SDR) method. In [53], an inter-user task dependency problem was investigated while

minimizing a weighted sum of energy and offloading delay in the time division multi-

ple access (TDMA) based SISO-MEC systems. In [51], a TDMA-based multiple input

single output (MISO)-MEC system was integrated with secure wireless power transfer

(WPT).

Recently, researchers have demonstrated the superiority of NOMA over OMA in the

single-input single-output (SISO)-MEC for a delay minimization problem [5]. In [54],

offloading tasks partition ratio and offloading transmit power of the users were jointly

optimized to minimize the offloading delay. In [55], the energy minimization problem

was studied for a multi-user multi-BS NOMA-MEC network with imperfect channel

state information (CSI). In [56], total energy consumption was minimized by optimiz-

ing the user clustering, computing and communication resource allocation, and trans-

mit power for the NOMA-based SISO-MEC. In [6], a NOMA-based secure and energy-

efficient massive MIMO system was investigated.
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Hybrid NOMA (H-NOMA) is a hybrid multiple-access concept that combines NOMA

and OMA. More specifically, if there are two H-NOMA users in a cluster, they start up-

loading/downloading their data concurrently using the NOMA protocol. Once one of

the users completes its transmission, the other user switches to the OMA protocol to up-

load/download its remaining task. The advantages and disadvantages of the H-NOMA,

in comparison with OMA and NOMA, are presented in Table 3.1. H-NOMA achieves

better delay performance than pure NOMA and OMA as energy consumption is con-

sidered [5]. In [57], power allocation, time slot allocation, task assignment, and user

grouping methods were utilized to minimize energy consumption in the H-NOMA-based

SISO-MEC system.

In SISO-NOMA, two channels can be compared and their corresponding transmit pow-

ers can be allocated to the channels, but it is not as easy for MIMO as it is in SISO. The

generalized singular value decomposition (GSVD) method, which simultaneously de-

composes two matrices into their singular values, was proposed for MIMO-NOMA up-

link and downlink transmissions in [58].

Existing studies on NOMA-based MEC were mostly built on SISO transmission [5],

[56], [57]. To exploit MIMO’s diversity gain and H-NOMA’s superior delay performance

[5] with balanced spectral efficiency and system complexity features [59], we integrate

H-NOMA, MIMO and MEC technologies by the GSVD technique. To this end, an op-

timal power allocation problem is formulated. The problem is non-convex. Therefore,

some insights are provided to transform the non-convex problem into a suboptimal con-

vex form. The delay minimization problem is divided into two subproblems which are

represented by two time-frames: T1 and T2. T1 represents the total offloading delay dur-

ing NOMA transmission, and T2 is for OMA transmission. In addition, the MIMO chan-

nels between UEs and the MEC-assisted base station are decomposed into SISO chan-

nels by using the GSVD and the singular value decomposition (SVD) techniques accord-

ing to the H-NOMA method. Moreover, we mainly focus on T2 because T1 is a basic

concave problem [5]. In other words, T1 could be easily solved by numerical methods.

Due to the fractional form of T2, the Dinkelbach method [41] is applied to transform T2

into a subtractive form. After the transformation, an iterative closed-form solution for T2

is derived by using the Karush-Kuhn-Tucker (KKT) conditions. Finally, the delay perfor-
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mance of the OMA-MIMO-MEC and H-NOMA-MIMO-MEC systems are compared.

The effect of the antenna number on delay in the H-NOMA-MIMO-MEC system is also

investigated.

3.2 System Model

We consider a MIMO-NOMA-MEC uplink communication scenario in which one MEC-

assisted eNodeB communicates with two UEs, as shown in Fig. 3.1. We assume the

base station has M antennas, and each UE has K antennas. We consider the H-NOMA

scheme in this system model due to its superior delay minimization performance [5].

The model aims to minimize the total offloading time for UE1 and UE2. We assume that

UE1 is the near user and has a higher SINR than UE2. In order to achieve a further re-

duction in system complexity, it is assumed that the data amount for each user is identi-

cal. As shown in Fig. 3.2, UE1 offloads its task during T1. Concurrently, UE2 offloads

its task. However, UE2 might not complete its task in T1 due to its lower SINR. There-

fore, UE2 needs to continue offloading during T2 to complete its task. Accordingly, the

total delay time for UE2 can be found by T1 + T2.

Coverage Area

MEC-assisted Base Station

Figure 3.1. H-NOMA based MIMO MEC system model
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Figure 3.2. A basic concept of hybrid NOMA

Under the time-invariant wireless channel condition, the received signal at the base sta-

tion can be formulated as follows:

y =
2∑︂

i=1

Hixi + n, (3.1)

where y is an M × 1 dimensional vector. xi ∈ C1×K denotes information vector created

by the i-th user, n ∈ CM×1 denotes a complex additive noise with zero mean and σ2
n

variance. Hi ∈ CM×K represents a complex Gaussian channel matrix between UEi and

the base station. Hi can be decomposed into SISO channels by GSVD as follows:

Hi = UΛiVH
i , i ∈ {1, 2}, (3.2)

where U is an M ×M matrix, Vi is an M ×M unitary matrix and Λi= diag(σi,1, ..., σi,K).

In addition, we assume that the users have perfect channel state information (CSI). The

power of the transmitted signal xi,j is set to be normalized. Therefore, the received sig-

nal at the MEC-assisted base station can be expressed as:

y =
2∑︂

i=1

K∑︂
j=1

Λi,jPi,jxi,j + n̂j, (3.3)

where n̂j is still a complex AWGN. Pi,j is the power allocation expression for the i-th

user’s j-th sub-channel. The SIC technique can be used to decode the received signals.

According to the applied SIC order, x2 is decoded first and then it is subtracted from
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the superposed signals. Finally, x1 is decoded from the residue. This strategy is mainly

used for the delay-sensitive far user with low target data rate [60]. Therefore, this strat-

egy eliminates the occurrence of non-convex expressions in (3.5).

In the H-NOMA-based system, the achievable maximum data rates are denoted by R1

and R2 for UE1 and UE2, respectively. Compared to NOMA, these rates in an OMA

system, i.e., orthogonal frequency division multiple access (OFDMA), are given by R3

and R4.

R1 =B ×
K∑︂
j=1

log2

(︄
1 +

σ2
1,jP

N
1,j

n̂2
j

)︄
, bits/s/Hz (3.4a)

R2 =B ×
K∑︂
j=1

log2

(︄
1 +

σ2
2,jP

N
2,j

σ2
1,jP

N
1,j + n̂2

j

)︄
, bits/s/Hz (3.4b)

R3 =
B

2
×

K∑︂
j=1

log2

(︄
1 +

σ2
3,jP

O
1,j

n̂2
j

)︄
, bits/s/Hz (3.4c)

R4 =
B

2
×

K∑︂
j=1

log2

(︄
1 +

σ2
4,jP

O
2,j

n̂2
j

)︄
, bits/s/Hz (3.4d)

where B is the bandwidth. σ1,j and σ2,j are the generalized singular values; σ3,j and σ4,j

are singular values of the strong channel and the weak channels, respectively. The power

allocation expressions of the jth subchannels for UE1 and UE2 are denoted by PN
1,j and

PN
2,j in NOMA; PO

1,j and PO
2,j are the power allocation expressions in OMA as illustrated

in Fig. 3.2.

3.3 Problem Formulation and Solution

As 6G networks are expected to serve an unprecedented number of UEs with different

data rate requirements and power constraints, we formulate the transmission delay prob-

lem based on the H-NOMA technique in this section. According to H-NOMA, T1 and T2

correspond to the delay time during NOMA and OMA transmission in (3.5). The delay

minimization problem can be formulated as

min
PN
1,j ,P

N
2,j ,P

O
2,j

T1 + T2 (3.5a)
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s.t. − Pmax ≤ −
K∑︂
j=1

PO
2,j ≤ 0, (3.5b)

− Pmax ≤ −
K∑︂
j=1

PN
i,j ≤ 0, i = {1, 2}, (3.5c)

T1 =
N

B ×
∑︁K

j=1 log2(1 +
σ2
1,jP

N
1,j

n̂2
j

)
(3.5d)

T2 =
N −B × T1

∑︁K
j=1 log2(1 +

σ2
2,jP

N
2,j

σ2
1,jP

N
1,j+n̂2

j
)

B
2
×
∑︁K

j=1 log2(1 +
σ2
3,jP

O
2,j

n̂2
j

)
. (3.5e)

where (3.5a) is the objective function minimizing total transmission time. Particularly,

NOMA and OMA-based transmission time expressions are given in (3.5d) and (3.5e),

respectively. The inequality constraints in (3.5b) and (3.5c) denote the transmit power

limits for the users. (3.5) can be divided into two sub-problems (3.6) and (3.7).

min
PN
1,j

T1 (3.6a)

s.t. T1 =
N

B ×
∑︁K

j=1 log2(1 +
σ2
1,jP

N
1,j

n̂2
j

)
(3.6b)

− Pmax ≤ −
K∑︂
j=1

PN
1,j ≤ 0. (3.6c)

min
PN
1,j ,P

N
2,j ,P

O
2,j

T2 (3.7a)

s.t. T2 =
N − T1B ×

∑︁K
j=1 log2(1 +

σ2
2,jP

N
2,j

σ2
1,jP

N
1,j+n̂2

j
)

B
2

∑︁K
j=1 log2(1 +

σ2
3,jP

O
2,j

n̂2
j

)
(3.7b)

− Pmax ≤ −
K∑︂
j=1

PO
2,j ≤ 0, (3.7c)

− Pmax ≤ −
K∑︂
j=1

PN
i,j ≤ 0, i = {1, 2}. (3.7d)

where (3.6) only depends on PN
1,j and for this reason (3.6) is a concave optimization prob-

lem as in [48]. To solve (3.6), we use CVX, a package for specifying and solving con-

vex programs [46]. Therefore, we assume that PN
1,j and T1 are fixed for T2

1. However,
1While alternating optimization often converges to a favorable local optimum, which might be in proximity to the global op-

timum, it lacks a general guarantee of always reaching the global optimum, particularly when dealing with complex non-convex
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(3.7) is still a non-convex problem owing to its concave-to-convex fractional expression

in (3.7b). Fortunately, (3.7b) can be reformulated as a subtractive optimization problem

by applying the Dinkelbach method. As PN
1,j is fixed for T2, (3.7) can be rewritten as fol-

lows:

min
PN
2,j ,P

O
2,j

T2 (3.8a)

s.t. N = T2

K∑︂
j=1

log2(1 +
σ2
3,jP

O
2,j

n̂2
j

)⏞ ⏟⏟ ⏞
Aj

+ (3.8b)

N

const1

K∑︂
j=1

log2(1 +
σ2
2,jP

N
2,j

const2
)⏞ ⏟⏟ ⏞

Bj

(3.8c)

− Pmax ≤ −
K∑︂
j=1

PO
2,j ≤ 0, (3.8d)

− Pmax ≤ −
K∑︂
j=1

PN
i,j ≤ 0, (3.8e)

const1 =
K∑︂
j=1

log2(1 +
σ2
1,jP

N∗
1,j

n̂2
j

)⏞ ⏟⏟ ⏞
Cj

(3.8f)

const2 = σ2
1,jP

N∗
1,j + n̂2

j , i = {1, 2}. (3.8g)

Given that PN∗
1,j is fixed, the values of const1 and const2 remain constant. The Dinkel-

bach transform is applied to (3.8) as follows:

f(q) = max
PN
2,j ,P

O
2,j

1

2

K∑︂
j=1

Aj − q

K∑︂
j=1

(Cj −Bj) (3.9a)

s.t. − Pmax ≤ −
K∑︂
j=1

PO
2,j ≤ 0, (3.9b)

− Pmax ≤ −
K∑︂
j=1

PN
i,j ≤ 0, (3.9c)

i = {1, 2}, q ∈ R, (3.9d)

where q is the Dinkelbach parameter. Thus, (3.7) is transformed into a convex optimiza-

tion problem. To obtain the optimal solutions for PN
2,j and PO

2,j , the Lagrange multipliers

problems.
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method is applied to (3.9). The Lagrange function of (3.9) is written as follows:

L(PO
2,j, P

N
2,j, λ1,j, λ2,j, λ3, λ4) =

K∑︂
j=1

log2(1 +
σ2
3,jP

O
2,j

n̂2
2,j

)− q

(︄
K∑︂
j=1

log2(1 +
σ2
1,jP

N
1,j

n̂2
1,j

)

−
K∑︂
j=1

log2(1 +
σ2
2,jP

N
2,j

const2
)

)︄
− λ1,j(−PO

2,j)− λ2,j(−PN
2,j)

− λ3(
K∑︂
j=1

PO
2,j − Pmax)− λ4(

K∑︂
j=1

PN
2,j − Pmax) (3.10a)

where λi are the Lagrange multipliers. The KKT conditions are derived to find the opti-

mal solutions as follows:

∂L(PO
2,j, P

N
2,j, λ1,j, λ2,j, λ3, λ4)

∂PO
2,j

= 0 (3.11a)

∂L(PO
2,j, P

N
2,j, λ1,j, λ2,j, λ3, λ4)

∂PN
2,j

= 0 (3.11b)

λ1,j(−PO
2,j) = 0 (3.11c)

λ2,j(−PN
2,j) = 0 (3.11d)

λ3(
K∑︂
j=1

PO
2,j − Pmax) = 0 (3.11e)

λ4(
K∑︂
j=1

PN
2,j − Pmax) = 0 (3.11f)

K∑︂
j=1

PO
2,j − Pmax ≤ 0 (3.11g)

K∑︂
j=1

PN
2,j − Pmax ≤ 0 (3.11h)

−PN
2,j ≤ 0 (3.11i)

−PO
2,j ≤ 0 (3.11j)

λ1,j, λ2,j, λ3, λ4 ≥ 0. (3.11k)

The optimal solutions for PN
2,j and PO

2,j are given in Lemma 3.3.1. Algorithm 1 describes

Dinkelbach’s method-based closed-form solution.
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Lemma 3.3.1. H-NOMA power allocation policy

PO∗
2,j = max

⎛⎜⎝Pmax +
∑︁K

j=1

n̂2
j

σ2
3,j

K
−

n̂2
j

σ2
3,j

, 0

⎞⎟⎠ , (3.12a)

PN∗
2,j = max

⎛⎝Pmax +
∑︁K

j=1
const2
σ2
2,j

K
− const2

σ2
2,j

, 0

⎞⎠ , (3.12b)

where max(a, b) denotes the maximum of a and b.

Proof. Please see Appendix 3.5.

Algorithm 1 Optimal power allocation algorithm for T2

1: Find T1 by a convex optimization package (e.g., CVX)
2: Plug PN

1,j in (3.7b)
3: Set t = 0, q = 0,∆ → 0
4: if f(q) > ∆ then
5: t = t+ 1
6: Update PO

2,j and PN
2,j by Lemma 3.3.1

7: Update q as q =
1
2

∑︁K
j=1 Aj∑︁K

j=1(Cj−Bj)

8: end if
9: PN∗

2,j and PO∗
2,j are found by using q = qt in Lemma 3.3.1.

Complexity Analysis

The time complexity of the proposed algorithm is analyzed in this subsection. Algo-

rithm 1 consists of two loops: the outer loop is to apply the Dinkelbach algorithm and

the inner loop, which is a water filling-based solution, is to specify the number of power

allocated sub-channels (K) and to assign optimal power. The Dinkelbach parameter q is

updated in each iteration until f(q) < ∆. The computational complexity of the Dinkel-

bach algorithm is O(T ), where O(.) describes the upper bound of the time complexity

and T is the number of iterations required for convergence of the Dinkelbach algorithm

[61]. The required number of operations, at worst, for the inner loop, is O(K), where K

is the minimum rank of the near and the far users’ channel matrices. Therefore, the pro-

posed algorithm has a O(TK) complexity.
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3.4 Numerical Results

In this section, we evaluate the performance of the proposed H-NOMA-MIMO-MEC

system. The simulation parameters are given in Table 3.2.

Table 3.2. Simulation parameters

Parameter Value

Noise spectral efficiency, N0 -174 dBm/Hz

Bandwidth, B 10 MHz

Path loss component, α 3.2

Error tolerance, ϵ 10e-3

The radius of the inner ring 40 m

The radius of the outer ring 125 m

The number of bits needs to be offloaded, N 1 Gbit

Figure 3.3. Delay performance comparison of H-NOMA-MIMO-MEC with OMA-MIMO-MEC

Fig. 3.3 demonstrates the offloading delay performances of the H-NOMA and OMA-

based MIMO-MEC systems. The base station and the UEs are equipped with three an-
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tennas. The figure shows that the H-NOMA-MIMO-MEC performs better than OMA-

MIMO-MEC, particularly at higher power levels. This is because the weak NOMA user

suffers from co-channel interference at low SNR. Also, it can be concluded that increas-

ing transmit power has less impact on delay minimization compared with bandwidth.

This is one of the key advantages of using NOMA. Fig. 3.3 shows that the H-NOMA-

MIMO-MEC improves delay performance by an average of 11% compared to the OMA-

MIMO-MEC.

Figure 3.4. Delay performance of antenna numbers in H-NOMA-MIMO-MEC system

In Fig. 3.4, the impact of antenna numbers on transmission delay is demonstrated. Trans-

mission delay is closely related to the antenna number. The figure shows that the pro-

posed H-NOMA-based MIMO-MEC achieves better delay performance than SISO-MEC.

The most striking result from the figure is that having more antennas improve delay per-

formance significantly on the low transmit power region.
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Figure 3.5. Transmit energy consumption versus power budget

In Fig. 3.5, energy consumption of the H-NOMA based MIMO offloading system is

compared with OMA. It can be seen that NOMA yields better results for each antenna

configuration. Since the power budgets are the same for the UEs in H-NOMA and OMA

transmissions and the proposed H-NOMA based system completes offloading earlier

than OMA, energy efficiency is improved.
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Figure 3.6. Convergence performance of the proposed algorithm in terms of iteration number

Fig. 3.6 presents sub-linearly convergence of the proposed algorithm versus iteration

number. It can be observed in Fig. 3.6 that the algorithm significantly converges within

20 iterations for H-NOMA-MIMO-MEC.

3.5 Conclusion of Chapter 3

Recent developments in wireless communication have increased the need for spectrum

efficiency, energy efficiency, and data rate. This chapter presented the first study to com-

bine H-NOMA, MIMO and MEC technologies for delay minimization. In this chapter,

the H-NOMA-MIMO-MEC offloading delay was investigated. Due to the concave-to-

convex fractional nature of the problem, the Dinkelbach method was used to eliminate

fractional expression. Finally, an iterative closed-form solution was obtained. Accord-

ing to the simulation results, the proposed method improved the delay performance and

reduced the total energy consumption of the MIMO-MEC.
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Appendix

Proof of Lemma 1

Proof. To find the optimal value for PO∗
2,j , it is necessary to show that there is no more

feasible descent for (3.9) in terms of PO
2,j . Therefore, (3.11a) is executed as follows:

σ2
3,j

n2
j

1 +
σ2
3,jP

O
2,j

n2
j

+ λ1,j − λ3 = 0. (3.13a)

λ1,j is the vector consisting of the Lagrange multipliers (λ1,1, ..., λ1,K) corresponding

to (PO
2,1, ..., P

O
2,K), respectively. From the complimentary slackness condition in (3.11c),

either PO
2,j or λ1,j must be zero. When a MIMO channel is decomposed into decoupled

SISO channels, some may not be feasible for power allocation. Accordingly, we intro-

duce a variable (L) indicating the number of power-allocated SISO channels. Hence, we

can eliminate λ1,j expression in (3.13a) for the weak SISO channels. Therefore, λ3 can

be written as follows:

λ3 =
K

Pmax +
∑︁K

j=1

n̂2
j

σ2
3,j

. (3.13b)

It is clear from (3.13b) that λ3 is positive. Therefore, (3.13c) can be obtained from (3.11e).

K∑︂
j=1

PO
2,j − Pmax = 0. (3.13c)

Furthermore, PO
2,j can be simplified as follows:

PO
2,j =

σ2
3,j − λ3n̂

2
j

λ3σ2
3,j

. (3.13d)

Finally, by combining (3.13b) with (3.13d), the optimal expression for PO
2,j becomes

PO∗
2,j =

Pmax +
∑︁K

j=1

n̂2
j

σ2
3,j

K
−

n̂2
j

σ2
3,j

. (3.13e)

We follow similar steps to those above to find the optimal expression for PN∗
2,j . (3.10a) is

differentiated with respect to PN
2,j as follows:
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q
σ2
2,j

const2

1 +
σ2
2,jP

N
2,j

const2

+ λ2,j − λ4 = 0. (3.14a)

λ2,j goes zero for power allocated sub-channels. Thus, λ4 becomes

λ4 =
qσ2

2,j

const2 + σ2
2,jP

N
2,j

. (3.14b)

PN
2,j can be manipulated as follows:

PN
2,j =

qσ2
2,j − λ4const2

λ4σ2
2,j

. (3.14c)

We rewrite (3.11f) by using (3.14c) as

K∑︂
j=1

qσ2
2,j − λ4const2

λ4σ2
2,j

− Pmax = 0. (3.14d)

We combine (3.14b) with (3.14d). Finally, the optimal power allocation expression for

PN
2,j is as follows:

PN∗
2,j =

Pmax +
∑︁K

j=1
const2
σ2
2,j

K
− const2

σ2
2,j

. (3.14e)

Therefore, the proof for Lemma 3.3.1 is complete.
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Chapter 4

Secrecy Sum Rate Maximization for a

MIMO-NOMA Uplink Transmission in

6G Networks

4.1 Introduction

Chapter 3 focused on minimizing offloading delay. The significance of security in criti-

cal networks is evident, alongside the objective of minimizing delay. Building upon this

foundation, Chapter 4 aims to investigate the problem of maximizing the secrecy sum

rate in NOMA-Based MIMO-NOMA networks.

Spectral efficiency, massive connectivity, and low latency are essentials for wireless com-

munication. Besides, data security is an increasingly important area in the sixth genera-

tion of radio access networks (6G-RANs). This is because there is a sharp increase in

the number of critical Internet of Things (IoT) devices and services, such as autonomous

cars and mobile online banking applications; however, wireless channels are vulnerable

to malicious eavesdropping attacks. To protect wireless communication, physical layer

security (PLS) methods have gained importance before implementing high-level cryp-

tography techniques [22].

Non-orthogonal multiple access (NOMA), superposing multiple users’ signals in the

power domain, is a promising technique to meet those requirements. Furthermore, be-

ing compatible with the present schemes in use, such as time division multiple access
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(TDMA) or orthogonal frequency division multiple access (OFDMA), is a remarkable

feature of NOMA [62]. There is a growing body of literature that proves the supremacy

of NOMA over orthogonal multiple access (OMA) in terms of sum ergodic capacity

[63], user fairness [4] and green communication [64].

In recent years, there has been an increasing interest in the physical layer security of

NOMA networks. In [65], the optimal closed-form power allocation policy was derived

to maximize the secrecy rate in a single-input, single-output (SISO)-NOMA downlink

system. This study revealed that NOMA has a better secrecy sum rate (SSR) than OMA

in the single antenna configuration [65]. In [66], a maximum ratio transmission beam-

forming was used to secure the far user from internal eavesdropping in a two-user multiple-

input single-output (MISO)-NOMA downlink network. In [67], an artificial noise (AN)

based transmit beamforming scheme and an inter-user-interference-based scheme were

used to disturb the eavesdropper in a MISO-NOMA downlink network. In [66], the co-

operative rate splitting method was introduced to maximize the SSR in a MISO down-

link scenario. According to this method, the message for the legitimate users was split

into two parts: common and private parts. Herein the common signal was used as AN;

the private signals can be decoded by applying successive interference cancellation (SIC)

techniques. In [68], a secure beamforming design was studied for a private unicasting

user among multicasting users in an unmanned aerial vehicle (UAV)-assisted MISO-

NOMA downlink network. In [69], a secure beamforming design was studied in a MIMO-

NOMA downlink network with and without having perfect channel state information

(CSI). In [70], the SSR was maximized in a MISO-NOMA-based simultaneous wireless

information and power transfer (SWIPT) system. The SSR maximization problem for a

MISO-NOMA downlink multiple-input multiple-output (MIMO)-NOMA network was

converted to a second-order cone programming (SOCP) problem in [69]. To improve

PLS for a cognitive radio network (CRN) assisted downlink MIMO-NOMA system, the

zero-forcing and eigen beamforming techniques were proposed in [71]. In [72], the arti-

ficial noise injection technique was utilized for a massive MIMO-assisted NOMA down-

link network. In [73], the SSR optimization problem for a downlink MIMO-NOMA net-

work which hosts multiple MIMO users and a multiple-antenna-equipped eavesdropper

was investigated.

68



However, a few studies in the literature regarding the SSR have only focused on uplink

PLS system [74]-[75]. In [74], a secure single input multiple outputs (SIMO)-NOMA

system was studied by optimizing the SIC order and the power allocation to the legiti-

mate users. In [76], effective secrecy throughput (EST) was proposed as a new physical

layer security metric that helps decide on design parameters in the SIMO-NOMA net-

works. In [77], a cooperative dynamic jamming system was proposed to increase the

EST performance of the SIMO-NOMA network. In [75], an alternating optimization-

based algorithm was introduced to solve the secrecy problem in an OMA-based MIMO

uplink network.

The generalized singular value decomposition (GSVD) based linear precoding technique

has been widely considered in a growing body of literature because the GSVD technique

has low complexity and high performance [78]. However, few studies investigate the

GSVD-based SSR maximization problem in NOMA-MIMO networks. In [79], the SSR

maximization problem against legitimate internal users was investigated in a downlink

MIMO-NOMA system. In [80], an energy-efficient precoding design was presented in

a cooperative two-way relay transmission with an insecure relay. To the authors’ knowl-

edge, the GSVD-based SSR maximization problem with a jammer and multiple eaves-

droppers in a NOMA-MIMO uplink network has not been studied. The contributions of

this chapter to this growing area of literature are given as follows:

• A novel GSVD-based uplink MIMO-NOMA network is investigated in PLS scenar-

ios, where multiple external eavesdroppers and a friendly jammer are considered.

The researched system is different from [74]-[75], [80] due to the adopted schemes

or system configuration.

• To improve the considered system, a non-concave SSR maximization problem is

formulated. By equivalently transforming the norm functions in the original prob-

lem to the trace functions in the logarithmic expressions, a problem with the dif-

ference of convex (DC) programs is reformulated. After that, the first-order Taylor

approximation method is utilized to convert the DC problem into a suboptimal con-

cave problem, and an SCA-based algorithm is proposed. The property of the pro-

posed algorithm is analyzed, including complexity and convergence.
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• Simulation results indicate that GSVD-based MIMO-NOMA can significantly out-

perform conventional MIMO-NOMA regarding SSR. Moreover, the performance

gap between NOMA and OMA schemes is revealed based on the same optimiza-

tion method.

Notations

Matrices and vectors are presented by uppercase and lowercase boldface letters, respec-

tively. (·)H and (·)−H denote the Hermitian and the inverse of Hermitian, respectively.

Tr(·), (·)−1 and ∥ · ∥ stand for the trace, the inverse, and the Euclidean norm of a ma-

trix, respectively. | · | denotes for the absolute value of a complex number. The notation

diag(·) represents a diagonal matrix where the diagonal elements are from a vector and

[x]+ represents max(x, 0). BlkDiag(A,B,C) generates a block diagonal matrix from

A,B and C matrices.

4.2 System Model and Problem Formulation

This chapter investigates a NOMA-based uplink network with one BS and two legitimate

users, as depicted in Figure 4.1. The antennas at the BS, at the near user, and at the far

user are NB, NN , and NF , respectively. The legitimate users transmit their private data

to the BS simultaneously in the presence of a friendly jammer with NJ antennas and P

eavesdroppers with a single antenna1.
1This RAN setup may be practical for some powerful base stations [81].
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Figure 4.1. NOMA-MIMO wiretap channel with a friendly jammer

The jammer is assumed to have more antennas than the BS [81]. Having more antennas

enables the friendly jammer to utilize null space beamforming (NSBF), concentrating

jamming power towards the eavesdroppers while creating spatial nulls on the BS. The

received signals at the BS and eavesdropper can be expressed as follows:

yB =

Legitimate Signals⏟ ⏞⏞ ⏟
HBNxN⏞ ⏟⏟ ⏞

Near User Signal

+ HBFxF⏞ ⏟⏟ ⏞
Far User Signal

+ HBJxJ⏞ ⏟⏟ ⏞
Jamming Signal

+ nB⏞⏟⏟⏞
Noise

, (4.1a)

yEp =

Overheard Signals⏟ ⏞⏞ ⏟
hENpxN⏞ ⏟⏟ ⏞

Near User Signal

+ hEFpxF⏞ ⏟⏟ ⏞
Far User Signal

+ hEJpxJ⏞ ⏟⏟ ⏞
Jamming Signal

+ nEp⏞⏟⏟⏞
Noise

, (4.1b)

where HBN ∈ CNB×NN , HBF ∈ CNB×NF and HBJ ∈ CNB×NJ are complex Gaussian

flat-fading MIMO channel matrices from the near user, the far user and the jammer to

the BS, respectively. hENp ∈ C1×NN , hEFp ∈ C1×NF and hEJp ∈ C1×NJ are the Rayleigh

flat-fading MISO channel vectors from the near user, the far user and the jammer to the

pth (p ∈ {1, ..., P}) eavesdropper, respectively. xN ∈ CNN×1 and xF ∈ CNF×1 are

the precoded information bearing vectors, xJ ∈ C1×NJ is the precoded jamming vector

and nB ∈ CNB×1 and nEp ∈ C1×1 are the additive Gaussian noises with variance σB

and σEP
, respectively. The channel coefficient vectors and matrices can be expressed as

g√
d−α

, where g ∼ CN (0, I) is the small scale Rayleigh fading gain, α is the path-loss

exponent, and d is the distance between transmitter and receiver.
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It is assumed that the the perfect CSI of HBJ and hEJp are known by the friendly jam-

mer, and the CSI of the HBN and HBF are known by the legitimate users and the BS2

[79]. By applying the GSVD method, HBN and HBF can be decomposed as follows.

Theorem 4.2.1. [82]: Let consider that C consists of (HH
BN ,HH

BF ), k is the rank of C,

r is equal to k − rank(HH
BF ), and s is found by rank(HH

BN) + rank(HH
BF ) − k. There

exists UN ∈ CNN×NN and UF ∈ CNF×NF are unitary matrices, V ∈ CNB×NB is a

non-singular matrix, M ∈ Ck×k and 0 is a zero matrix of order k × (n− k) such that

V−1HBNUN = ΛN(M, 0BN), (4.2)

V−1HBFUF = ΛF (M, 0BF ), (4.3)

where ΛN
∼= BlkDiag(IN,DN, 0N), ΛF

∼= BlkDiag(IF,DF, 0F), IF and IN are r × r

and (k − r − s) × (k − r − s) identity matrices. DN denotes the diagonal coefficients

of HBN , i.e, DN = diag(λn,r+1, ..., λn,r+s) and DF denotes the coefficients of HBF , i.e,

DF = diag(λf,r+1, ..., λf,r+s) are s × s diagonal matrices which include the generalised

singular values of HBN and HBN , respectively. 0N and 0F are (NN −r−s)× (k−r−s)

and (NF − r − s)× (k − r − s) zero matrices, respectively.

As an uplink scenario is investigated in this chapter, the signals from the legitimate users

are precoded first and decoded at the BS. Therefore, the precoding matrix becomes UN

for the near user, and UF for the far user, and the decoding matrix at the BS becomes

V−1. The precoded signals transmitted by the near user, the far user, and the jammer can

be presented as follows:

xN = UN

√︁
PNsN , xF = UF

√︁
PF sF , and xJ = wJzJ , (4.4)

where PN = diag(pN1 , .., p
N
NN

) and PF = diag(pF1 , .., p
F
NF

) respectively denote the power

allocation matrices of the near user and the far user, and wJ ∈ C NJ×1 denotes the beam-

forming vector of the jammer. The power of the transmitted symbols sN ∈ C NN×1,

sF ∈ C NF×1 and artificial noise vector zJ ∈ C 1×NJ are normalized with one and the

transmit power of the jammer is Pjam. Moreover, NSBF is utilized at the jammer to gen-
2It’s essential to note that estimating the eavesdropper’s CSI can be challenging, especially when the eavesdropper is intention-

ally trying to remain hidden or when the channel conditions are highly dynamic. However, advanced signal-processing techniques
can estimates the eavesdropper’s channel information.
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erate wJ , which is in null space of HBJ such that HBJwJ = 0. Therefore, after applying

the GSVD, the received signal at the BS can be written as follows:

V−1yB⏞ ⏟⏟ ⏞
ỹB

= V−1HBNUN

√︁
PNsN + V−1HBFUF

√︁
PF sF

+ V−1HBJwJzJ + V−1nB,⏞ ⏟⏟ ⏞
ñB

ỹB = ΛN

√︁
PNsN +ΛF

√︁
PF sF + ñB. (4.5)

Even though MIMO channels cannot be compared directly, it is assumed that the chan-

nel gain of the near user is stronger than that of the far user due to a lower large-scale

path loss effect. Hence, according to the CSI-based SIC principle, the BS first decodes

xN by treating xF as interference. After xN is decoded and reconstructed, it is subtracted

from yB. The remaining residue consists of xF and nB. Finally, from the residue signal,

xF can be retrieved. The instantaneous signal-to-interference-plus-noise ratios (SINR) of

the near user and far user at the BS can be expressed as follows.

SINRN
B,i =

λ2
n,ip

N
i

λ2
f,ip

F
i + (V HBJwJwH

J HH
BJV)i,i + σ2

B,i

=
λ2
n,ip

N
i

λ2
f,ip

F
i + σ2

B,i

, (4.6a)

SINRF
B,i =

λ2
f,ip

F
i

(VHBJwJwH
J HH

BJV)i,i + σ2
B,i

=
λ2
f,ip

F
i

σ2
B,i

. (4.6b)

The received signal at the eavesdropper is given by

yEp = hENpUN

√︁
PNsN + hEFpUF

√︁
PF sF + hEJpwJzJ + nEp . (4.7)

Additionally, the assumption is made that the eavesdropper is capable of employing SIC.

Considering the discourse in Chapter 2, where the SIC order’s influence on the sum ca-

pacity in uplink NOMA networks remains unaltered, it can be deduced that the change

between (4.8a) and (4.8b) do not influence the sum capacity. The SINR for the near user
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and the far user at the eavesdropper can be respectively formulated as follows:

SINRN
Ep

=
∥hENpUN

√
PN∥2

∥hEFpUF

√
PF∥2 + Pjam∥hEJp∥2 + σ2

EP

, (4.8a)

SINRF
Ep

=
∥hEFpUF

√
PF∥2

Pjam∥hEJp∥2 + σ2
EP

. (4.8b)

The SSR maximization problem is formulated to be solved at the BS as follows:

Rs = max
PN ,PF

[RB −
P∑︂

p=1

REp ]
+ (4.9a)

s.t. Tr(PF ) + Tr(PN) ≤ Pmax, (4.9b)

PF ≥ 0,PN ≥ 0, (4.9c)

Ri
B ≥ Qi, i ∈ {F,N}, (4.9d)

REp ≥ 0, (p = 1....P ), (4.9e)

where RB and REp denote the capacity of the BS and the pth eavesdropper, respectively.

Rs is the SSR of the proposed system. Pmax is the power budgets and QF and QN are

the QoS requirements for the far and the near user, respectively. (4.9b) indicates that

the users cannot exceed the power budget, (4.9c) makes sure that the transmit powers

are non-negative, and (4.9d) defines the QoS constraints for the legitimate users. (4.9e)

guarantees that the capacity of the pth eavesdropper cannot be negative.

4.3 Problem Solution and Performance Analysis

The sum capacity at the BS and the pth eavesdropper are given by (4.10a) and (4.10b),

respectively.

RB =

NN∑︂
i=1

log2(1 + SINRN
B,i) +

NF∑︂
j=1

log2(1 + SINRF
B,j),

=
L∑︂
i=1

log2

(︄
1 +

λ2
n,ip

N
i + λ2

f,ip
F
i

σ2
B,i

)︄
, (4.10a)

REp = log2(1 + SINRN
Ep
) + log2(1 + SINRF

Ep
),
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= log2

(︃
1 +

∥hENpUN

√
PN∥2 + ∥hEFpUF

√
PF∥2

Pjam∥hEJp∥2 + σ2
EP

)︃
, (4.10b)

where L denotes the number of parallel virtual SISO channels between the legitimate

users and the BS. Also, L is the minimum rank number of the legitimate channels [22].

In order to guarantee the quality of service (QoS) of legitimate users, the following con-

straints should be satisfied by the far and near users, respectively.

RN
B =

L∑︂
i=1

log2

(︄
λ2
n,ip

N
i + λ2

f,ip
F
i + σ2

B,i

σ2
B,i

)︄
≥ QN +QF , (4.11a)

RF
B =

L∑︂
i=1

log2

(︄
λ2
f,ip

F
i + σ2

B,i

σ2
B,i

)︄
≥ QF . (4.11b)

In order to solve (4.9), which is a non-concave and NP-hard problem [83], the Taylor ap-

proximation method is provided to convert it into a suboptimal concave problem. To do

this end, some mathematical manipulations are applied first as follows:

∥hENpUN

√︁
PN∥2 =

⎛⎝
⌜⃓⃓⎷NN∑︂

i

(hENpUN

√︁
PN)2i

⎞⎠2

,

=

NN∑︂
i

(hENpUN

√︁
PN)

2
i =

NN∑︂
i

(hENpUN)
2
i pN,i,

= Tr(|diag(hENpUN)|2PN). (4.12)

By following similar steps above, ∥hEFpUF

√
PF∥2 can be equivalently written as

Tr(|diag(hEFpUF )|2PF ). However, (4.9) is still not a concave problem due to the sub-

traction of concave functions. Hence, the first-order Taylor approximation is applied on

the sum of REp in order to convert (4.9) into subtraction of concave and linear functions.

As a result, (4.9) becomes a concave optimization problem, as presented in following

max
PN ,PF

[f(PN ,PF )−
P∑︂

p=1

(gp(P(K)
N ,P(K)

F )− ∂gp(P(K)
N ,P(K)

F )

∂PN

(PN − P(K)
N )

− ∂gp(P(K)
N ,P(K)

F )

∂PF

(PF − P(K)
F ))]+ (4.13a)

s.t. (4.9b), (4.9c), (4.9d), and (4.9e). (4.13b)

where P(K)
F and P(K)

N are the optimal points of R(K)
s at the Kth iteration.
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f(PN ,PF ) and gp(P(K)
N ,P(K)

F ) are given by (4.10a) and (4.10b), respectively. The partial

gradients of gp with respect to PN and PF are given by (4.14a) and (4.14b), respectively.

∂gp(P(K)
N ,P(K)

F )

∂PN

(PN − P(K)
N ) =

1

ln(2)

∂

(︃
ln
(︃
1 +

∥hENpUN
√

PN∥2+∥hEFpUF
√

PF ∥2

Pjam∥hEJp∥2+σ2
EP

)︃)︃
∂PN

,

=
1

ln(2)

∂

(︃
ln
(︃
1 +

Tr(|diag(hENpUN )|2PN )+Tr(|diag(hEFpUF )|2PF )

Pjam∥hEJp∥2+σ2
EP

)︃)︃
∂PN

,

=

1
ln(2) Tr(|diag(hENpUN)|2(PN,j − P

(K)
N ))

Tr(|diag(hENpUN)|2P(K)
N ) + Tr(|diag(hEFpUF )|2P(K)

F ) + Pjam∥hEJp∥2 + σ2
EP

,

(4.14a)

∂gp(P(K)
N ,P(K)

F )

∂PF

(PF − P(K)
F ) =

1
ln(2)∂

(︃
ln
(︃
1 +

Tr(|diag(hENpUN )|2PN )+Tr(|diag(hEFpUF )|2PF )

Pjam∥hEJp∥2+σ2
EP

)︃)︃
∂PF

,

=

1
ln(2) Tr(|diag(hEFpUF )|2(PF,j − P

(K)
F ))

Tr(|diag(hENpUN)|2P(K)
N ) + Tr(|diag(hEFpUN)|2P(K)

F ) + Pjam∥hEJp∥2 + σ2
EP

.

(4.14b)

To solve (P2), a successive convex approximation (SCA) programming-based iterative

algorithm is presented in Algorithm 2.

Algorithm 2 GSVD-based SCA algorithm for solving (P2)

1: Initialize P(0)
N and P(0)

F , set K = 0 and ϵ

2: while |R(K+1)
s −R

(K)
s | ≤ ϵ do

3: Update P(K)
N and P(K)

F by solving (P2)
4: Update K = K + 1
5: end while

Accordingly, P(0)
N and P(0)

F are equally power allocated at the beginning. ϵ is the stopping

criteria. In each iteration, power allocation coefficients converge to a suboptimal solu-

tion.

4.3.1 Convergence Discussion

REp is linearized at the Kth iteration of the first-order Taylor approximation. Therefore,

(4.9a) can be defined as the subtraction of a linear function from a concave function,

which is a concave function. As the P (K)
N and P

(K)
F are at initial points, the solution can
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be derived by solving (P2) at the (K + 1)th iteration if |R(K+1)
s − R

(K)
s | ≤ ϵ is satis-

fied. The first-order Taylor approximation-based method is a non-decreasing expression

[66]. Therefore, the optimal solution is bounded by the error tolerance. This guarantees

the convergence of the proposed solution.

4.3.2 Complexity Analysis

Algorithm 2 runs the GSVD-based precoding within the first-order Taylor approximation-

based loop. The complexity of the GSVD based precoding is O (L
3

σ
+ L

σ
log(1

ϵ
)) [84],

where L is found by min(NN + NF , NB) and σ is the search step. In the outer loop, K

is the number of iterations, and ϵ is the error tolerance. Using the first-order approxima-

tion, REp is linearized, and the objective becomes a concave problem. Thus K has the

complexity of O(log(1
ϵ
)). In addition, the first order derivative of REp is taken with re-

spect to PN and PF . The complexity of these two processes is given by O(max{NN , NF}).

Finally, the time complexity of the proposed algorithm can be expressed by

O(
L3

σ
+

L

σ
log(

1

ϵ
))× log(

1

ϵ
)max{NN , NF}).

In addition, the proposed method is applicable to the MIMO-OMA scheme, where the

complexity of the near and the far users becomes O((L
3

σ
+ L

σ
log(1

ϵ
)) × log(1

ϵ
)NN) and

O((L
3

σ
+L

σ
) log(1

ϵ
))×log(1

ϵ
)NF ). The proposed method can be extended to the multi-user

scenario using a user pairing algorithms, i.e., near-far user pairing with a linear com-

plexity.

4.3.3 Extension to the Case of More Than Two Users

Even though this chapter investigates the SSR performance of the two-user GSVD-based

MIMO-NOMA system, this work can be easily extended to multi-user scenarios by ex-

ploiting hybrid multiple access methods. This makes the design compatible with the

3GPP specifications. The idea behind the hybrid multiple access system is that the BS

assigns a maximum of two users to one group as standardized in the 3GPP-LTE sys-

tem by using user pairing methods [85]. The pairs can be separated by orthogonal sub-

carriers or time slots, while the users in the same pair can use the proposed NOMA scheme.
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Therefore, the hybrid multiple access technique improves the SSR performance of the

current OMA system with existing fundamental resource blocks [86].

4.3.4 A Cost Comparison between MIMO-NOMA and MIMO-OMA

When a cost comparison is made between MIMO-OMA and MIMO-NOMA systems,

there are four important factors: spectral efficiency, power consumption, computational

complexity, and equipment cost. MIMO-NOMA systems are proven to be more spec-

tral efficient in [62], [63]. [87] reveals that multi-user NOMA achieves better joint en-

ergy and spectral efficiency than OMA systems. Regarding the equipment cost, the SIC

receiver has similar cost and hardware complexity compared with the traditional multi-

user receivers [88]. These results support the idea that MIMO-NOMA-based systems are

more cost-effective than MIMO-OMA systems.

4.4 Numerical Results

In this section, the performance of SSR achieved by MIMO-NOMA with a friendly jam-

mer is compared with some benchmark results. The power of the noise at the ith sub-

channel of the BS (denoted by σ2
B,i) and the pth eavesdropper (denoted by σ2

EP
) can be

calculated as σ2 = N0 ×B. The simulation parameters are listed in Table 4.1.

Table 4.1. Simulation parameters

Parameter Value

Noise spectral efficiency, N0 -174 dBm/Hz

Bandwidth, B 10 MHz

Path loss component, α 3.2

Error tolerance, ϵ 10e-3

The distance between the equipment 80 m

The number of legitimate users 2

The number of eavesdroppers, P 2

QoS requirements, QN and QF 2 BPCU
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In NOMA, sharing CSI information between nodes causes longer signaling overhead

compared to OMA; however, the performance degradation of NOMA can be compen-

sated by superior spectral efficiency and higher secrecy rate. Furthermore, the number of

assigned users in a group is limited to two to cope with the signaling overhead and high

receiver complexity problems.

Figure 4.2. SSR comparison in MIMO systems

In Fig. 4.2, the SSR comparison of the proposed method (GSVD-NOMA) with an MMSE-

based iterative NOMA, conventional TDMA (OMA), and random beamforming (RBF)

methods in [69] are shown in a MIMO scenario (NB = 6, NN = 2, NF = 2), where PJ

is 20 dBmW. The covariances of HBF and HBN are ten times higher than the variance of

the hEB and hEN . To make a fair comparison between the systems, we randomly deploy

two eavesdroppers instead of an eavesdropper with two antennas because the capacity

of MIMO systems is proportional to the multiplication of the receiver and the transmit-

ter antennas, while the capacity of the MISO system is proportional with the number of

transmitter antennas. Also, the nodes are placed equally distant from the BS, i.e., 80 m.

Hence, hBF has similar large-scale fading with hBN , which is the lower bound for the

proposed algorithm. The figure shows that the proposed method has better SSR than
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other methods. It can also be seen that the proposed algorithm can be applied to OMA

systems, and it (denoted by “GSVD-OMA”) archives better SSR compared to conven-

tional OMA systems. Another important insight from Fig. 4.2 is that the performance

gap between NOMA and OMA schemes is increased with the increasing SNR. This is

because NOMA-MIMO has better channel capacity compared with OMA.

Figure 4.3. SSR comparison NOMA with OMA

In Fig. 4.33, the SSR performance of the proposed method is compared with various

schemes in [75], namely alternating optimization-based (AM-POTDC), AO-CVX, AO-

PG algorithms, the singular value decomposition (SVD) based waterfilling algorithm,

and the equal power allocated NOMA. The main difference of this setup (NB = 6, NN =

6, NF = 6, P = 3) from the previous figure is the number of eavesdroppers. It can

be found that the jammer has increased the SSR performance of the proposed method.

However, it is clear that in low SNR, the NOMA system is more vulnerable to wiretap-

ping than the OMA-based system. This is because NOMA suffers from co-channel in-

terference along with multiple eavesdroppers. However, NOMA becomes more advan-

tageous with high SNR as the legitimate users share the whole bandwidth. Therefore,
3It should be noted that in Figures 3.3 and 3.4, with a data rate of 1 Gbit for N , the corresponding delay is notably elevated.
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the most striking conclusion from this figure is that OMA or NOMA schemes are suit-

able for different SNRs. To maximize the SSR over SNR, a hybrid system should be

considered. Please note that the reason why the 1000-fold increase does not affect the

performance of the proposed method is the following. The reason the enhancement in

the secrecy sum rate was not substantial, despite a thousandfold increase in jamming

power, can be attributed to the base station’s utilization of the GSVD technique. This

technique facilitates the targeted transmission of downlink signals to authorized users,

while the jammer employs omnidirectional jamming except towards the base station.

This is achieved through null spacing beamforming. Consequently, the power of the jam-

ming signal does not notably impact the received power from the base station.

Fig. 4.4 compares the SSR performance of NOMA with OMA with two different QoS

requirements. It can be seen from the figure that OMA users need less power to start se-

cure transmission compared to NOMA. This is because the far user in NOMA suffers

from inter-user interference severely, especially in low SNR. Moreover, as the QN con-

straint increases, the far user must utilize more transmit power to meet the QoS crite-

ria. Hence, the interference becomes more severe. As a result, if any of the NOMA users

can not satisfy the QoS constraints, the SSR becomes zero as there is no transmission.

On the other hand, once QoS requirements are met, NOMA provides better SSR perfor-

mance than OMA due to higher spectral efficiency.
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Figure 4.4. The effect of the QoS on the SSR in NOMA and OMA systems
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Figure 4.5. The SSR versus the iteration number

Fig. 4.5 presents the convergence performance of the proposed algorithm. This is be-

82



cause, SCA based algorithm has linearized the sum of REp at the point of (PK
N,PK

F ). There-

fore, the objective function becomes a convex optimization problem. Hence, the prob-

lem can be solved in two iterations. The figure also proves the convergence of the pro-

posed method.

4.5 Conclusion of Chapter 4

Security is one of the fundamental aspects of wireless networks. In this chapter, the sum

secrecy rates of a NOMA-MIMO uplink network have been maximized under total trans-

mit power and QoS constraints in different scenarios. The SCA-based algorithm has

been exploited as the objective function was not convex. Numerical results showed that

NOMA had achieved better SSR than some benchmarks, especially in high SNR. Fur-

ther research might explore eliminating noise floor in NOMA to increase SSR. Also,

combining OMA and NOMA, a hybrid multiple access system could be a good research

direction to enhance SSR performance.
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Chapter 5

Green NOMA-Based MU-MIMO

Transmission for MEC in 6G Networks

5.1 Introduction

Chapter 3 and Chapter 4 focused on the optimization of non-orthogonal multiple access

(NOMA)-based multiple-input multiple-output (MIMO) networks, primarily aiming to

maximize data rate while considering specific objectives such as secrecy rate or delay.

In this chapter, our investigation shifts towards examining the energy consumption of

NOMA-based MIMO-NOMA networks.

NOMA is a promising candidate for 6G networks [25]. Unlike the traditional orthogo-

nal multiple access (OMA) schemes, NOMA enables multiple users to be served at the

same communication resource (i.e., time, frequency, or code) [89]. As a result of this ap-

proach, NOMA was proven to have higher spectral efficiency compared to orthogonal

frequency-division multiple access (OFDMA) [90]. In recent years, there has been an in-

creasing interest in the power-domain NOMA, which superposes the transmitted signals

over the power domain and applies the successive interference cancellation (SIC) tech-

nique to decode the received signals [90]. MIMO is also one of the critical technologies

for next-generation multiple access schemes by exploiting multiplexing gain or spatial

diversity. Comparing channel matrices in MIMO-NOMA is not as straightforward as in

SISO-NOMA [86]. To circumvent this issue, [86] proposed using the generalized sin-

gular value decomposition (GSVD) technique to decompose two MIMO channels into

parallel SISO channels; consequently, GSVD enables the users to combine the benefits
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of NOMA with those of MIMO effectively [27].

Computational-intensive, delay-sensitive, and energy-hungry applications, such as vir-

tual/augmented reality and online gaming, require telecommunication operators to bring

cloud computing-like facilities to the edge of the networks. Mobile edge computers (MEC)

are small-size cloud computers that can meet different needs such as low delay, high pri-

vacy, and context-awareness in mobile networks [91]. Most research on NOMA-MEC

has been carried out using single-antenna configuration [92]-[93]. In [92], energy effi-

ciency for a delay-constraint massive Internet of Things (IoT) network was maximized

by jointly optimizing sub-channels, transmission power, and sub-carriers. In [94], dif-

ferent from [92], an energy minimization problem for multiple single-antenna users was

jointly optimized by considering the binary offloading model. The common assumption

of these two studies was that the users have the same data length; however, in a massive-

user scenario, the same length causes decoding order inconsistency and co-channel in-

terference. To solve this problem, users’ average delay was minimized by optimizing of-

floading task size and computation resources in [95]. In [96], different from the previ-

ous studies, a multi-user multi-base station scenario was investigated to minimize energy

consumption. The authors optimized this scenario’s binary task assignment, power allo-

cation, and user assignment variables. In [93], a wireless-powered NOMA-MEC system

was introduced. In the two-user system model, the users harvest the ambient energy and

offload their data to the MEC server. The time slots for wireless power transfer (WPT),

power allocation variables, and beamforming vectors were optimized [93].

Besides the SISO-NOMA-based studies above, OMA-based approaches can be applied

to NOMA systems for energy minimization. The authors of [97] proposed a slotted ALOHA

technique for wireless-powered IoT devices accessing the MEC server. This work opti-

mized a time interval for energy harvesting and data offloading. On the other hand, co-

channel interference is one of the problems of the NOMA system. This technique can

reduce co-channel interference and save energy by allowing the paired NOMA users to

access the MEC at a slotted time. In [98], the authors proposed a Lyapunov stochastic

optimization-based solution for energy minimization of MEC under the accuracy and la-

tency constraints. Unlike [98], to minimize long-term energy consumption, modulation,

and coding schemes, power and CPU frequencies of mobile devices and a base station is
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optimized in a discontinuous method [99].

It is more realistic to assume that the users have multiple antennas rather than one. Nev-

ertheless, a relatively small body of literature is concerned with the combination of the

NOMA, MIMO, and MEC technologies [25], [100]. In [25], the total offloading delay

was minimized for a hybrid NOMA-based MIMO-MEC system under power budget and

quality of services constraints. In [100], a millimeter wave (mmWave) MIMO-based

MEC offloading scenario was studied to maximize the weighted sum rate. In this work,

multi-antenna users were associated with a base station, and optimal precoding design

and power allocation were proposed.

Research has not yet investigated the combination of multiple-antenna-equipped NOMA

users and MEC technologies for the total energy minimization problem. For this reason,

the motivation of this chapter is to bring MEC’s computation, MIMO’s communication,

and NOMA’s connectivity capabilities together. To this end, we formulate the total en-

ergy minimization problem for a GSVD-based NOMA-MIMO-MEC and provide a low

complexity algorithm to solve the formulated problem. The main contributions of this

chapter can be listed as follows:

• We consider multiple antenna-equipped two NOMA users offloading their data to

the MEC server by cooperatively sharing the same communication resource to re-

duce total energy consumption. The energy minimization problem is formulated

by considering offloading time limitations, power allocation, task assignment, and

losses in RF chains.

• To combine NOMA, MIMO, and MEC technologies, we exploit the GSVD linear

beamforming method. As the formulated problem is non-convex, we used the al-

ternating optimization method by dis-jointly optimizing the task assignment coef-

ficients and the power allocation vectors. The task assignment problem was solved

in the proposed solution on the outer layer. The successive convex approximation

method was applied in the inner layer to convert the non-convex power allocation

problem into a first-order linear form. And the power allocation vectors were ob-

tained.

• Numerical results are provided to analyze the impact of offloading time, power
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budget, users’ locations, and data rate on energy consumption. We use OMA as a

benchmark scheme. According to the findings, NOMA based MIMO-NOMA net-

work saves a significant amount of energy compared to OMA, especially at a high

SINR rate with multiple antennas. Also, the findings reveal that optimal user pair-

ing is crucial to reducing energy consumption for NOMA.

5.1.1 Network Model

We consider a two-user NOMA-based MIMO-MEC offloading scenario where the base

station has M antennas, and the users (UEs) are equipped with K antennas as illustrated

in Fig. 5.1. The users can simultaneously offload their time-limited, CPU-intensive, or

memory-demanding tasks to the base station.

Figure 5.1. NOMA-based MIMO-MEC network

5.1.2 Channel Model

The wireless channel between the ith user (UEi) and the base station is formulated as a

quasi-static Rayleigh fading channel, i.e., Hi ∈ CM×K ∼ CN (0, 1) with a large scale

fading d−α, where d is the distance between the user and the base station and α is the

path-loss component. The users and the base station are assumed to know full channel

state information (CSI).
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5.1.3 Application of the GSVD Technique on MIMO Systems

GSVD is a linear precoding and decoding scheme widely proposed in NOMA-based

MIMO systems [86], [27]. The GSVD technique converts two MIMO channels into vir-

tual multiple orthogonal SISO channels so that GSVD simplifies communication re-

source allocation problems in MIMO systems. Even though the GSVD cannot provide

optimal performance, it was proven to be highly efficient and reduce the complexity of

MIMO systems [86]. Hi ∈ CM×K denotes a complex Gaussian channel matrix between

the ith user and the base station. Two MIMO channels can be decomposed as follows

[86]:

Hi = UΛiVH
i , i ∈ {1, 2}, (5.1)

where U is an M × M square invertible matrix, VH
i is an M × M unitary matrix and

Λi is a diagonal matrix. The diagonal elements of the Λi are made up from the singu-

lar values, i.e., Λi = {σi,1...σi,j} where j is the number of orthogonal subchannels. It

should be noted that σ1,j is in increasing order, and σ2,j is in decreasing order. In this

way, pairing σ1,j with σ2,j is ideal for combining MIMO with NOMA [86]. Therefore,

Vi and U−1 become the precoding and the detection matrices to diagonalize Hi.

5.1.4 Multiple Access Model

The key idea of the power domain NOMA is to allow multiple UEs to share the same

orthogonal resource blocks such as time, frequency, or codeword by exploiting the power

domain. The received signal at the base station is

y =
2∑︂

i=1

Hixi + n, (5.2)

where xi is the information vector of the ith user. For the uplink transmission, the appli-

cation of GSVD to NOMA can be given by

y =
2∑︂

i=1

L∑︂
j=1

σi,j

√︁
Pi,jxi,j + n̂j, (5.3)
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where L is the number of orthogonal sub-channels, Pi,j denotes the power allocation co-

efficient for the ith user’s jth subchannel. xi represents the ith user’s information bearing

signal. n̂j is complex additive white Gaussian noise at the jth orthogonal channel. The

achievable maximum data rates for UE1 and UE2 can be given as follows:

R1 = B

L∑︂
j=1

log2

(︄
1 +

σ2
1,jP1,j

σ2
2,jP2,j + n̂2

j

)︄
, bits/s/Hz, (5.4a)

R2 = B

L∑︂
j=1

log2

(︄
1 +

σ2
2,jP2,j

n̂2
j

)︄
, bits/s/Hz, (5.4b)

where B denotes the transmission bandwidth for NOMA users.

5.1.5 Mobile Edge Computing

This chapter considers partial task offloading. Accordingly, UEs can compute their tasks

locally, partially or completely remotely. Note that we omit downloading the results be-

cause the task might be just storing data to the MEC or the result consists of the insignif-

icant size of bits [96].

Local Computing

Local computing is to execute tasks locally on the UE’s processor. The variables β1 and

β2 are introduced as the task assignment coefficients for UE1 and UE2 such that (1 −

β1)N1 and (1 − β2)N2 bits are assigned to UE1 and UE2 for local computing, respec-

tively. The local computing times for these processes can be found by

T loc
1 =

(1− β1)N1Cl1

fl1
and T loc

2 =
(1− β2)N2Cl2

fl2
, (5.5)

where fl1 and fl2 are the CPU frequencies and Cl1 and Cl2 are the required CPU cycles

to execute one bit for UE1 and UE2, respectively. The energy consumption for UE1 and

UE2 for local computing are [96]

Eloc
1 = ζl1(1− β1)N1Cl1f

2
l1 and Eloc

2 = ζl2(1− β2)N2Cl2f
2
l2, (5.6)

where ζl1 and ζl2 are the energy consumption coefficients for UE1 and UE2.
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Energy Consumption in RF Chains

There is no single formula for calculating the optimal power consumption of an antenna

system. It is equal to the superposition of different components, i.e., amplifier, filter, cir-

cuitry, cooling, and operation parameters (frequency, bandwidth, modulation technique,

etc.). Therefore, these parameters should be optimized separately. Increasing the ar-

ray size to a certain point can allow more data to be transmitted simultaneously. Yet, as

the system grows in size, the high power consumption and complexity of the RF chains

may offset the benefits of MIMO. To compare the MIMO systems fairly, the energy con-

sumed on each antenna element must be considered [101]. [102] shows that the power

an antenna consumes is proportional to the number of optimized antenna sizes. This is

because each antenna element requires its power amplifier and other components. The

radiated power Prad can be written as [103]:

Prad = ν(Pbud − 2K × P T
RFc −M × PR

RFc), (5.7)

where ν is the efficiency of the power amplifier and Pbud is the system’s power budget.

K and M are the number of antennas, and P T
RFc and PR

RFc are the power consumed in an

RF chain at the transmitter and receiver. We make the assumption, without loss of gener-

ality, that there are two identical transmitters, and the value “2” in Eq. (5.7) corresponds

to these transmitters.

Task Offloading

There are β1N1 and β2N2 bits that need to be offloaded to the MEC for remote execution

of UE1 and UE2’s tasks, respectively. The offloading times for UE1 and UE2 are given

by

T off
1 =

β1N1

R1

and T off
2 =

β2N2

R2

. (5.8)

The corresponding total energy consumption for UE1 and UE2 is [103]

Eoff
1 =

β1N1

R1

(︄
L∑︂

j=1

P1,j +KP T
RFc +MPR

RFc

)︄
(5.9)
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Eoff
2 =

β2N2

R2

(︄
L∑︂

j=1

P2,j +KP T
RFc +MPR

RFc

)︄
. (5.10)

MEC Computing

After the tasks are offloaded, remote computation at the MEC can start. The computa-

tion times at the MEC server for UE1 and UE2 are

Tmec
1 =

β1N1Cm

fm
and Tmec

2 =
β2N2Cm

fm
, (5.11)

where fm is the CPU frequency and Cm is the required CPU cycles to execute one bit at

the MEC. The energy consumption for remote execution at the MEC server for UE1 and

UE2, respectively, can be given by [96]

Emec
1 = ζmβ1N1Cmf

2
m and Emec

2 = ζmβ2N2Cmf
2
m, (5.12)

where ζm is the energy consumption coefficient for the MEC.

5.2 Problem Definition and Solution

The total energy minimization problem for task offloading, MEC computing, and local

computing with time constraints is formulated as follows:

(P1) min
β1,β2,P1,j ,P2,j

T off
1

(︄
L∑︂

j=1

P1,j +KP T
RFc +MPR

RFc

)︄

+ T off
2

(︄
L∑︂

j=1

P2,j +KP T
RFc +MPR

RFc

)︄

+ ζmβ1N1Cmf
2
m + ζmβ2N2Cmf

2
m

+ ζl1(1− β1)N1Cl1f
2
l1 + ζl2(1− β2)N2Cl2f

2
l2 (5.13a)

s.t. T off
1 =

β1N1

R1

≤ T off
max (5.13b)

T off
2 =

β2N2

R2

≤ T off
max (5.13c)

T loc
1 =

(1− β1)N1Cl1

fl1
≤ 2T off

max (5.13d)
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T loc
2 =

(1− β2)N2Cl2

fl2
≤ 2T off

max (5.13e)

Tmec
1 =

β1N1Cm

fm
≤ T off

max (5.13f)

Tmec
2 =

β2N2Cm

fm
≤ T off

max (5.13g)

0 ≤
L∑︂

j=1

Pi,j ≤ Prad, i ∈ {1, 2}, j ∈ {1, .., L} (5.13h)

Pi,j ≥ 0 (5.13i)

0 ≤ βi ≤ 1, (5.13j)

where (5.13b) and (5.13c) require that offloading time has to be less than or equal to an

offloading time for the UE1 and UE2, respectively. (5.13d) and (5.13e) indicates that

the deadline for local computing is less than or equal to the sum of offloading time and

computing time at the MEC, i.e., T loc
max ≤ 2T off

max. (5.13f) and (5.13g) are to avoid con-

gestion at the MEC server, the deadline for the MEC computing is less than or equal to

offloading time, i.e., Tmec
1 ≤ T off

1 and Tmec
2 ≤ T off

2 as illustrated in Fig. 5.2 [95].

(5.13h) makes sure that the users cannot exceed the power budget. (5.13i) indicates that

the power allocation coefficients are non-negative. (5.13j) guarantees that βi can get any

value between zero and one.

Local Computing

Task Offloading MEC Computing
time

Figure 5.2. Execution times for local computing, task offloading, and MEC computing

(P1) is not a convex optimization problem due to the fractional expressions; however,

(P1) can be written as an alternating optimization problem as in (P2).

(P2) min
β1,β2

g(β1, β2) ≜ min
P1,j ,P2,j

E(P1,j, P2,j) =
β1N1

R1

(︄
L∑︂

j=1

P1,j +KP T
RFc +MPR

RFc

)︄

+
β2N2

R2

(︄
L∑︂

j=1

P2,j +KP T
RFc +MPR

RFc

)︄
+ ζmβ1N1Cmf

2
m + ζmβ2N2Cmf

2
m
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+ ζl1(1− β1)N1Cl1f
2
l1 + ζl2(1− β2)N2Cl2f

2
l2 (5.14a)

s.t. (5.13b), (5.13c), (5.13d), (5.13e), (5.13f), (5.13g), (5.13h) and (5.13j),

(5.14b)

where g(β1, β2) is the outer problem and E(P1,j, P2,j) is the inner problem. Therefore,

β1 and β2 are fixed to deal with the inner problem E(P1,j, P2,j).After sub-optimal val-

ues for E(P1,j, P2,j) are found, we fix them to find out g(β1, β2). Yet (P2) is not a con-

vex problem; the optimal solution can be found by exhaustive search. However, this is

a computationally complex and time-consuming solution. Because the computational

complexity of (P2) grows exponentially with the number of antenna sizes and power

levels. Therefore, the successive convex approximation method can be applied to (P3) to

solve P1,j and P2,j iteratively. The inner problem becomes

(P3) min
P1,j ,P2,j

E(P1,j, P2,j) ≈ E(PK
1,j, P

K
2,j) +

∂E(PK
1,j, P

K
2,j)

∂P1,j

(P1,j − PK
1,j)

+
∂E(PK

1,j, P
K
2,j)

∂P2,j

(P2,j − PK
2,j) (5.15a)

s.t.
β1N1

R1

≤ T off
max (5.15b)

β2N2

R2

≤ T off
max (5.15c)

0 ≤
L∑︂

j=1

Pi,j, i ∈ {1, 2}, j ∈ {1, .., L} (5.15d)

Pi,j ≥ 0, (5.15e)

where the partial derivative of E(PK
1,j, P

K
2,j) with respect to P1,j and P2,j can be written

respectively as follows:

∂E(PK
1,j, P

K
2,j)

∂P1,j

=
β1N1 log (2)

B
×

⎡⎢⎢⎣
∑︁L

j=1 ln(1 + σ2
1,jP

K
1,j

σ2
2,jP

K
2,j+nj

)−
σ2
1,j

(︂∑︁L
j=1 P1,j+KPT

RFc+MPR
RFc

)︂
σ2
1,jP

K
1,j+σ2

2,jP
K
2,j+nj[︂∑︁L

j=1 ln
(︂
1 +

σ2
1,jP

K
1,j

σ2
2,jP

K
2,j+nj

)︂]︂2
⎤⎥⎥⎦ ,

(5.16a)

∂E(PK
1,j, P

K
2,j)

∂P2,j

=
β1N1 log(2)

B
×

(︂∑︁L
j=1 P1,j +KP T

RFc +MPR
RFc

)︂
PK
1,jσ

2
1,jσ

2
2,j

(σ2
2,jP

K
2,j + nj)(σ2

2,jP
K
2,j + σ2

1,jP
K
1,j + nj)

×

[︄
ln

(︄
1 +

σ2
1,jP

K
1,j

σ2
2,jP

K
2,j + nj

)︄]︄−2
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+
β2N2 log(2)

B

⎡⎢⎣
∑︁L

j=1 ln(1 + σ2
2,jP

K
2,j

nj
)− σ2

2,j

σ2
2,jP

K
2,j+nj

(︂∑︁L
j=1 P2,j +KP T

RFc +MPR
RFc

)︂
[︂∑︁L

j=1 ln
(︂
1 +

σ2
2,jP

K
2,j

nj

)︂]︂2
⎤⎥⎦ .

(5.16b)

Proposition 1. After finding sub-optimal P ∗
1,j and P ∗

2,j , the outer problem, g(β1, β2), be-

comes a linear optimization problem.

g(β1, β2) = T off
1

(︄
L∑︂

j=1

P ∗
1,j +KP T

RFc +MPR
RFc

)︄
+ T off

2

(︄
L∑︂

j=1

P ∗
2,j +KP T

RFc +MPR
RFc

)︄

+ ζmβ1N1Cmf
2
m + ζmβ2N2Cmf

2
m + ζl1(1− β1)N1Cl1f

2
l1 + ζl2(1− β2)N2Cl2f

2
l2.

(5.17)

Finally, the problem can be rewritten as follows:

(P4) min
β1,β2

T off
1

(︄
L∑︂

j=1

P ∗
1,j +KP T

RFc +MPR
RFc

)︄
+ T off

2

(︄
L∑︂

j=1

P ∗
2,j +KP T

RFc +MPR
RFc

)︄

+ ζmβ1N1Cmf
2
m + ζmβ2N2Cmf

2
m + ζl1(1− β1)N1Cl1f

2
l1 + ζl2(1− β2)N2Cl2f

2
l2

(5.18a)

T loc
1 =

(1− β1)N1Cl1

fl1
≤ 2T off

max (5.18b)

T loc
2 =

(1− β2)N2Cl2

fl2
≤ 2T off

max (5.18c)

Tmec
1 =

β1N1Cm

fm
≤ T off

max (5.18d)

Tmec
2 =

β2N2Cm

fm
≤ T off

max (5.18e)

β1N1 ≤ R1T
off
max (5.18f)

β2N2 ≤ R2T
off
max (5.18g)

0 ≤ βi ≤ 1, i ∈ {1, 2}. (5.18h)

5.2.1 Complexity Analysis

Algorithm 3 runs the GSVD-based iterative method inside the inner and outer loops. As

the task assignment problem (P4) is formulated as a linear optimization problem, and
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Algorithm 3 Alternating optimization (AO) based algorithm to find β1, β2, P1,j , and P2,j

1: Initialize β1 and β2

2: while ∆g(β1, β2) → 0 do
3: Initialize P1,j and P2,j

4: while (∆E(P1,j , P2,j) → 0) do
5: Find out the optimal P1,j and P2,j by using (P3)
6: end while
7: Solve (P4) to find out the optimal β1 and β2

8: Update β1 and β2

9: end while

the power allocation problem (P3) is linearized in the inner loop; consequently, the algo-

rithm converges in the second iteration. The GSVD based precoding has the complexity

of O (L
3

σ
+ L

σ
log(1/ϵ)), where L is the minimum number of antenna of the paired UEs

and σ is the search step [77]. Consequently, the complexity of the proposed algorithm is

O (2L
3

σ
+ 2L

σ
log(1/ϵ)).

5.2.2 Extension to multi-user scenario

This chapter focuses on the two-user scenario. However, this scenario can be extended

to a multi-user scenario by using hybrid multiple access protocol [86] as depicted in Fig-

ure 5.3. According to the hybrid multiple access method, the users are paired first. Then,

the paired users are allocated to orthogonal resource blocks (e.g., time, frequency) as in

OMA systems. User pairing is a key factor in NOMA as it increases spectral efficiency,

optimizes resource usage, ensures fairness, manages interference, and facilitates massive

connectivity. The users in each orthogonal block exploit the proposed scheme. There-

fore, the proposed scheme can reduce the energy consumption of the existing OMA-

based systems.

Time

Frequency

Po
w
er

Figure 5.3. Extension from two-user to multi-user scenario
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5.3 Numerical Results

This section provides numerical results to validate the superior performance of the NOMA-

based MIMO-MEC compared with OMA. The simulation parameters are given in Table

5.1.

Table 5.1. Simulation parameters

Parameter Value

Bandwidth, B 10 MHz

Cell radius 500 m

Noise Power, No -94 dBm

Path loss component 3

Error tolerance, ϵ 10e-5

Energy consumption coefficient for MEC, ζm 10e-29

Energy consumption coefficient for UEs, ζl1,ζl2 10e-27

MEC CPU frequency, fm 2.5e10 cycles/sec

UEs CPU frequency, fl1 and fl2 3.23e9 cycles/sec

CPU cycles per bit in MEC, Cm 500 cycles/bit

CPU cycles per bit in UEs, Cl1 and Cl2 1000 cycles/bit

The efficiency of the power amplifier, ν 0.68

The power expenditure on the transmitter, PT
RFc 24.1 mW

The power expenditure on the receiver, PR
RFc 31.25 mW
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Figure 5.4. Total energy consumption for different antenna configurations with respect to offloading time

Figure 5.4 shows the energy consumption of NOMA and OMA-based MIMO-MEC sys-

tems with respect to offloading time. As shown in Figure 5.4, when the number of an-

tennas increases, energy consumption decreases significantly in both OMA and NOMA

schemes. This is because, as the offloading time is relaxed, a user can offload more data

to the MEC server. And energy consumption of MEC servers is lower than local com-

puting. Therefore, offloading data to the MEC is preferable from the energy perspec-

tive. Another intuition from Figure 5.4 is that the energy consumption for data offload-

ing is low compared to the need for processing. Therefore the lines become almost equal

when there is sufficient time for offloading. Figure 5.4 also shows that the NOMA-based

MIMO-MEC system outperforms the OMA-based system when the users have stringent

time constraints.
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Figure 5.5. Total energy consumption for different antenna configurations and power levels

Figure 5.5 presents the impact of data sizes on energy consumption. As it is expected

that the energy consumption will grow with the size of the offloaded data. However, af-

ter a point for each MIMO configuration, there is a rapid increase in energy consump-

tion. This increase is because users can offload their data until they reach their power

budgets. Once the users reach that point, they should process the remaining data locally,

leading to a power consumption jump. The NOMA users can offload more data than

OMA, so the performance range increases, especially when the data rate is high.
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Figure 5.6. Total energy consumption concerning the near user’s position

In Figure 5.6, the x-axis shows the distance of the near users from the base station when

the far user is located 500 meters away from the base station. Due to co-user interfer-

ence, the energy consumption significantly increases when the near user approaches the

cell edge in the NOMA scheme. It is clear that the 4R4T NOMA performs best, but

also it is the most affected configuration by co-user interference. It can be concluded

from Figure 5.6 that user pairing can significantly improve the energy efficiency of the

NOMA-MEC systems.
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Figure 5.7. Total energy consumption concerning iteration number

Figure 5.7 shows the convergence performance of the proposed algorithm. The inner

problem in (5.14) is linearized by the successive convex approximation method, and the

outer layer is a linear problem. As a result, the proposed algorithm converges in the sec-

ond iteration.

100



1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250

Figure 5.8. The effect of the antenna number over sum capacity

Figure 5.8 compares the sum capacity of different antenna configurations at various total

power budgets. It can be seen from the figure that there is a trade-off between the num-

ber of antennas and the sum capacity. Sum capacity increases with the number of an-

tennas up to an optimal point due to multiplexing gain. However, adding more antennas

consumes more power in the RF chains. Therefore, less power is emitted from the anten-

nas, and this reduces the sum capacity.
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5.4 Conclusion of Chapter 5

NOMA, MIMO, and MEC are regarded as key technologies for 6G networks. Due to

the computational intensive, delay-sensitive and energy-hungry applications, the en-

ergy consumption for NOMA-MIMO-MEC networks was an open research question. In

this chapter, an energy minimization problem has been formulated, and a low complex-

ity algorithm has been proposed. The numerical results have shown that the proposed

NOMA-based MIMO-MEC system outperforms the conventional OMA-based scheme,

especially when the users need to offload high and time-constrained data. It can be con-

cluded from the simulation results that user pairing may significantly reduce the energy

consumption of NOMA-MIMO-MEC Networks. This chapter has also found that in-

creasing the antenna number does not necessarily mean higher sum capacity; therefore,

when a MIMO system is designed, the optimal antenna number should be considered. A

further study could assess the effects of user pairing, task scheduling, and other commu-

nication parameters, i.e., CPU frequencies, especially when the users are equipped with

multiple antennas.
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Chapter 6

Wireless Powered NOMA-Based

Cognitive Radio for 6G Networks

It is envisioned that sixth-generation (6G) mobile networks will provide support for high

capacity with peak rates of 1 Tbit/s and experienced rates of 10 − 100 Gbit/s, as well as

massive connectivity of up to 10 million/km2, comprehensive coverage of at least 10 dB,

ultra-reliability of 99.99999%, higher energy efficiency by a factor of 100 compared to

5G, and low latency of 0.1 ms [104]. However, there are also potential challenges that

come with 6G networks. One such challenge is the potential for spectrum scarcity due to

the increasing number of connected devices and the high demand for data, which could

limit the available radio frequency spectrum. Powering connected mobile devices is an-

other challenge. However, wireless power transfer improves their battery life and energy

efficiency, contributes to sustainability efforts, and ensures their reliability and availabil-

ity.

NOMA is a strong candidate to meet 6G requirements thanks to its spectral efficiency

[105]-[106], improved secrecy [27], broad connectivity [107], high data capacity [108],

and low latency [25] compared with orthogonal frequency division multiple access (OFDMA).

Two main types of NOMA schemes exist code-domain NOMA and power-domain NOMA.

This chapter focuses explicitly on power-domain NOMA, which employs superposition

coding at the transmitter and successive interference cancellation (SIC) techniques at the

receiver to increase the data capacity of orthogonal multiple access schemes [109].

Cognitive radio (CR) technology is another promising solution to tackle the issue of

spectral scarcity, allowing unlicensed users to share the licensed spectrum for wireless

103



communication [110]. This chapter explores the CR-assisted MIMO-NOMA network,

following the investigation of single-cell MIMO NOMA networks in Chapter 3, Chap-

ter 4, and Chapter 5. There are three primary implementation approaches for CR: inter-

weave, overlay, and underlay CR [111]. Interweave cognitive radio functions by trans-

mitting signals within the gaps or unused spectrum of the primary wireless system with-

out interfering with it [112]. In contrast, the cognitive radio device selects the best avail-

able frequency band in overlay CR to avoid interference with the primary system [113].

In this chapter, we optimize an underlay CR network, where secondary users operate

concurrently with primary users in the same frequency band. Underlay CR necessitates

careful power level management and interference control to prevent primary users’ com-

munication disruption.

Recently, a growing body of literature has explored the combination of NOMA-based

underlay CR with other technologies to improve system performance. However, energy

and spectral efficiency are critical parameters that often conflict with each other in these

systems. Wireless energy harvesting (EH) is a promising technology for CR-NOMA

networks, as it offers sustainability, cost-effectiveness, long-term reliability, energy ef-

ficiency, and independence. To address this issue, the use of reflected integrated surfaces

(RIS) was proposed in [114], formulating the system model as a multi-objective opti-

mization problem. An iterative block coordinate descent-based algorithm was developed

to find an optimal balance between energy and spectral efficiency. Another approach

suggested in [115] was to use an unmanned aerial vehicle (UAV) to improve the total

throughput of a NOMA-based underlay CR network. A K-means and traveling salesman-

based iterative algorithm were used to optimize the UAV’s time, transmit power, and lo-

cation. In [116], a mobile edge computer-assisted underlay CR-NOMA network was ex-

amined to enhance computation capacity while considering total weighted energy and

physical layer security. In [117], the authors analyzed an overlay CR-NOMA network’s

throughput and outage probability under imperfect successive interference cancella-

tion (SIC). Meanwhile, [118] proposed a non-linear EH model and optimized the power

splitting factor and beamforming vector to minimize total power.

This chapter aims to tackle spectrum scarcity and energy supply issues by combining

NOMA, CR, and EH technologies in an innovative, dynamic, and effective way. The key
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contributions of this chapter are summarized below:

• Our proposal involves an underlay network that utilizes cognitive radio, MIMO and

NOMA technologies. In this network, both the primary and secondary transmitters

harvest wireless energy from a power beacon and utilize a time-switching protocol

to transmit information signals to primary and secondary users. Despite possible

interference experienced by the far user from the primary user, we ensure that the

quality of service constraint is satisfied. Meanwhile, considering this constraint, the

secondary transmitter optimizes the secondary network sum data rate.

• During the first time slot, wireless power is transferred using a beamforming method

based on generalized singular value decomposition. In the second time slot, we use

semi-definite programming and the first-order Taylor series expansion to optimize

the split time variable (α) and the beamforming vectors for the primary (wp) and

secondary (ws) networks.

• In the simulations, we study the impact of the QoS and power constraints on the

sum rate of the secondary users. Based on the simulation results, the proposed model

demonstrated superior performance compared to the TDMA-based benchmark scheme,

primarily attributed to its higher spectral efficiency. This higher spectral efficiency

allows the primary users to operate with lower power, affecting the energy con-

sumption coefficient set by the secondary network and ultimately reducing inter-

ference for the secondary users. However, as the QoS requirements of the primary

users become more stringent, the available transmission time for the secondary

users decreases. As a result, the performance gap between the proposed method

and the benchmark widens as the QoS requirements of the primary users increase.

6.1 System Model

We consider a NOMA-based heterogeneous cognitive network comprising a wireless-

powered primary ultra-reliable low-latency communication (URLLC) network and a

secondary massive machine-type communication (mMTC) network. The system is de-

signed to accommodate multiple users with different requirements in the same resource
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block, with the primary network allocating two NOMA users in a resource block while

the secondary network accommodates multiple mMTC devices in the same resource

block. The power beacon (PBea) simultaneously transmits energy signals to the pri-

mary and secondary networks and the harvested energy is utilized for downlink trans-

mission. The primary transmitter (PT ) and secondary transmitter (ST ) are equipped with

NP and NS antennas, respectively, while the power beacon is equipped with NB anten-

nas. The primary and secondary users are equipped with a single antenna, and the wire-

less channels are considered quasi-static, meaning that the channels remain constant be-

tween consecutive codewords. The underlay principle ensures that the secondary net-

work does not interfere with the primary users’ quality of service constraints. The en-

ergy transfer in the network occurs during αT , while the harvested energy is utilized

during (1 − α)T , as depicted in Figure 6.2, where T represents the transmission time

interval.

URLLC
Primary Network

Power
Beacon (PBea)

Interference

Energy Transfer

Information Transfer 

mMTC
Secondary Network

power beacon
coverage area

Figure 6.1. System model

PBea
time

Figure 6.2. Transmission time frame
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The received power signals can be expressed as follows at PT and ST , respectively:

yP = D1H1Pxpow + nP (6.1a)

yS = D2H2Pxpow + nS, (6.1b)

where the channel matrices between the power beacon and the primary and secondary

base stations are denoted as H1 ∈ CNP×NB and H2 ∈ CNS×NB , respectively. The pre-

coding matrix of the power beacon is represented by P ∈ CNB×NB , while the decoding

matrices for the primary and secondary users are D1 and D2, respectively. The power

signal is denoted by xpow ∈ CNB×1.

The signals transmitted by the primary and secondary networks, represented by xp and

xs, respectively, are transmitted for a duration of (1 − α)T . The signal received by the

primary near, primary far, and the kth secondary receiver are expressed as yPR1
, yPR2

,

and yPSk
, respectively:

xp = wp,1sp,1 + wp,2sp,2 (6.2a)

xs =

underlay signal for PR2⏟ ⏞⏞ ⏟
ws,1sp,1 +

K∑︂
k=2

ws,kss,k (6.2b)

yPR1
= hH

p,1xp + nPR1
(6.2c)

yPR2
= hH

p,2xp + hH
s,1xs + nPR2

(6.2d)

ySRk
= hH

s,kxs + hH
i,kxp + nSRk

, (6.2e)

where sp,1, sp,2, and ss,k are the information-bearing signals for the primary near, pri-

mary far, and kth secondary users, respectively, and that ∥sp,v∥2 = 1 for v ∈ 1, 2, k. If

the power signal is normalized to one, i.e., ∥xpow∥2 = 1, then the maximum received

power at PT and ST are denoted as P1 and P2, respectively.

P1 = tr(D1H1PPHHH
1 DH

1 ) (6.3a)

P2 = tr(D2H2PPHHH
2 DH

2 ). (6.3b)

Assuming that PBea, PT , and PS are each equipped with K antennas without loss of
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generality. As a result, the SINR at PR1 , PR2 , and SRK
is:

SNRP1 =
∥hH

p,1wp,1∥2

σ2
p

(6.4a)

SINRP2 =
∥hH

p,2wp,2 + hH
s,1ws,1∥2

∥hH
p,2wp,1∥2 + σ2

p

(6.4b)

SINRSk
=

∥hH
s,kws,k∥2∑︁k−1

j=1 ∥hH
s,kws,j∥2 + ∥hH

i,kwp∥2 + σ2
nPSk

. (6.4c)

6.2 Problem Definition and Solution

We assume that the UEs on the secondary network are arranged in descending order of

∥hH
s,1ws,1∥2 ≥ ∥hH

s,2ws,2∥2 ≥ ... ≥ ∥hH
s,kws,K∥2. Additionally, we assume that the vari-

ances of nPR1
, nPR2

, and nSRK
are all equal to BN0. Following SIC, the achievable data

rates for RPR1
, RPR2

, and RPSk
are respectively provided as follows:

RPR1
= log2

(︄
1 +

∥hH
p,1wp,1∥2

BN0

)︄
, bits/s/Hz (6.5a)

RPR2
= log2

(︄
1 +

∥hH
p,2wp,2 + hH

s,1ws,1∥2

∥hH
p,2wp,1∥2 +BN0

)︄
, bits/s/Hz (6.5b)

RPSk
= log2

(︄
1 +

∥hH
s,kws,k∥2∑︁k−1

j=1 ∥hH
s,kws,j∥2 + ∥hH

i,kwp∥2 +BN0

)︄
, bits/s/Hz. (6.5c)

Therefore, we formulate the optimization problem as follows:

(P1) max
P,Di,α,wp,ws

K∑︂
k=2

RPSk
(6.6a)

s.t. RPSk
≥ Rs,k, k = {2, .., K} (6.6b)

RPR1
≥ Rt1 (6.6c)

RPR2
≥ Rt2 (6.6d)

∥wp,1∥2 + ∥wp,2∥2 ≤
(η × P1)α

1− α
(6.6e)

K∑︂
k=1

∥ws,k∥2 ≤
(η × P2)α

1− α
(6.6f)

0 < α < 1 (6.6g)
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where η represents a power harvesting coefficient. The data rate requirement of the pri-

mary near, far, and secondary kth users is denoted by Rt1, Rt2, and Rs,k, respectively.

While PBea sends power signal xpow to PT and ST during αT , the expressions for P1

and P2 are non-convex, making optimization challenging. To address this, we utilize a

GSVD-based linear beamforming scheme that efficiently exploits the wireless spectrum

to define P, D1, and D2 [25]. However, the original problem remains non-concave due

to the non-convex constraints. To simplify the problem, we apply a low-complexity and

highly efficient GSVD method [28] instead.

The GSVD can be briefly defined as follows: Consider Hi ∈ CMi,N , where i = {1, 2},

and its elements are i.i.d. with zero mean and unit variance. The decomposition of Hi by

GSVD can be expressed as [28]:

Hi = UiΣiQ−1, i = {1, 2}, (6.7)

where Ui is Mi ×Mi unitary matrix, Q is an N ×N non-singular matrix, and

Σi=diag(σi,1, .., σi,min(Mi))∈ RMi×min(Mi) is a diagonal matrix. (6.3a) and (6.3b) can be

rewritten as follows:

P1 = tr(D1U1Σ1Q−1PPHQ−HΣ1UH
1 DH

1 ) and P2 = tr(D2U2Σ2Q−1PPHQ−HΣ2UH
2 DH

2 ).

(6.8)

The GSVD method dictates that P should be set equal to Q, and D1 and D2 should be

equivalent to U1
−1 and U2

−1, respectively. As a result, we can express P1 and P2 as fol-

lows:

P1 =tr(U−1
1 U1⏞ ⏟⏟ ⏞

I

Σ1 Q−1Q⏞ ⏟⏟ ⏞
I

QHQ−H⏞ ⏟⏟ ⏞
I

Σ1 UH
1 U−H

1⏞ ⏟⏟ ⏞
I

) (6.9a)

P2 =tr(U−1
2 U2⏞ ⏟⏟ ⏞

I

Σ2 Q−1Q⏞ ⏟⏟ ⏞
I

QHQ−H⏞ ⏟⏟ ⏞
I

Σ2 UH
2 DH

2⏞ ⏟⏟ ⏞
I

) (6.9b)

P1 =tr(Σ2
1) and P2 = tr(Σ2

2). (6.9c)

The original problem can be expressed by taking into account imperfect energy harvest-
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ing as follows:

(P2) max
α,wp,ws

K∑︂
k=2

RPSk
(6.10a)

s.t. RPSk
≥ Rs,k, k = {2, .., K} (6.10b)

RPR1
≥ Rt1 (6.10c)

RPR2
≥ Rt2 (6.10d)

∥wp,1∥2 + ∥wp,2∥2 ≤

[︃
Pm

1+exp(−ac(tr(Σ2
1)−b))−Pm

1
1+exp (acb)

]︃
α

1−α

1− 1
1+exp (acb)

(6.10e)

K∑︂
k=1

∥ws,k∥2 ≤

[︃
Pm

1+exp(−ac(tr(Σ2
2)−b))−Pm

1
1+exp (acb)

]︃
α

1−α

1− 1
1+exp (acb)

(6.10f)

0 < α < 1 (6.10g)

where ac and b are positive constants associated with the circuit specifications, and Pm

represents the maximum quantity of power that can be harvested when the EH circuit

is saturated [119]. Let denote ŵH
p =

[︃
wH

p,1, wH
p,2

]︃
, ŵH

s =

[︃
wH

s,1, ...,wH
s,K

]︃
and ĥH

i =[︃
hH

i,1, hH
i,2

]︃
. Also, ĥp,1, ĥp,2, ĥi and ĥs,j are zero-padded vectors such that ĥH

p,1 = [hH
p,1, 0H],

ĥH
p,2 = [0H, hH

p,2], ĥi =

[︃
hH

i,1, hH
i,2

]︃
, ĥH

s,j = [0H, hH
s,j] and wH

y = [wH
p , wH

s ], as illustrated in

Fig. 6.3.

Beamforming vectors for the Primary Users Beamforming vectors for the Secondary Users

Figure 6.3. Concatenation of the beamforming vectors

Accordingly (6.10) can be written as

(P3) max
α,wy

K∑︂
k=2

log2

(︄
1 +

∥ĥH
s,kwy∥2∑︁k−1

j=1 ∥ĥH
s,kwy∥2 + ∥ĥH

i,kwy∥2 +BN0

)︄
× (1− α) (6.11a)
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s.t. log2

(︄
1 +

∥ĥH
s,kwy∥2∑︁k−1

j=1 ∥ĥH
s,kwy∥2 + ∥ĥH

i,kwy∥2 +BN0

)︄
≥ Rs,k

(1− α)
, k = {2, .., K}

(6.11b)

log2

(︄
1 +

∥ĥH
p,1wy∥2

BN0

)︄
≥ Rt1

(1− α)
(6.11c)

log2

(︄
1 +

∥ĥH
d wy∥2

∥ĥH
p,2wy∥2 +BN0

)︄
≥ Rt2

(1− α)
(6.11d)

∥wy(1 : 4)∥2 ≤ EHpα

1− α
(6.11e)

∥wy(5 : 20)∥2 ≤ EHsα

1− α
(6.11f)

0 < α < 1. (6.11g)

Due to the fractional expressions in (6.11a), (6.11b) and (6.11d), and coupling vari-

ables, P3 remains a non-convex optimization problem. To address this, we propose a

two-layer alternating optimization algorithm, summarized in Algorithm 4. We fix α in

the inner layer and find an optimal vector wy. In the outer layer, we keep wy constant and

obtain a sub-optimal solution for α. We repeat these steps until the objective value con-

verges.

(P4) max
Wy

K∑︂
k=2

log2

(︄
1 +

Tr(Hs,kWy)∑︁k−1
j=1 Tr(Hs,kWy) + Tr(Hi,kWy) +BN0

)︄
× (1− α)

(6.12a)

s.t. Tr(Hs,kWy) ≥ (2
Rs,k
1−α − 1)×

(︄
k−1∑︂
j=1

Tr(Hs,kWy) + Tr(Hi,kWy) +BN0

)︄
,

k = {2, .., K} (6.12b)

Tr(Hp,1Wy) ≥ BN0 × (2
Rt1
1−α − 1) (6.12c)

Tr(HdWy) ≥ (2
Rt2
1−α − 1)× (Tr(Hp,2Wy) +BN0) (6.12d)

Tr(Wy(1 : 4, 1 : 4)) ≤ αEHp

1− α
(6.12e)

Tr(Wy(5 : 20, 5 : 20)) ≤ αEHs

1− α
(6.12f)

0 < α < 1 (6.12g)

Wy ⪰ 0 (6.12h)

111



rank(Wy) = 1. (6.12i)

By combining the term inside the logarithm, we reformulate (P4) as (P5).

(P5) max
Wy

K∑︂
k=2

log2

(︄∑︁k
j=1 Tr(Hs,kWy) + Tr(Hi,kWy) +BN0∑︁k−1
j=1 Tr(Hs,kWy) + Tr(Hi,kWy) +BN0

)︄
× (1− α) (6.13a)

s.t. (6.12b), (6.12c), (6.12d), (6.12e), (6.12f), (6.12g), (6.12h), and (6.12i).

(6.13b)

SCA based solution

We propose an SCA-based solution for (P5) in this subsection because it is still not con-

cave due to the fractional expression. (6.13) can be rearranged as follows:

(P6) max
Wy

K∑︂
k=2

log2

(︄
k∑︂

j=1

Tr(Hs,kWy) + Tr(Hi,kWy) +BN0

)︄
× (1− α)

−
K∑︂
k=2

log2

(︄
k−1∑︂
j=1

Tr(Hs,kWy) + Tr(Hi,kWy) +BN0

)︄
× (1− α) (6.14a)

s.t. (6.12b), (6.12c), (6.12d), (6.12e), (6.12f), (6.12g), (6.12h), and (6.12i).

(6.14b)

Further, we can use the homogeneity principle as follows

(P7) max
Wy

K∑︂
k=2

log2

(︄
Tr(Wy

k∑︂
j=1

Hs,k) + Tr(WyHi,k) +BN0

)︄
⏞ ⏟⏟ ⏞

f1(Wy)

×(1− α) (6.15a)

−
K∑︂
k=2

log2

(︄
Tr(Wy

k−1∑︂
j=1

Hs,k) + Tr(WyHi,k) +BN0

)︄
⏞ ⏟⏟ ⏞

f2(Wy)

×(1− α)

s.t. (6.12b), (6.12c), (6.12d), (6.12e), (6.12f), (6.12g), (6.12h), and (6.12i).

(6.15b)

The objective function consists of summation of f1(Wy) and f2(Wy) multiplied by (1− α).

Where f2(Wy) breaks concavity in the objective function, it can be approximated using
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the first-order Taylor series. Furthermore, f2(Wy) is not a holomorphic function, which

means that complex differentiation of f2(Wy) in each neighborhood of complex-valued

Wy matrix does not exist. However, it is a real function of a complex matrix Wy. There-

fore, the complex gradient of f2(Wy) is equal to [43]

∂f2(Wy)

∂(Wy)
=

1

2

(︃
∂f2(Wy)

∂ℜ(Wy)
− i

∂f2(Wy)

∂ℑ(Wy)

)︃
, (6.16)

where ℜ{Wy} and ℑ{Wy} are the real and imaginary parts of Wy, respectively. Note

that Wy is a symmetric matrix; therefore, taking the derivative of f2(Wy) with respect to

Wy’s lower triangular part is sufficient to calculate the first order Taylor approximation

of f2(Wy) [120]. Finally, (6.11) can be reformulated using DC programming as follows:

(P8) max
Wy

f1(Wy)− f2(Wy
(t−1))

−
N∑︂
z=1

z−1∑︂
x=1

ℜ{Wy(z, x)− Wy(z, x)
(t−1)} × ∂f2(Wy)

∂ℜ(Wy(z, x)(t−1))
(6.17a)

−
N∑︂
z=1

z−1∑︂
x=1

ℑ{Wy(z, x)− Wy(z, x)
(t−1)} × ∂f2(Wy)

∂ℑ(Wy(z, x)(t−1))

s.t. (6.12b), (6.12c), (6.12d), (6.12e), (6.12f), (6.12g), (6.12h), and (6.12i),

(6.17b)

where (t) denotes the iteration number. The partial derivative of f2(Wy) with respect to

the real and imaginary parts of Wy can be given by

∂f2(Wy)

∂ℜ(Wy(z, x))
=

1

ln(2)
×

K∑︂
k=2

∑︁k−1
j=1

(︁
Hs,k(z, x) + HH

s,k(z, x)
)︁
+ Hi,k(z, x) + HH

i,k(z, x)

Tr(Wy
∑︁k−1

j=1 Hs,k) + Tr(WyHi,k) +BN0

(6.18a)

∂f2(Wy)

∂ℑ(Wy(z, x))
=

−i

ln(2)
×

K∑︂
k=2

∑︁k−1
j=1

(︁
Hs,k(z, x)− HH

s,k(z, x)
)︁
+ Hi,k(z, x)− HH

i,k(z, x)

Tr(Wy
∑︁k−1

j=1 Hs,k) + Tr(WyHi,k) +BN0

,

(6.18b)

where (z, x) represent the z-th row and x-th column of the matrices.
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Gaussian Randomization Method for Semi-Definite Programming

The fundamental concept of Gaussian randomization involves generating random solu-

tions from a Gaussian distribution. These random solutions undergo a feasibility check

for the optimization problem, and if deemed feasible, the best solution within the fea-

sible set is selected as the final solution. The original optimization problem (6.10) was

first divided into two sub-problems (6.17) and (6.19). Then, the SCA-based solution was

proposed in (6.2). (6.11) is first transformed into a semi-definite programming problem

by relaxing the non-convex constraint rank(Wy) = 1. The rest of the problem is solved

efficiently in (6.17). Gaussian randomization method was used to obtain an optimal w∗
y

from Wy as shown in Algorithm 4.

6.2.1 A Solution for the Time Switching Coefficient in the Outer Layer

After finding an optimal solution for wy, an optimal solution for α can be found as fol-

lows.

(P9) RNOMA
s = max

α

K∑︂
k=2

log2

(︄
1 +

∥hH
s,kw∗

y∥2∑︁k−1
j=1 ∥hH

s,kw∗
y∥2 + ∥hH

i,kw∗
y∥2 +BN0

)︄
× (1− α)

(6.19a)

log2

(︄
1 +

∥hH
s,kw∗

y∥2∑︁k−1
j=1 ∥hH

s,kw∗
y∥2 + ∥hH

i,kw∗
y∥2 +BN0

)︄
× (1− α) ≥ Rs,k,

k = {2, .., K} (6.19b)

log2

(︄
1 +

∥hH
p,1w∗

y∥2

BN0

)︄
× (1− α) ≥ Rt1 (6.19c)

log2

(︄
1 +

∥hH
d w∗

y∥2

∥hH
p,2w∗

y∥2 +BN0

)︄
× (1− α) ≥ Rt2 (6.19d)

∥w∗
y(1 : 4)∥2 ≤ αEHp

1− α
(6.19e)

∥w∗
y(5 : 20)∥2 ≤ αEHs

1− α
(6.19f)

0 < α < 1. (6.19g)
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Algorithm 4 SCA and alternating optimization-based algorithm to find sub-optimal wy and α

repeat
Initialize α
Find out an optimal W∗

y by solving (6.17)
wy,j = mvnrnd(zeros(1, N),W∗

y , J), where j = 1, 2, ..., J
repeat

if wy,j is feasible then
Calculate

∑︁K
k=2 RPSk

using (6.19a)
end if
j = j + 1

until j ≤ J
Find wy,j∗ = arg maxw,j(

∑︁K
k=2 RPSk

), j = 1, 2, ..., J
Solve (6.19) to find out α∗

until ∆
∑︁K

k=2 RPSk
→ 0

6.2.2 A TDMA-Based Benchmark Scheme

This section defines a TDMA-based benchmark scheme that prioritizes the primary users,

as in the NOMA case. The aim is to maximize the sum rate of the secondary users con-

sidering the QoS constraints of the primary users on time. The system model for the

benchmark can be described as follows:

(P10) max
α,pp,1,pp,2,ps,k

K∑︂
k=2

log2

(︃
1 +

ps,k∥hH
s,k∥2

BN0

)︃
× 1− α− t1 − t2

K − 1
(6.20a)

s.t
Rt,1

log2

(︁
1 +

pp,1∥hH
p,1∥2

NB0

)︁ ≤ t1 (6.20b)

Rt,2

log2

(︁
1 +

pp,2∥hH
p,2∥2

NB0

)︁ ≤ t2 (6.20c)

pp,1 + pp,2 ≤
αEHp

1− α
(6.20d)

K∑︂
k=2

ps,k ≤
αEHs

1− α
(6.20e)

pp,1, pp,2, ps,k ≥ 0, k = {2, .., K} (6.20f)

0 < α < 1. (6.20g)

where t1 and t2 denote the transmission time slot for the primary users. We propose an

alternating algorithm that finds an optimal value for α and the other parameters as given

in Algorithm 5. After fixing α, it becomes clear that pp,1 and pp,2 are independent of

ps,k. This allows us to divide Eq. (6.20) into two sub-problems, denoted as (P11) and

(P13). The objective of (P11) is to meet the QoS requirements of the primary users with

minimal latency. Following that, for (P13), our objective is to maximize the total data
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Algorithm 5 Alternating optimization-based algorithm to find sub-optimal α, pp,1, pp,2, and ps,k

Initialize α
repeat

Set l = 1
Initialize pp,1 to some value, such as p(0)p,1 = EHp/2
repeat

Calculate the gradient of f3(pp,1) as in (6.23)
Update pp,1 by using (6.24)
l = l + 1

until ∆f3(pp,1) → 0
Calculate t1 and t2 and plug them in (6.26b)
Update ps,k using (6.27)
Update α using (6.28)

until ∆
∑︁K

k=2 RPSk
→ 0

rate of the secondary users within the remaining time slot.

(P11) min
pp,1,pp,2

Rt,1

log2

(︁
1 +

pp,1∥hH
p,1∥2

NB0

)︁ + Rt,2

log2

(︁
1 +

pp,2∥hH
p,2∥2

NB0

)︁ (6.21a)

s.t pp,1 + pp,2 ≤
α∗EHp

1− α∗ (6.21b)

pp,1, pp,2 ≥ 0. (6.21c)

We observe that (P11) is not convex. To minimize the delay for the primary users and

provide more time to the secondary users, we need to ensure that the allocated power for

the primary users sums up to the maximum available power, i.e., pp,1 + pp,2 = α∗EHp

1−α∗ .

Thus, we can express pp,2 as (α
∗EHp

1−α∗ −pp,1). Therefore, (P11) can be reorganized as (P12).

(P12) min
pp,1

Rt,1

log2

(︁
1 +

pp,1∥hH
p,1∥2

NB0

)︁ + Rt,2

log2

(︁
1 +

(
α∗EHp
1−α∗ −pp,1)∥hH

p,2∥2

NB0

)︁⏞ ⏟⏟ ⏞
f3(pp,1)

(6.22a)

s.t 0 ≤ pp,1 ≤
α∗EHp

1− α∗ . (6.22b)

To solve (P12), the SCA method is applied to (6.22a). The derivative of the objective

function can be taken with respect to pp,1 as follows:

df3(pp,1)

dpp,1
=−

5 ln(2)
⃦⃦
hH

p,2
⃦⃦2

NB0 ln2

(︃
1−

⃦⃦⃦
hH

p,2

⃦⃦⃦2
(pp,1−

α∗EHp
1−α∗ )

NB0

)︃(︄ ⃦⃦⃦
hH

p,2

⃦⃦⃦2
(pp,1−

α∗EHp
1−α∗ )

NB0
− 1

)︄
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−
Rt,1 ln(2)

⃦⃦
hH

p,1
⃦⃦2

NB0 ln2

(︃
pp,1

⃦⃦⃦
hH

p,1

⃦⃦⃦2
NB0

+ 1

)︃(︄
P1

⃦⃦⃦
hH

p,1

⃦⃦⃦2
NB0

+ 1

)︄ (6.23)

An optimal solution for pp,1 can be found by (P13) in each iteration as defined in Algo-

rithm 5.

(P13) min
pp,1

f3(p
l
p,1) +

df3(p
l
p,1)

dpp,1
(pp,1 − plp,1) (6.24a)

s.t 0 ≤ pp,1 ≤
α∗EHp

1− α∗ . (6.24b)

where l denotes the iteration number. Using the optimal value for p∗p,1, t1 and t2 can be

given as follows:

t1 =
Rt,1

log2

(︁
1 +

p∗p,1∥hH
p,1∥2

NB0

)︁ (6.25a)

t2 =
Rt,2

log2

(︁
1 +

(
α∗EHp
1−α∗ −p∗p,1)∥hH

p,2∥2

NB0

)︁ (6.25b)

(P14) max
ps,k

K∑︂
k=2

log2

(︃
1 +

ps,k∥hH
s,k∥2

BN0

)︃
× 1− α∗ − (t1 + t2)

K − 1
(6.26a)

s.t
K∑︂
k=2

ps,k ≤
α∗EHs

1− α∗ (6.26b)

ps,k ≥ 0, k = {2, .., K}. (6.26c)

The closed-form solution for ps,k can be found by using the waterfilling method as fol-

lows:

p∗s,k =

[︃
1

µk

− BN0

∥hH
s,k∥2

]︃+
, s.t.

K∑︂
k=2

µk = EHs. (6.27)

(P15) max
α

K∑︂
k=2

log2

(︃
1 +

ps,k∥hH
s,k∥2

BN0

)︃
× 1− α− t1 − t2

K − 1
(6.28a)

s.t pp,1 + pp,2 ≤
αEHp

1− α
(6.28b)

K∑︂
k

ps,k ≤
αEHs

1− α
(6.28c)
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0 < α < 1. (6.28d)

Equivalently, the closed-form solution for α is given as follows:

α∗ = min

(︄
pp,1 + pp,2

pp,1 + pp,2 + EHp

,

∑︁K
j=2 ps,j∑︁K

j=2 ps,j + EHs

)︄
(6.29)

6.2.3 Complexity Analysis

This subsection presents the time complexity analysis of the proposed algorithm. Al-

gorithm 4 consists of two loops: an outer loop that uses a linear program to solve for α,

and an inner loop that utilizes semi-definite programming to solve for wp and ws. In the

other problem for α, the worst-case time complexity of the simplex method, a linear pro-

gram with n variables and m constraints, is O(2n), where n is the number of variables

and m is the number of constraints. Please note that n is equal to 1 in this case. In the

inner loop, the worst-case time complexity of solving a semi-definite relaxation using

interior point methods is O ((c+ v)6.5 ln(1/ϵ)), where c is the number of variables, v is

the number of constraints, and ϵ is the desired accuracy. Above all, the complexity of the

GSVD-based precoding is O
(︂

L3

σ
+ L

σ

)︂
, where L is the minimum number of antennas

between PBea and PT and ST and σ is the search step [26]. Finally, the time complexity

of the proposed algorithm is O
(︂
(L

3

σ
+ L

σ
) + 2(c+ v)6.5 ln(1/ϵ)

)︂
.

6.3 Numerical Results

In this section, we evaluate the performance of the proposed method. As a benchmark

scheme, we use a TDMA-based system defined in Section (6.2.2). Table 6.1 presents the

essential simulation parameters.
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Table 6.1. Simulation parameters

Parameter Value

The number of antenna and users at the primary and secondary networks 2 and 4

Distance from PBea to PT and PS 10 m

Distance from PT to PR,1 and PR,2 15 m and 25 m

Distance from ST to PS,2, PS,3 and PS,4 10 m, 15 m, 20 m and 25 m

Distance from PT to secondary users 10 m, 15 m, 20 m and 25 m

Noise power σ2
p and σ2

s,k -94 dBm/Hz

Path loss components for the primary network αp and secondary network αs 3.2 and 3

1 2 3 4 5 6
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14

16

Figure 6.4. Convergence of the proposed method

The convergence performance of the proposed algorithm is shown in Figure 6.4. It can

be observed that the algorithm’s solution experiences significant changes in the first three

iterations, resulting in a rapid increase in the sum rate of the secondary users. However,

after the third iteration, the increase stabilizes, suggesting that further iterations may not

yield significant improvements.
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Figure 6.5. The effect of QoS and transmitted power on the sum capacity of the secondary network

Figure 6.5 presents the relationship between the primary network’s QoS requirements

and the secondary users’ sum rate. It can be seen from the figure that the secondary users’

sum rate decreases as the primary network’s required QoS increases. This can be at-

tributed to two key factors: firstly, the signals intended for the primary users are per-

ceived as interference by the secondary users, and secondly, if the primary network fails

to meet its QoS demands, the distant user within the primary network collaborates with

the secondary transmitter, resulting in energy loss and interference for the secondary net-

work. The proposed method outperforms the benchmark TDMA model due to its higher

spectral efficiency. With superior spectral efficiency, the primary users necessitate less

power, effectively determining the energy consumption coefficient established by the

secondary network, and reducing interference for the secondary users. However, as the

primary users’ QoS requirements increase, the secondary users’ available transmission

time is shortened. Consequently, the performance gap between the proposed method and

the benchmark widens.
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Figure 6.6. The effect of minimum rate constraint for the secondary users on the sum capacity

Figure 6.6 illustrates the variations in the sum rate of the secondary users as the QoS

threshold for the secondary users’ changes. These constraints are implemented to ensure

fairness among the users, but they result in substantial reductions in the sum rate. The

decrease in the sum rate is primarily attributed to the minimum SINR rate experienced

by the furthest user, caused by interference from the preceding users. Consequently, to

meet the QoS constraint specified in Eq. (6.10b), the previous users are compelled to re-

duce their power, leading to a loss in the overall sum rate.
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6.4 Conclusion of Chapter 6

The chapter introduced a new wireless-powered mobile device approach using NOMA

and MU-MIMO antenna systems. This solution was tailored for a cognitive underlay ra-

dio scenario where a primary network demanded a specific QoS while secondary net-

work users utilized the same spectrum for downloading their data. The proposed method

optimized a joint beamforming vector for primary and secondary networks and a time-

switching coefficient for energy harvesting and information transfer. The problem for-

mulation was non-convex; therefore, we used semi-definite programming, successive

convex approximation, and alternating optimization to develop an effective and low-

complexity algorithm. The NOMA-based solution achieved a higher achievable data

rate than the TDMA-based benchmark scheme and outperformed it, especially in the low

transmit power region.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions of the Thesis

6G Networks require massive connectivity, ultra-reliability, secure and high-speed data

transfer, and diverse QoS requirements. NOMA-MIMO-based systems are promising to

overcome these demands. This thesis has addressed various aspects of wireless commu-

nication by combining NOMA and MIMO technologies with GSVD-based linear beam-

forming to optimize the performance of the proposed systems. The central contributions

and key insights of this thesis can be encapsulated as follows:

Chapter 2 presented an explanation and comparison of NOMA with OMA schemes.

Furthermore, the required mathematical tools used in the thesis were introduced in this

chapter.

Chapter 3 focused on the delay minimization problem in the hybrid-NOMA-based MIMO-

MEC offloading scenario. An iterative closed-form solution was obtained using the Dinkel-

bach method to handle the fractional expression. Simulation results demonstrated that

the proposed method significantly improved delay performance and reduced energy con-

sumption in the MIMO-MEC system.

Chapter 4 explored enhancing physical layer security in NOMA-MIMO systems. The

objective of maximizing sum secrecy rates under power and quality-of-service constraints

was executed using an SCA-based algorithm. The results indicated that NOMA outper-

formed other benchmarks, particularly in high SINR. From this chapter, it is evident that

the presence of multiple antennas at both the transmitter and receiver plays a pivotal role

in significantly enhancing the system’s delay performance.
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Chapter 5 investigated the energy consumption of NOMA-MIMO-MEC networks, con-

sidering the rise of computational-intensive and delay-sensitive applications. An en-

ergy minimization problem was formulated, and a low-complexity algorithm was pro-

posed. The numerical results demonstrated the superiority of the NOMA-based MIMO-

MEC system over conventional OMA-based schemes, particularly for high and time-

constrained data offloading. This chapter’s findings lead to the conclusion that augment-

ing the number of antennas within the confines of a constant power budget does not uni-

formly escalate data rates, mainly owing to power consumption within RF chains. Ad-

ditionally, the impact of user pairing on energy consumption within the NOMA MEC

system has been illuminated.

Chapter 6 proposed a new protocol for wireless-powered mobile users utilizing NOMA

and MIMO technologies. The primary network has pre-defined quality of service (QoS)

requirements, which coexist with a secondary network. The secondary network oper-

ates by utilizing the underlay cognitive radio technique to download data. By optimizing

joint beamforming and time-switching coefficients, the NOMA-based approach achieved

higher achievable data rates compared to the benchmark TDMA-based scheme, particu-

larly at low transmit power levels. The pivotal discovery of this chapter underscores that

NOMA exhibits superior performance particularly as the quality of service constraint

escalates for primary users.

In summation, this thesis traversed the intricacies of cutting-edge wireless communica-

tion paradigms, culminating in the fusion of NOMA and MIMO technologies bolstered

by advanced beamforming strategies. The results presented within each chapter collec-

tively underscore the potency of the proposed methodologies in advancing the domain

of 6G Networks, charting a compelling course for the future of wireless communication

systems.

7.2 Future Works

1. A promising direction for future research involves addressing the limitation of as-

suming perfect CSI availability at the transmitters and receivers. One possible ex-

tension is to explore the implications and benefits of incorporating imperfect chan-
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nel estimation with random error matrices, as demonstrated in [121]. By adopting

this approach, the studies conducted in the thesis can be expanded to real-world

scenarios where imperfect CSI is more prevalent.

2. Another limitation arises from the constraints of the GSVD technique, which only

allows the combination of two users simultaneously. Fortunately, recent advances

in the field have shown that the GSVD technique can be extended to more than two

users, as demonstrated in [122] and [123]. The results obtained indicate that the

proposed methods have considerable potential for expansion beyond two MIMO-

NOMA users. This enables assigning more than two users in a resource block.

3. An enticing avenue for future research involves integrating the proposed system

models with emerging technologies such as intelligent reflecting surfaces and un-

manned aerial vehicles. This integration holds significant potential and offers promis-

ing opportunities to enhance the received SINR of the MIMO-NOMA systems.

4. The research conducted in Chapter 5 explores the potential benefits of an optimal

user pairing that reduces the energy consumption of a pair of NOMA users. There-

fore, the proposed method in Chapter 5 could be further extended to a multi-user

scenario considering the total minimization of the whole system. Thus this research

idea would provide valuable insights into the efficacy of user pairing in large-scale

user deployments.

5. The remarkable performance improvement achieved by hybrid-SIC ordering in a

SISO-NOMA network highlights its significance in SISO-NOMA networks [15].

However, this issue is even more crucial in MIMO cases, as elaborated in the con-

text of GSVD-based MIMO-NOMA networks in Section 2.2.2. Notably, to the best

of the authors’ knowledge, this particular issue has not been thoroughly investi-

gated in the existing literature. Consequently, there is a research gap that necessi-

tates further exploration and analysis.

6. In this thesis, the solutions primarily rely on employing convex approximations

to convert non-convex problems into convex. In order to overcome the limitations

arising from the conversions, which often result in suboptimal solutions and po-

tential performance loss, a promising direction for future work involves investigat-
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ing the application of machine learning-based algorithms. By leveraging machine

learning capabilities, such algorithms can provide adaptive and efficient solutions

to the discussed system models, handling the complexity introduced by adding more

variables and adapting to time-varying environments.

7. Future work for the thesis includes exploring the potential benefits and performance

improvements offered by the rate-splitting multiple access techniques compared

to NOMA. The thesis has already investigated the GSVD-based MIMO scheme,

which decomposes the channel into private and common components. This scheme

can be extended to the rate-splitting technique, where the transmit signal incorpo-

rates common and private components for each user. This observation suggests a

valuable opportunity to transform the proposed studies on NOMA-based systems

into rate-splitting-based studies. By analyzing and evaluating the performance of

the rate-splitting technique, a comprehensive understanding of its advantages over

NOMA can be obtained.

This thesis makes significant contributions to the field of wireless communication sys-

tems by integrating MIMO and NOMA technologies through the utilization of the GSVD-

based beamforming technique. The proposed solutions have successfully showcased ad-

vancements in various key aspects, including reduced offloading delay, enhanced energy

efficiency, improved security, and higher achievable data rates. These findings provide

a deeper understanding of the potential benefits of MIMO-NOMA integration and pave

the way for future research directions. Areas worth exploring include investigating the

effects of imperfect CSI, exploring the multi-linear-GSVD approach, combining the pro-

posed techniques with emerging technologies such as intelligent reflecting surfaces and

unmanned aerial vehicles, optimizing adaptive SIC ordering strategies, and exploring

the transformation of the proposed solutions into GSVD-based RSMA-MIMO networks.

These future research avenues hold promise for further improving the performance and

capabilities of wireless communication systems.
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