371 research outputs found

    MorphoSys: efficient colocation of QoS-constrained workloads in the cloud

    Full text link
    In hosting environments such as IaaS clouds, desirable application performance is usually guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated for unencumbered use for proper operation. Arbitrary colocation of applications with different SLAs on a single host may result in inefficient utilization of the host’s resources. In this paper, we propose that periodic resource allocation and consumption models -- often used to characterize real-time workloads -- be used for a more granular expression of SLAs. Our proposed SLA model has the salient feature that it exposes flexibilities that enable the infrastructure provider to safely transform SLAs from one form to another for the purpose of achieving more efficient colocation. Towards that goal, we present MORPHOSYS: a framework for a service that allows the manipulation of SLAs to enable efficient colocation of arbitrary workloads in a dynamic setting. We present results from extensive trace-driven simulations of colocated Video-on-Demand servers in a cloud setting. These results show that potentially-significant reduction in wasted resources (by as much as 60%) are possible using MORPHOSYS.National Science Foundation (0720604, 0735974, 0820138, 0952145, 1012798

    Improving data center efficiency through smart grid integration and intelligent analytics

    Full text link
    The ever-increasing growth of the demand in IT computing, storage and large-scale cloud services leads to the proliferation of data centers that consist of (tens of) thousands of servers. As a result, data centers are now among the largest electricity consumers worldwide. Data center energy and resource efficiency has started to receive significant attention due to its economical, environmental, and performance impacts. In tandem, facing increasing challenges in stabilizing the power grids due to growing needs of intermittent renewable energy integration, power market operators have started to offer a number of demand response (DR) opportunities for energy consumers (such as data centers) to receive credits by modulating their power consumption dynamically following specific requirements. This dissertation claims that data centers have strong capabilities to emerge as major enablers of substantial electricity integration from renewables. The participation of data centers into emerging DR, such as regulation service reserves (RSRs), enables the growth of the data center in a sustainable, environmentally neutral, or even beneficial way, while also significantly reducing data center electricity costs. In this dissertation, we first model data center participation in DR, and then propose runtime policies to dynamically modulate data center power in response to independent system operator (ISO) requests, leveraging advanced server power and workload management techniques. We also propose energy and reserve bidding strategies to minimize the data center energy cost. Our results demonstrate that a typical data center can achieve up to 44% monetary savings in its electricity cost with RSR provision, dramatically surpassing savings achieved by traditional energy management strategies. In addition, we investigate the capabilities and benefits of various types of energy storage devices (ESDs) in DR. Finally, we demonstrate RSR provision in practice on a real server. In addition to its contributions on improving data center energy efficiency, this dissertation also proposes a novel method to address data center management efficiency. We propose an intelligent system analytics approach, "discovery by example", which leverages fingerprinting and machine learning methods to automatically discover software and system changes. Our approach eases runtime data center introspection and reduces the cost of system management.2018-11-04T00:00:00

    POWER MANAGEMENT IN THE CLUSTER SYSTEM

    Get PDF
    With growing cost of electricity, the power management of server clusters has become an important problem. However, most previous researchers have only addressed the challenge in traditional homogeneous environments. Considering the increasing popularity of heterogeneous and virtualized systems, this thesis develops a series of efficient algorithms respectively for power management of heterogeneous soft real-time clusters and a virtualized cluster system. It is built on simple but effective mathematical models. When deployed to a new platform, the software incurs low configuration cost because no extensive performance measurements and profiling are required. Built upon optimization, queuing theory and control theory techniques, our approach achieves the design goal, where QoS is provided to a larger number of requests with a smaller amount of power consumption. To strive for efficiency, a threshold based approach is adopted in the first part of the thesis. Then we systematically study this approach and its design decisions. To deploy our mechanisms on the virtualized clusters, we extend the work by developing a novel power-efficient workload distribution algorithm. Adviser: Ying L

    Adaptive runtime techniques for power and resource management on multi-core systems

    Full text link
    Energy-related costs are among the major contributors to the total cost of ownership of data centers and high-performance computing (HPC) clusters. As a result, future data centers must be energy-efficient to meet the continuously increasing computational demand. Constraining the power consumption of the servers is a widely used approach for managing energy costs and complying with power delivery limitations. In tandem, virtualization has become a common practice, as virtualization reduces hardware and power requirements by enabling consolidation of multiple applications on to a smaller set of physical resources. However, administration and management of data center resources have become more complex due to the growing number of virtualized servers installed in data centers. Therefore, designing autonomous and adaptive energy efficiency approaches is crucial to achieve sustainable and cost-efficient operation in data centers. Many modern data centers running enterprise workloads successfully implement energy efficiency approaches today. However, the nature of multi-threaded applications, which are becoming more common in all computing domains, brings additional design and management challenges. Tackling these challenges requires a deeper understanding of the interactions between the applications and the underlying hardware nodes. Although cluster-level management techniques bring significant benefits, node-level techniques provide more visibility into application characteristics, which can then be used to further improve the overall energy efficiency of the data centers. This thesis proposes adaptive runtime power and resource management techniques on multi-core systems. It demonstrates that taking the multi-threaded workload characteristics into account during management significantly improves the energy efficiency of the server nodes, which are the basic building blocks of data centers. The key distinguishing features of this work are as follows: We implement the proposed runtime techniques on state-of-the-art commodity multi-core servers and show that their energy efficiency can be significantly improved by (1) taking multi-threaded application specific characteristics into account while making resource allocation decisions, (2) accurately tracking dynamically changing power constraints by using low-overhead application-aware runtime techniques, and (3) coordinating dynamic adaptive decisions at various layers of the computing stack, specifically at system and application levels. Our results show that efficient resource distribution under power constraints yields energy savings of up to 24% compared to existing approaches, along with the ability to meet power constraints 98% of the time for a diverse set of multi-threaded applications

    Large-scale computing systems study

    Get PDF
    abstract: The State of Arizona has made great advances in the use of technology to improve and enhance the efficiency, effectiveness and timeliness of those processes which are critical to the management of information technologies
    • …
    corecore