4 research outputs found

    Resource Allocation for Secure SWIPT-enabled D2D Communications with Alpha Fairness

    Get PDF
    Device-to-device (D2D) communication is an emerging paradigm that can improve system capacity and spectral efficiency by using cooperative communication coexisting with cellular networks. In spite of these advantages, D2D communication suffers from unfair resource usage, security risks posed by eavesdroppers, and limited energy storage. To deal with these issues, in this paper, we propose a resource allocation algorithm to maximize the security-aware energy efficiency (EE) for D2D users (DUs) in a simultaneous wireless information and power transfer (SWIPT)-enabled D2D communication system with Alpha fairness, where multiple random eavesdroppers are present. In particular, we formulate a multi-objective resource allocation problem by jointly optimizing the transmit power, power-splitting (PS) factors of DUs, and the sub-channel allocation factor under multiple constraints, including the maximum interference power for each cellular user, the maximum transmit power of each DU, the PS factor, and the integer sub-channel assignment. To solve the non-convex problem, an iterative algorithm is developed to obtain the sub-optimal solution. Simulation results verify that the proposed algorithm outperforms benchmark algorithms in terms of balancing secrecy EE and fairness

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen

    Power allocation in a QoS-aware cellular-based vehicular communication system.

    Get PDF
    Masters Degree. University of KwaZulu- Natal, Durban.The task of a driver assistance system is to monitor the surrounding environment of a vehicle and provide an appropriate response in the case of detecting any hazardous condition. Such operation requires real-time processing of a large amount of information, which is gathered by a variety of sensors. Vehicular communication in future vehicles can pave the way for designing highly efficient and cost-effective driver assistance systems based on collaborative and remote processing solutions. The main transmission links of vehicular communication systems are vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). In this research, a cellular-based vehicular communication system is proposed where Device-to-device (D2D) communication links are considered for establishing V2V links, and cellular communication links are employed for V2I links. D2D communication is one of the enablers of the next generation of cellular networks for improving spectrum and power utilization. D2D communication allows direct communication between user equipments within a cellular system. Nevertheless, implementing D2D communication should not defect nearby ongoing communication services. As a result, interference management is a significant aspect of designing D2D communication systems. Communication links in a cellular network are supposed to support a required level of data rates. The capacity of a communication channel is directly proportional to the energy of a transmitted signal, and in fact, achieving the desired level of Quality of Service (QoS) requires careful control of transmission power for all the radio sources within a system. Among different methods that are recommended for D2D communications, in-band D2D can offer better control over power transmission sources. In an underlay in-band D2D communication system, D2D user equipments (DUEs) usually reuse the cellular uplink (UL) spectrum. In such a system, the level of interference can effectively be managed by controlling the level of power that is transmitted by user equipments. To effectively perform the interference management, knowledge of the channel state information is required. However, as a result of the distributed nature of DUEs, such information is not fully attainable in a practical D2D system. Therefore, statistical methods are employed to find boundaries on the allocated transmission powers for achieving sufficient spectral efficiencies in V2I and V2V links without considering any prior knowledge on vehicles’ locations or the channel state information. Furthermore, the concepts of massive multiple-input multiple-output and underlay D2D communication sharing the uplink spectrum of a cellular system are used to minimize the interference effect

    Power Allocation for D2D Communications with SWIPT

    No full text
    Power allocation plays a vital role in coordinating interference between Device-to-Device (D2D) and cellular communications, and when power allocation meets simultaneous wireless information and power transfer (SWIPT), the energy efficiency of D2D communications can be significantly improved. While numerous research studies have been conducted on D2D power allocation, most of these studies do not take the presence of SWIPT into consideration. Toward a remedy for this issue, we investigate the problem of D2D power allocation with SWIPT power-splitting architecture, and address it by establishing a novel game-theoretic model. Two power allocation mechanisms are proposed to simultaneously allocate transmit power and choose power splitting ratio for D2D communications. We also develop two pricing strategies for the proposed power allocation mechanisms based on the social utility (sum utility of both D2D and cellular communications) maximization. Simulation results validate theoretical analyses and the effectiveness of the proposed mechanisms. In particular, we find through performance comparisons that our developed pricing strategies are light-weighted and energy-efficient, and the distributed power allocation mechanism is responsive to the mobility of D2D users.This work was supported by the Chongqing Key Laboratory of Computer Networking and Communications. The associate editor coordinating the review of this article and approving it for publication was M. Dong. (Corresponding author: Jun Huang.) Jun Huang is with the School of Computer Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China (e-mail: [email protected])
    corecore