3,481 research outputs found

    Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

    Get PDF
    This paper proposes a Traffic-Differentiated Two-Hop Routing protocol for Quality of Service (QoS) in Wireless Sensor Networks (WSNs). It targets WSN applications having different types of data traffic with several priorities. The protocol achieves to increase Packet Reception Ratio (PRR) and reduce end-to-end delay while considering multi-queue priority policy, two-hop neighborhood information, link reliability and power efficiency. The protocol is modular and utilizes effective methods for estimating the link metrics. Numerical results show that the proposed protocol is a feasible solution to addresses QoS service differenti- ation for traffic with different priorities.Comment: 13 page

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    LPDQ: a self-scheduled TDMA MAC protocol for one-hop dynamic lowpower wireless networks

    Get PDF
    Current Medium Access Control (MAC) protocols for data collection scenarios with a large number of nodes that generate bursty traffic are based on Low-Power Listening (LPL) for network synchronization and Frame Slotted ALOHA (FSA) as the channel access mechanism. However, FSA has an efficiency bounded to 36.8% due to contention effects, which reduces packet throughput and increases energy consumption. In this paper, we target such scenarios by presenting Low-Power Distributed Queuing (LPDQ), a highly efficient and low-power MAC protocol. LPDQ is able to self-schedule data transmissions, acting as a FSA MAC under light traffic and seamlessly converging to a Time Division Multiple Access (TDMA) MAC under congestion. The paper presents the design principles and the implementation details of LPDQ using low-power commercial radio transceivers. Experiments demonstrate an efficiency close to 99% that is independent of the number of nodes and is fair in terms of resource allocation.Peer ReviewedPostprint (author’s final draft

    Analyzing Linear Communication Networks using the Ribosome Flow Model

    Full text link
    The Ribosome Flow Model (RFM) describes the unidirectional movement of interacting particles along a one-dimensional chain of sites. As a site becomes fuller, the effective entry rate into this site decreases. The RFM has been used to model and analyze mRNA translation, a biological process in which ribosomes (the particles) move along the mRNA molecule (the chain), and decode the genetic information into proteins. Here we propose the RFM as an analytical framework for modeling and analyzing linear communication networks. In this context, the moving particles are data-packets, the chain of sites is a one dimensional set of ordered buffers, and the decreasing entry rate to a fuller buffer represents a kind of decentralized backpressure flow control. For an RFM with homogeneous link capacities, we provide closed-form expressions for important network metrics including the throughput and end-to-end delay. We use these results to analyze the hop length and the transmission probability (in a contention access mode) that minimize the end-to-end delay in a multihop linear network, and provide closed-form expressions for the optimal parameter values

    Elastic Multi-resource Network Slicing: Can Protection Lead to Improved Performance?

    Full text link
    In order to meet the performance/privacy requirements of future data-intensive mobile applications, e.g., self-driving cars, mobile data analytics, and AR/VR, service providers are expected to draw on shared storage/computation/connectivity resources at the network "edge". To be cost-effective, a key functional requirement for such infrastructure is enabling the sharing of heterogeneous resources amongst tenants/service providers supporting spatially varying and dynamic user demands. This paper proposes a resource allocation criterion, namely, Share Constrained Slicing (SCS), for slices allocated predefined shares of the network's resources, which extends the traditional alpha-fairness criterion, by striking a balance among inter- and intra-slice fairness vs. overall efficiency. We show that SCS has several desirable properties including slice-level protection, envyfreeness, and load driven elasticity. In practice, mobile users' dynamics could make the cost of implementing SCS high, so we discuss the feasibility of using a simpler (dynamically) weighted max-min as a surrogate resource allocation scheme. For a setting with stochastic loads and elastic user requirements, we establish a sufficient condition for the stability of the associated coupled network system. Finally, and perhaps surprisingly, we show via extensive simulations that while SCS (and/or the surrogate weighted max-min allocation) provides inter-slice protection, they can achieve improved job delay and/or perceived throughput, as compared to other weighted max-min based allocation schemes whose intra-slice weight allocation is not share-constrained, e.g., traditional max-min or discriminatory processor sharing
    • …
    corecore