485,661 research outputs found

    Engineering periodic dinuclear lanthanide-directed networks featuring tunable energy level alignment and magnetic anisotropy by metal exchange

    Get PDF
    The design of lanthanide multinuclear networks is an emerging field of research due to the potential of such materials for nanomagnetism, spintronics, and quantum information. Therefore, controlling their electronic and magnetic properties is of paramount importance to tailor the envisioned functionalities. In this work, a multidisciplinary study is presented combining scanning tunneling microscopy, scanning tunneling spectroscopy, X-ray absorption spectroscopy, X-ray linear dichroism, X-ray magnetic circular dichroism, density functional theory, and multiplet calculations, about the supramolecular assembly, electronic and magnetic properties of periodic dinuclear 2D networks based on lanthanide-pyridyl interactions on Au(111). Er- and Dy-directed assemblies feature identical structural architectures stabilized by metal–organic coordination. Notably, despite exhibiting the same +3 oxidation state, there is a shift of the energy level alignment of the unoccupied molecular orbitals between Er- and Dy-directed networks. In addition, there is a reorientation of the easy axis of magnetization and an increment of the magnetic anisotropy when the metallic center is changed from Er to Dy. Thus, the results show that it is feasible to tune the energy level alignment and magnetic anisotropy of a lanthanide-based metal-organic architecture by metal exchange, while preserving the network desig

    Reward shaping using directed graph convolution neural networks for reinforcement learning and games

    Get PDF
    Game theory can employ reinforcement learning algorithms to identify the optimal policy or equilibrium solution. Potential-based reward shaping (PBRS) methods are prevalently used for accelerating reinforcement learning, ensuring the optimal policy remains consistent. Existing PBRS research performs message passing based on graph convolution neural networks (GCNs) to propagate information from rewarding states. However, in an irreversible time-series reinforcement learning problem, undirected graphs will not only mislead message-passing schemes but also lose a distinctive direction structure. In this paper, a novel approach called directed graph convolution neural networks for reward shaping φDCN has been proposed to tackle this problem. The key innovation of φDCN is the extension of spectral-based undirected graph convolution to directed graphs. Messages can be efficiently propagated by leveraging a directed graph Laplacian as a substitute for the state transition matrix. As a consequence, potential-based reward shaping can then be implemented by the propagated messages. The incorporation of temporal dependencies between states makes φDCN more suitable for real-world scenarios than existing potential-based reward shaping methods based on undirected graph convolutional networks. Preliminary experiments demonstrate that the proposed φDCN exhibits a substantial improvement compared to other competing algorithms on both Atari and MuJoCo benchmarks

    Temporal criticality

    Full text link
    In complex systems, external parameters often determine the phase in which the system operates, i.e., its macroscopic behavior. For nearly a century, statistical physics has extensively studied systems' transitions across phases, (universal) critical exponents, and related dynamical properties. Here we consider the functionality of systems, notably operations in socio-technical ones, production in economic ones and possibly information-processing in biological ones, where timing is of crucial importance. We introduce a stylized model on temporal networks with the magnitude of delay-mitigating buffers as the control parameter. The model exhibits {\it temporal criticality}, a novel form of critical behavior {\it in time}. We characterize fluctuations near criticality, commonly referred to as ``avalanches'', and identify the corresponding critical exponents. We show that real-world temporal networks, too, exhibit temporal criticality. We also explore potential connections with the Mode-Coupling Theory of glasses and the directed polymer problem.Comment: 11 pages of main paper, 11 figures, 9 pages of supplementary informatio

    Designing Network Protocols for Good Equilibria

    Get PDF
    Designing and deploying a network protocol determines the rules by which end users interact with each other and with the network. We consider the problem of designing a protocol to optimize the equilibrium behavior of a network with selfish users. We consider network cost-sharing games, where the set of Nash equilibria depends fundamentally on the choice of an edge cost-sharing protocol. Previous research focused on the Shapley protocol, in which the cost of each edge is shared equally among its users. We systematically study the design of optimal cost-sharing protocols for undirected and directed graphs, single-sink and multicommodity networks, and different measures of the inefficiency of equilibria. Our primary technical tool is a precise characterization of the cost-sharing protocols that induce only network games with pure-strategy Nash equilibria. We use this characterization to prove, among other results, that the Shapley protocol is optimal in directed graphs and that simple priority protocols are essentially optimal in undirected graphs

    MPA network design based on graph network theory and emergent properties of larval dispersal

    Full text link
    Despite the recognised effectiveness of networks of Marine Protected Areas (MPAs) as a biodiversity conservation instrument, nowadays MPA network design frequently disregards the importance of connectivity patterns. In the case of sedentary marine populations, connectivity stems not only from the stochastic nature of the physical environment that affects early-life stages dispersal, but also from the spawning stock attributes that affect the reproductive output (e.g., passive eggs and larvae) and its survivorship. Early-life stages are virtually impossible to track in the ocean. Therefore, numerical ocean current simulations coupled to egg and larval Lagrangian transport models remain the most common approach for the assessment of marine larval connectivity. Inferred larval connectivity may be different depending on the type of connectivity considered; consequently, the prioritisation of sites for marine populations' conservation might also differ. Here, we introduce a framework for evaluating and designing MPA networks based on the identification of connectivity hotspots using graph theoretic analysis. We use as a case of study a network of open-access areas and MPAs, off Mallorca Island (Spain), and test its effectiveness for the protection of the painted comber Serranus scriba. Outputs from network analysis are used to: (1) identify critical areas for improving overall larval connectivity; (2) assess the impact of species' biological parameters in network connectivity; and (3) explore alternative MPA configurations to improve average network connectivity. Results demonstrate the potential of graph theory to identify non-trivial egg/larval dispersal patterns and emerging collective properties of the MPA network which are relevant for increasing protection efficiency.Comment: 8 figures, 3 tables, 1 Supplementary material (including 4 table; 3 figures and supplementary methods

    Consensus problems in networks of agents with switching topology and time-delays

    Get PDF
    In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results
    corecore