34,020 research outputs found

    Postmortem tissue distribution of morphine and its metabolites in a series of heroin related deaths

    Get PDF
    The abuse of heroin (diamorphine) and heroin deaths are growing around the world. The interpretation of the toxicological results from suspected heroin deaths is notoriously difficult especially in cases where there may be limited samples. In order to help forensic practitioners with heroin interpretation we determined the concentration of morphine (M), morphine‐3‐glucuronide (M3G) and morphine‐6‐glucuronide (M6G) in blood (femoral and cardiac), brain (thalamus), liver (deep right lobe), bone marrow (sternum), skeletal muscle (psoas) and vitreous humor in 44 heroin related deaths. The presence of 6‐monoacetylmorphine (6‐MAM) in any of the postmortem samples was used as confirmation of heroin use. Quantitation was carried out using a validated LC‐MS/MS method with solid phase extraction. We also determined the presence of papaverine, noscapine and codeine in the samples, substances often found in illicit heroin and that may help determine illicit heroin use. The results of this study show that vitreous is the best sample to detect 6‐MAM (100% of cases), and thus heroin use. The results of the M, M3G and M6G quantitation in this study allow a degree of interpretation when samples are limited. However in some cases it may not be possible to determine heroin/morphine use as in 4 cases in muscle (3 cases in bone marrow) no morphine, morphine‐3‐glucuronide or morphine‐6‐glucuronide was detected, even though they were detected in other case samples. As always postmortem cases of suspected morphine/heroin intoxication should be interpreted with care and with as much case knowledge as possible

    Biochemistry Changes That Occur after Death: Potential Markers for Determining Post-Mortem Interval

    Get PDF
    Death is likely to result in very extensive biochemical changes in all body tissues due to lack of circulating oxygen, altered enzymatic reactions, cellular degradation, and cessation of anabolic production of metabolites. These biochemical changes may provide chemical markers for helping to more accurately determine the time since death (post-mortem interval), which is challenging to establish with current observation-based methodologies. In this study blood pH and changes in concentration of six metabolites (lactic acid, hypoxanthine, uric acid, ammonia, NADH and formic acid) were examined post-mortem over a 96 hour period in blood taken from animal corpses (rat and pig) and blood from rats and humans stored in vitro. The pH and the concentration of all six metabolites changed post-mortem but the extent and rate of change varied. Blood pH in corpses fell from 7.4 to 5.1. Concentrations of hypoxanthine, ammonia, NADH and formic acid all increased with time and these metabolites may be potential markers for postmortem interval. The concentration of lactate increased and then remained at an elevated level and changes in the concentration were different in the rat compared to the human and pig. This is the first systematic study of multiple metabolic changes post-mortem and demonstrates the nature and extent of the changes that occur, in addition to identifying potential markers for estimating post-mortem interval

    The effects of death and post-mortem cold ischemia on human tissue transcriptomes

    Get PDF
    Post-mortem tissues samples are a key resource for investigating patterns of gene expression. However, the processes triggered by death and the post-mortem interval (PMI) can significantly alter physiologically normal RNA levels. We investigate the impact of PMI on gene expression using data from multiple tissues of post-mortem donors obtained from the GTEx project. We find that many genes change expression over relatively short PMIs in a tissue-specific manner, but this potentially confounding effect in a biological analysis can be minimized by taking into account appropriate covariates. By comparing ante- and post-mortem blood samples, we identify the cascade of transcriptional events triggered by death of the organism. These events do not appear to simply reflect stochastic variation resulting from mRNA degradation, but active and ongoing regulation of transcription. Finally, we develop a model to predict the time since death from the analysis of the transcriptome of a few readily accessible tissues.Peer ReviewedPostprint (published version

    Deep convolutional neural networks for segmenting 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models

    Full text link
    The health and function of tissue rely on its vasculature network to provide reliable blood perfusion. Volumetric imaging approaches, such as multiphoton microscopy, are able to generate detailed 3D images of blood vessels that could contribute to our understanding of the role of vascular structure in normal physiology and in disease mechanisms. The segmentation of vessels, a core image analysis problem, is a bottleneck that has prevented the systematic comparison of 3D vascular architecture across experimental populations. We explored the use of convolutional neural networks to segment 3D vessels within volumetric in vivo images acquired by multiphoton microscopy. We evaluated different network architectures and machine learning techniques in the context of this segmentation problem. We show that our optimized convolutional neural network architecture, which we call DeepVess, yielded a segmentation accuracy that was better than both the current state-of-the-art and a trained human annotator, while also being orders of magnitude faster. To explore the effects of aging and Alzheimer's disease on capillaries, we applied DeepVess to 3D images of cortical blood vessels in young and old mouse models of Alzheimer's disease and wild type littermates. We found little difference in the distribution of capillary diameter or tortuosity between these groups, but did note a decrease in the number of longer capillary segments (>75μm>75\mu m) in aged animals as compared to young, in both wild type and Alzheimer's disease mouse models.Comment: 34 pages, 9 figure

    2-arachidonoylglycerol metabolism is differently modulated by oligomeric and fibrillar conformations of amyloid beta in synaptic terminals

    Get PDF
    Alzheimer´s disease (AD) is the most prevalent disorder of senile dementia mainly characterized by amyloid-beta peptide (Aβ) deposits in the brain. Cannabinoids are relevant to AD as they exert several beneficial effects in many models of this disease. Still, whether the endocannabinoid system is either up- or down-regulated in AD has not yet been fully elucidated. Thus, the aim of the present paper was to analyze endocannabinoid 2-arachidonoylglycerol (2-AG) metabolism in cerebral cortex synaptosomes incubated with Aβ oligomers or fibrils. These Aβ conformations were obtained by "aging" the 1-40 fragment of the peptide under different agitation and time conditions. A diminished availability of 2-AG resulting from a significant decrease in diacylglycerol lipase (DAGL) activity was observed in the presence of large Aβ1-40 oligomers along with synaptosomal membrane damage, as judged by transmission electron microscopy and LDH release. Conversely, a high availability of 2-AG resulting from an increase in DAGL and lysophosphatidic acid phosphohydrolase activities occurred in the presence of Aβ1-40 fibrils although synaptosomal membrane disruption was also observed. Interestingly, neither synaptosomal mitochondrial viability assayed by MTT reduction nor membrane lipid peroxidation assayed by TBARS formation measurements were altered by Aβ1-40 oligomers or fibrils. These results show a differential effect of Aβ1-40 peptide on 2-AG metabolism depending on its conformation.Fil: Pascual, Ana Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Gaveglio, Virginia Lucía. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Giusto, Norma Maria. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Pasquaré, Susana Juana. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentin
    corecore