94 research outputs found

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Distributed Relay Selection and Power Allocation Using Stackelberg and Auction Games in Multi-user Multi-relay Networks

    Get PDF
    This paper focuses on the problem of distributed relay selection and power allocation problem in a multi-user multi-relay network, aims to maximize users’ achievable rate while consume less power of relays which are selected for helping users transmit information. At first, we use the auction game theory to choose the relays for each user preliminarily, then for each user and the selected relays, we model the interaction between them as a two-level Stackelberg game, the relays modeled as the service provider and the users modeled as customers who will buy power from the providers. Based on this game model, we get the relays at relatively better locations for each user and the optimal power need to buy from them. Otherwise, as the users will not exchange information between themselves, we recalculate the power allocated to each user for relays the power users buy from it exceeds the maximizing transmit power. Simulation results show the effectiveness of our proposed scheme

    RESOURCE ALLOCATION FOR WIRELESS RELAY NETWORKS

    Get PDF
    In this thesis, we propose several resource allocation strategies for relay networks in the context of joint power and bandwidth allocation and relay selection, and joint power allocation and subchannel assignment for orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDMA) systems. Sharing the two best ordered relays with equal power between the two users over Rayleigh flat fading channels is proposed to establish full diversity order for both users. Closed form expressions for the outage probability, and bit error probability (BEP) performance measures for both amplify and forward (AF) and decode and forward (DF) cooperative communication schemes are developed for different scenarios. To utilize the full potentials of relay-assisted transmission in multi user systems, we propose a mixed strategy of AF relaying and direct transmission, where the user transmits part of the data using the relay, and the other part is transmitted using the direct link. The resource allocation problem is formulated to maximize the sum rate. A recursive algorithm alternating between power allocation and bandwidth allocation steps is proposed to solve the formulated resource allocation problem. Due to the conflict between limited wireless resources and the fast growing wireless demands, Stackelberg game is proposed to allocate the relay resources (power and bandwidth) between competing users, aiming to maximize the relay benefits from selling its resources. We prove the uniqueness of Stackelberg Nash Equilibrium (SNE) for the proposed game. We develop a distributed algorithm to reach SNE, and investigate the conditions for the stability of the proposed algorithm. We propose low complexity algorithms for AF-OFDMA and DF-OFDMA systems to assign the subcarriers to the users based on high SNR approximation aiming to maximize the weighted sum rate. Auction framework is proposed to devise competition based solutions for the resource allocation of AF-OFDMA aiming tomaximize either vi the sum rate or the fairness index. Two auction algorithms are proposed; sequential and one-shot auctions. In sequential auction, the users evaluate the subcarrier based on the rate marginal contribution. In the one-shot auction, the users evaluate the subcarriers based on an estimate of the Shapley value and bids on all subcarriers at once
    corecore