3,200 research outputs found

    VIRTUALIZED BASEBAND UNITS CONSOLIDATION IN ADVANCED LTE NETWORKS USING MOBILITY- AND POWER-AWARE ALGORITHMS

    Get PDF
    Virtualization of baseband units in Advanced Long-Term Evolution networks and a rapid performance growth of general purpose processors naturally raise the interest in resource multiplexing. The concept of resource sharing and management between virtualized instances is not new and extensively used in data centers. We adopt some of the resource management techniques to organize virtualized baseband units on a pool of hosts and investigate the behavior of the system in order to identify features which are particularly relevant to mobile environment. Subsequently, we introduce our own resource management algorithm specifically targeted to address some of the peculiarities identified by experimental results

    Adaptive runtime techniques for power and resource management on multi-core systems

    Full text link
    Energy-related costs are among the major contributors to the total cost of ownership of data centers and high-performance computing (HPC) clusters. As a result, future data centers must be energy-efficient to meet the continuously increasing computational demand. Constraining the power consumption of the servers is a widely used approach for managing energy costs and complying with power delivery limitations. In tandem, virtualization has become a common practice, as virtualization reduces hardware and power requirements by enabling consolidation of multiple applications on to a smaller set of physical resources. However, administration and management of data center resources have become more complex due to the growing number of virtualized servers installed in data centers. Therefore, designing autonomous and adaptive energy efficiency approaches is crucial to achieve sustainable and cost-efficient operation in data centers. Many modern data centers running enterprise workloads successfully implement energy efficiency approaches today. However, the nature of multi-threaded applications, which are becoming more common in all computing domains, brings additional design and management challenges. Tackling these challenges requires a deeper understanding of the interactions between the applications and the underlying hardware nodes. Although cluster-level management techniques bring significant benefits, node-level techniques provide more visibility into application characteristics, which can then be used to further improve the overall energy efficiency of the data centers. This thesis proposes adaptive runtime power and resource management techniques on multi-core systems. It demonstrates that taking the multi-threaded workload characteristics into account during management significantly improves the energy efficiency of the server nodes, which are the basic building blocks of data centers. The key distinguishing features of this work are as follows: We implement the proposed runtime techniques on state-of-the-art commodity multi-core servers and show that their energy efficiency can be significantly improved by (1) taking multi-threaded application specific characteristics into account while making resource allocation decisions, (2) accurately tracking dynamically changing power constraints by using low-overhead application-aware runtime techniques, and (3) coordinating dynamic adaptive decisions at various layers of the computing stack, specifically at system and application levels. Our results show that efficient resource distribution under power constraints yields energy savings of up to 24% compared to existing approaches, along with the ability to meet power constraints 98% of the time for a diverse set of multi-threaded applications

    Multi-dimensional optimization for cloud based multi-tier applications

    Get PDF
    Emerging trends toward cloud computing and virtualization have been opening new avenues to meet enormous demands of space, resource utilization, and energy efficiency in modern data centers. By being allowed to host many multi-tier applications in consolidated environments, cloud infrastructure providers enable resources to be shared among these applications at a very fine granularity. Meanwhile, resource virtualization has recently gained considerable attention in the design of computer systems and become a key ingredient for cloud computing. It provides significant improvement of aggregated power efficiency and high resource utilization by enabling resource consolidation. It also allows infrastructure providers to manage their resources in an agile way under highly dynamic conditions. However, these trends also raise significant challenges to researchers and practitioners to successfully achieve agile resource management in consolidated environments. First, they must deal with very different responsiveness of different applications, while handling dynamic changes in resource demands as applications' workloads change over time. Second, when provisioning resources, they must consider management costs such as power consumption and adaptation overheads (i.e., overheads incurred by dynamically reconfiguring resources). Dynamic provisioning of virtual resources entails the inherent performance-power tradeoff. Moreover, indiscriminate adaptations can result in significant overheads on power consumption and end-to-end performance. Hence, to achieve agile resource management, it is important to thoroughly investigate various performance characteristics of deployed applications, precisely integrate costs caused by adaptations, and then balance benefits and costs. Fundamentally, the research question is how to dynamically provision available resources for all deployed applications to maximize overall utility under time-varying workloads, while considering such management costs. Given the scope of the problem space, this dissertation aims to develop an optimization system that not only meets performance requirements of deployed applications, but also addresses tradeoffs between performance, power consumption, and adaptation overheads. To this end, this dissertation makes two distinct contributions. First, I show that adaptations applied to cloud infrastructures can cause significant overheads on not only end-to-end response time, but also server power consumption. Moreover, I show that such costs can vary in intensity and time scale against workload, adaptation types, and performance characteristics of hosted applications. Second, I address multi-dimensional optimization between server power consumption, performance benefit, and transient costs incurred by various adaptations. Additionally, I incorporate the overhead of the optimization procedure itself into the problem formulation. Typically, system optimization approaches entail intensive computations and potentially have a long delay to deal with a huge search space in cloud computing infrastructures. Therefore, this type of cost cannot be ignored when adaptation plans are designed. In this multi-dimensional optimization work, scalable optimization algorithm and hierarchical adaptation architecture are developed to handle many applications, hosting servers, and various adaptations to support various time-scale adaptation decisions.Ph.D.Committee Chair: Pu, Calton; Committee Member: Liu, Ling; Committee Member: Liu, Xue; Committee Member: Schlichting, Richard; Committee Member: Schwan, Karsten; Committee Member: Yalamanchili, Sudhaka

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Reliable and energy efficient resource provisioning in cloud computing systems

    Get PDF
    Cloud Computing has revolutionized the Information Technology sector by giving computing a perspective of service. The services of cloud computing can be accessed by users not knowing about the underlying system with easy-to-use portals. To provide such an abstract view, cloud computing systems have to perform many complex operations besides managing a large underlying infrastructure. Such complex operations confront service providers with many challenges such as security, sustainability, reliability, energy consumption and resource management. Among all the challenges, reliability and energy consumption are two key challenges focused on in this thesis because of their conflicting nature. Current solutions either focused on reliability techniques or energy efficiency methods. But it has been observed that mechanisms providing reliability in cloud computing systems can deteriorate the energy consumption. Adding backup resources and running replicated systems provide strong fault tolerance but also increase energy consumption. Reducing energy consumption by running resources on low power scaling levels or by reducing the number of active but idle sitting resources such as backup resources reduces the system reliability. This creates a critical trade-off between these two metrics that are investigated in this thesis. To address this problem, this thesis presents novel resource management policies which target the provisioning of best resources in terms of reliability and energy efficiency and allocate them to suitable virtual machines. A mathematical framework showing interplay between reliability and energy consumption is also proposed in this thesis. A formal method to calculate the finishing time of tasks running in a cloud computing environment impacted with independent and correlated failures is also provided. The proposed policies adopted various fault tolerance mechanisms while satisfying the constraints such as task deadlines and utility values. This thesis also provides a novel failure-aware VM consolidation method, which takes the failure characteristics of resources into consideration before performing VM consolidation. All the proposed resource management methods are evaluated by using real failure traces collected from various distributed computing sites. In order to perform the evaluation, a cloud computing framework, 'ReliableCloudSim' capable of simulating failure-prone cloud computing systems is developed. The key research findings and contributions of this thesis are: 1. If the emphasis is given only to energy optimization without considering reliability in a failure prone cloud computing environment, the results can be contrary to the intuitive expectations. Rather than reducing energy consumption, a system ends up consuming more energy due to the energy losses incurred because of failure overheads. 2. While performing VM consolidation in a failure prone cloud computing environment, a significant improvement in terms of energy efficiency and reliability can be achieved by considering failure characteristics of physical resources. 3. By considering correlated occurrence of failures during resource provisioning and VM allocation, the service downtime or interruption is reduced significantly by 34% in comparison to the environments with the assumption of independent occurrence of failures. Moreover, measured by our mathematical model, the ratio of reliability and energy consumption is improved by 14%
    • …
    corecore