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Abstract  

Alzheimer´s disease (AD) is the most prevalent disorder of senile dementia mainly 

characterized by amyloid-beta peptide (Aβ) deposits in the brain. Cannabinoids are 

relevant to AD as they exert several beneficial effects in many models of this 

disease. Still, whether the endocannabinoid system is either up- or down-regulated 

in AD has not yet been fully elucidated. Thus, the aim of the present paper was to 

analyze endocannabinoid 2-arachidonoylglycerol (2-AG) metabolism in cerebral 

cortex synaptosomes incubated with Aβ oligomers or fibrils. These Aβ 

conformations were obtained by "aging" the 1-40 fragment of the peptide under 

different agitation and time conditions. A diminished availability of 2-AG resulting 

from a significant decrease in diacylglycerol lipase (DAGL) activity was observed in 

the presence of large Aβ1-40 oligomers along with synaptosomal membrane 

damage, as judged by transmission electron microscopy and LDH release. 

Conversely, a high availability of 2-AG resulting from an increase in DAGL and 

lysophosphatidic acid phosphohydrolase activities occurred in the presence of Aβ1-

40 fibrils although synaptosomal membrane disruption was also observed. 

Interestingly, neither synaptosomal mitochondrial viability assayed by MTT 

reduction nor membrane lipid peroxidation assayed by TBARS formation 

measurements were altered by Aβ1-40 oligomers or fibrils. These results show a 

differential effect of Aβ1-40 peptide on 2-AG metabolism depending on its 

conformation. 

Keywords: Alzheimer´s disease, amyloid-beta peptide, 2-arachidonoylglycerol, 

synaptosomes 
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Introduction 

Alzheimer´s disease (AD) is a neurodegenerative process that depends on aging 

but differs from physiological aging. The first event in the pathogenesis of AD is the 

deposition of amyloid-beta peptide (Aβ) which precedes the aggregation of 

hyperphosphorylated tau protein generating neurofibrillary tangles (LaFerla, 2010). 

AD progression leads to synaptic loss, reduced dendritic arbors and neuronal loss 

in several brain regions, thus affecting multiple neurotransmitter systems 

(Duyckaerts and Dickson, 2011). The progressive accumulation of Aβ is due to an 

imbalance between its production and clearance (Crews et al., 2010; Querfurth et 

al., 2010). Aβ derives from the amyloid precursor protein (APP) by a proteolytic 

process (Haass et al., 1999; Walter et al., 2001) that generates peptides of 40 and 

42 amino acid residues. The assembly of monomeric Aβ into multimeric structures 

leads first to the formation of oligomers which finally, by an elongation phase, form 

larger polymers called fibrils (Kumar et al., 2011). Although deposits of Aβ fibrils 

into plaques have been proposed as the neurotoxic agents of AD pathology, 

current evidence relates oligomers to the initial state of this disease. In this context, 

it has been suggested that synaptic plasticity is inhibited by oligomers (Cleary et 

al., 2005). This leads to a different hypothesis on the neuropathology of AD whose 

first event could be a consequence of oligomer-induced synaptic dysfunction which 

causes memory loss (Hardy et al., 2002; Lacor et al., 2004). On the other hand, 

oligomer aggregations into fibrils and their deposition into plaques could represent 

an inactive reservoir of neurotoxic oligomers (Lacor et al., 2004). 

Endocannabinoid-triggered signaling may modulate several processes that occur 

prior to the onset of dementia in neurodegenerative pathologies including AD 

(Stella et al., 1997; Marsicano et al., 2003; Aso et al., 2014). The endocannabinoid 

system (ECS) is a cell communication mechanism which comprises endogenous 

ligands, mainly anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) (Devane et 

al., 1992; Stella et al., 1997), cannabinoid receptors (CBR) (Matsuda et al., 1990; 

Munro et al., 1993), and enzymes which are involved in the biosynthesis and 

inactivation of endocannabinoids (Jonsson et al., 2006; Piscitelli et al., 2012) 
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Endocannabinoids have been shown to be involved in a large number of important 

pathophysiological processes (Cravatt et al., 2004; Di Marzo et al., 2005; Viveros 

et al., 2005). In line with this, it has been observed that the ECS plays an important 

role in AD (Ramirez et al., 2005). It has been reported that two key brain regions 

implicated in learning and memory, such as cortex and hippocampus, which are 

targets of this pathology, express high levels of some ECS components (Hopper et 

al., 1976; Mackie, 2005). Interestingly, many components of the ECS undergo 

different changes depending on the stage of AD (Basavarajappa et al., 2017), 

which are detailed in the Discussion section. It has also been suggested that the 

activation of CBR by synthetic and plant cannabinoids has beneficial effects on AD 

by reducing the detrimental Aβ action and tau phosphorylation as well as by 

activating repair mechanisms in the brain (Aso et al., 2014). As stated above, AD is 

an age-dependent neurodegenerative process. In this respect, we have previously 

demonstrated that aging modifies 2-AG metabolism decreasing its availability 

(Pascual et al., 2013) and also decreases CB1 and CB2 protein expression 

(Pascual et al., 2014a), in rat cerebral cortex (CC) synaptosomes. Furthermore, we 

have shown that 2-AG metabolism is modulated by CB1 and/or CB2 receptor 

antagonists in adult and aged rat CC synaptosomes (Pascual et al., 2014a). We 

have also observed that fatty acid amidohydrolase (FAAH) activity, an enzyme 

involved not only in AEA but also in 2-AG hydrolysis, decreases in the frontal 

cortex from AD patients and that this effect is mimicked by Aβ1-40 (Pascual et al., 

2014b). Taking into account that certain cannabinoid compounds exert 

neuroprotection against Aβ, (Ruiz-Valdepenas et al., 2010) and that 2-AG 

metabolism in neurodegenerative processes has been only partially explored, the 

main purpose of the present study was to analyze if the activities of the enzymes 

involved in 2-AG synthesis (lysophosphatidic acid phosphohydrolase-LPAase- and 

diacylglycerol lipase -DAGL- activities) and hydrolysis (mainly monoacylglycerol 

lipase -MAGL- activity) are modified by the presence of Aβ1-40 peptide in an 

oligomeric or fibrillar conformation. To this end, we analyzed 2-AG metabolism in 

CC synaptic terminals, which are highly vulnerable neuronal structures in AD 

pathology. 
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Experimental procedure 

Materials 

[2-3H]Glycerol (2 Ci/mmol) was obtained from PerkinElmer (Boston, MA, USA). 

Preblended Dry Fluor (98 % PPO and 2 % bis-MSD) was obtained from Research 

Products International Corp. (Mt. Prospect, IL, USA). Lysophosphatidic acid, 1-

oleoyl [oleoyl-9,10-3H(N)]-(54 Ci/mmol) was obtained from American Radiolabeled 

Chemicals, Inc. (Saint Louis, MO, USA). Oleoyl-L-α lysophosphatidic acid, N-

ethylmaleimide, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT), Triton X-100, thiobarbituric acid (TBA) and bovine serum albumin (BSA) 

were obtained from Sigma-Aldrich (St. Louis, MO, USA). Aβ1-40 was obtained from 

PolyPeptide (Strasbourg, France) and Aβ1-42 from was obtained from Sigma-

Aldrich (St. Louis, MO, USA). The kit (LDH-P UV AA) for measuring lactate 

dehydrogenase (LDH) activity was generously supplied by Wiener Laboratory 

(Rosario, Santa Fe, Argentina). Monoclonal antibody against Aβ peptide (sc-

28365) and the horseradish peroxidase (HRP)-conjugated mouse IgGƙ light chain 

binding protein (m-IgGƙ BP-HRP, sc-516102) were generously supplied by Santa 

Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). All other chemicals were of the 

highest purity available. 

Preparation of synaptosomes 

Wistar-strain adult rats (4 months old) were kept and killed, and CC was dissected, 

as previously described (Pascual et al., 2013). All procedures were carried out 

following the guidelines issued by the Animal Research Committee of the 

Universidad Nacional del Sur (Argentina) in accordance with the Guide of the Care  

and Use of Laboratory Animals of the Institute for Laboratory Animal Research 

(ILAR) of the National Academy of Science (Bethesda, MD). Synaptosomal 

isolation protocol was followed as described elsewhere (Pascual et al., 2013). 

Preparation of human amyloid β1-40 and amyloid β1-42  
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Oligomers and fibrils were obtained from monomers, based on the protocols 

described by Uranga and co-workers (Uranga et al., 2010) and by Martin-Moreno 

and co-workers (Martin-Moreno et al., 2011), respectively, introducing minor 

modifications. Aβ was resuspended in DMSO at a concentration of 10 mg/ml. From 

this solution, dilutions in PBS were prepared at a concentration of 80 µM and were 

"aged" at 37 °C for 2 hours with constant shaking (300 rpm) to obtain oligomers. 

Incubation was continued for 22 hours (24 hours in total) at 37 °C with constant 

shaking (150 rpm) to obtain fibrils. At each time as well as prior to peptide 

incubation, aliquots of the different conformations were taken to be analyzed by 

transmission electron microscopy (TEM) and to be incubated with synaptosomes. 

Characterization of amyloid β1–40 sizes by Western blot analysis 

Aβ1-40 peptide preparations (0.1-1.5 µg) were separated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) in 8 % and/or 16 % acrylamide-

bisacrylamide gels under nonreducing conditions. After transferred to Immobilon P 

membranes using a Mini Trans-Blot cell electro blotter (BIO-RAD Life Science 

Group, CA), membranes were blocked for 5 hours with 5 % BSA in Tris-buffered 

saline (20 mM Tris–HCl, 150mMNaCl) pH 7.5 containing 0.1 % Tween 20 (TTBS). 

Membranes were incubated with anti-Aβ 1/500 for at 4 °C overnight and, after 

washing with TTBS, incubation with m-IgGƙ BP-HRP 1/500 for 2 hours at room 

temperature was performed. Proteins were visualized by chemiluminescence with 

Pirce ECL Western Blotting substrate (Thermos Scientific) using standard X-ray 

film (Kodak X-Omat AR). To corroborate molecular weights, Precision Plus Protein 

Kaleidoscope Standards (Bio-Rad) was used as a molecular weight marker. 

Evaluation of the amyloid β1–40 and amyloid β1-42 peptide aggregation state by 

transmission electron microscopy 

Aliquots (4 µl) from1 µM and/or 80 µM of monomers, oligomers, and fibrils peptide 

preparations were taken. To test the stability of the oligomer conformation during 

preincubation and enzymatic assays, other aliquots from this preparation were 

incubated at 37 °C during 10 and 30 minutes more. Aliquots were placed on either 
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carbon-coated or -uncoated grids and incubated for 60 seconds. 10 µl of 

glutaraldehyde (0.5 %) were subsequently added to each grid. The grids were 

incubated for 60 seconds more, washed with distilled water and dried. They were 

finally stained with 2 % uranyl acetate for 2 minutes, dried and examined with a 

Jeol 100 Cx II electron microscope. 

Preincubation of synaptosomes with amyloid β1-40 

Aliquots of synaptosomes equivalent to 50 µg of protein were preincubated for 10 

minutes with DMSO (Aβ1-40 vehicle) or with Aβ1-40 conformations: 

monomers/dimers, oligomers, and fibrils. 

Once preincubation of synaptosomes was finished, samples were used to a) be 

analyzed by TEM, b) determine thiobarbituric acid reactive substances (TBARS) 

generation, c) determine LDH activity, d) determine MTT reduction, and e) assay 

the different enzymatic activities involved in 2-AG metabolism, except for LPAase 

activity assays in which synaptosomes were first preincubated for 30 minutes with 

KML29 (MAGL inhibitor) (Chang et al., 2012) and then with N-ethylmaleimide 

(NEM, to specifically assay NEM-insensitive LAPase activity) (Baker et al., 2000) 

and Aβ1-40 preparation for the last 10 minutes of the preincubation time. 

Evaluation of synaptosomal structure in the presence of amyloid β1–40 

peptide by transmission electron microscopy 

Samples of synaptosomal fraction previously incubated with DMSO or with the 

different preparations of Aβ1-40 (monomers/dimers, oligomers or fibrils) were fixed 

with glutaraldehyde at a final concentration of 2.5 %. The fixed material was then 

centrifuged at 33,000 g for 20 minutes at 4 °C, and the pellet was washed with 

PBS and subsequently post-fixed with 2 % OsO4. Samples were again centrifuged 

and the pellet was washed, dehydrated through acetone and embedded in resin. 

Sections were cut on an ultramicrotome and examined with Joel 100 Cx II electron 

microscope. 

MTT assay 
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Synaptosomal reducing capacity was determined spectrophotometrically by 

measuring MTT reduction to the insoluble intracellular formazan crystals. The 

methods used in the present study were similar to those previously used by 

Uranga and co-workers (Uranga et al., 2010). 

TBARS determination 

The spectrophotometrical thiobarbituric acid assay was used to measure lipid 

peroxidation, similarly to that described elsewhere (Adamczyk et al., 2006). Briefly, 

after preincubation, 0.2 ml of 30 % trichloroacetic acid (TCA), 0.02 ml of 5 N HCl 

and 0.2 ml of 0.75 % thiobarbituric acid (TBA) were added to 0.1 ml of 

synaptosomes. The mixtures were heated at 100 °C for 15 minutes and centrifuged 

at 1000 g for 10 minutes. The supernatant was collected and thiobarbituric acid 

reactive substances were measured at 535 nm. 

Measurement of LDH release 

The activity of the enzyme LDH released from synaptosomes was determined in 

the supernatant after centrifugation at 33,000 g for 20 minutes at 4 °C, using an 

LDH-P UV AA kit following the manufacturer’s instructions (Uranga et al., 2010). 

Preparation of radiolabeled substrates  

1,2-diacyl-sn-glycerol (DAG) and [2-3H]triacylglycerol (TAG) were synthesized by 

incubating bovine retinas with [2-3H]glycerol as previously described (Pasquare de 

Garcia et al., 1986; Pascual et al., 2013). Monoacyl-sn-Glycerol (MAG) was 

obtained from [2-3H]TAG by incubation with pancreatic lipase as specified 

elsewhere (Brockerhoff, 1969; Pascual et al., 2013). Lipids were extracted either 

with n-hexane:2-propanol (3:2 v/v) or in accordance with Folch (Folch et al., 1957)  

to avoid DAG and MAG isomerization (Pascual et al., 2013). They were 

subsequently separated by one-dimensional thin layer chromatography (TLC) 

(Giusto et al., 1979; Pascual et al., 2013). 

DAGL, LPAase and MAGL activities assays 
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Assays were performed using radiolabeled substrates as specified elsewhere 

(Pascual et al., 2013; Pascual et al., 2014a). Prior to LPAase activity assay, 

synaptosomes were incubated with 1 µM KML29 (MAGL inhibitor) for 30 minutes 

and in the presence of 4.4 mM N-ethylmaleimide (NEM), to specifically assay 

NEM-insensitive LAPase activity and Aβ1-40 preparations for the last 10 minutes. 

DAGL and LPAase enzymatic reactions were stopped by adding 

chloroform:methanol (2:1, v/v), and MAGL activity assay was stopped by adding 

chloroform:methanol (1:1, v/v) and 100 µl of the corresponding buffer. Blank 

preparation was identical to each enzymatic assay except that proteins were 

absent. Lipid products derived from DAGL and LPAase activities were extracted as 

described by Folch (Folch et al., 1957). 

Separation of enzymatic reaction products 

DAGL and LPAase products were separated by TLC (Giusto et al., 1979; Pascual 

et al., 2014a), visualized by exposure to iodine vapors and scraped off for counting 

by liquid scintillation. Glycerol, MAGL product, was obtained from the aqueous 

phase, concentrated to dryness and counted by liquid scintillation. Radiolabeled 

samples were counted after the addition of 0.25 ml of water and 5 ml of 0.5 % 

Preblended Dry Fluor in toluene/Triton X-100 (4:1, v/v). 

Other methods 

Protein content was determined following Lowry and co-workers (Lowry et al., 

1951). 

Statistical analysis 

Data were analyzed by two-way ANOVA. To determine differences among our 

experimental conditions, a post-test (Bonferroni test) was used. Statistical analyses 

were performed using GraphPad software (San Diego, CA, USA, 

www.graphpad.com) and corroborated using InfoStat software, 2009p version 

(FCA — Universidad Nacional de Córdoba — Argentina, www.infostat.com.ar). 

Three pools (two animals per pool) were prepared and each one was used to 

http://www.infostat.com.ar/


  

10 
 

assay three replicates per condition. Each pool was considered as an individual 

sample (minimal value of n= 3). Statistical significance was set at p<0.05, thus 

considering 0.05 global error (α). All figures are given as mean values ± standard 

error (SE). 
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Results 

Amyloid β peptide aggregation state 

TEM was used to visualize Aβ morphology in the different conformation states. 

Aβ1-40 solution (1 µM) images are shown in Fig. 1 (A, B, C1 and C2). Before 

incubating Aβ1-40, various monomers separately arranged and with no association 

among themselves were observed (Fig. 1A). When the peptide was incubated at 

37 °C for 2 hours, it evidenced oligomer-like structures which were not aggregated 

into fibrils (Fig. 1B). Incubation at 37 °C for 24 hours showed Aβ1-40 as fibrillar 

structures (Fig. 1 C1 and 1 C2). In order to confirm that fibrillar structures were 

similar to those described in the literature, a major concentration of Aβ1-40 (80 µM) 

incubated at 37 °C for 24 hours was also analyzed by TEM (Fig. 1 C3 and C4). 

This allowed us to visualize an abundant amount of fibrils crisscrossed and 

covering the entire microscope field, thus confirming the presence of fibrillar 

peptide structures. With the purpose of evaluating oligomer stability during 

preincubation and enzymatic assays, the samples of this conformation obtained at 

120 minutes of Aβ1-40 incubation were incubated for 10 and 30 minutes more. At 

both times, these structures were found neither to exhibit significant changes in 

their conformation states nor to reveal a fibril-like structure (data not shown). This 

corroborates oligomer stability during the time of synaptosome preincubation and 

enzymatic assays.  

Western Blot of the solubilized Aβ1-40 which was not "aged" showed a band 

migrating below 10 KDa (Fig. 2A). After a 2-hour incubation, the peptides were 

observed in a band whose molecular weight was higher than 250 kDa and which 

remained in the stacking gel, either using a 8 % (Fig. 2B 1) or a 16% (Fig. 2B 2) 

SDS-PAGE. Finally, after a 24-hour incubation, the peptides also remained in the 

stacking gel (Fig. 2C).  

When TEM was performed during Aβ1-42 “aging”, not all of the images in the 

preparation were the same as those observed with Aβ1-40. Structures similar to 

those of the oligomers were observed before Aβ1-42 peptide incubation rather than 
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separately arranged monomers or dimers. When Aβ1-42 was incubated at 37 °C for 

2 hours, these structures did not exhibit any significant changes in their 

conformation compared to those obtained before “aging”. Incubation at 37 °C for 

24 hours showed Aβ1-42 as short fibrillar structures similar to protofibrils (data not 

shown). 

Synaptosomal structure in the presence of different amyloid β1-40 peptide 

conformations 

To determine if synaptosome morphology could be modified by different Aβ1-40 

peptide conformations, TEM of these subcellular structures in the presence of 

monomer/dimer, oligomer and fibril forms of the peptide was used. In the absence 

of Aβ1-40 peptide and either with or without DMSO (Aβ vehicle), synaptosomes 

were observed as round structures surrounded by intact membranes (Fig. 3 A1 

and 3 A2). Microphotography in the presence of 0.1 µM or 1 µM of the 

monomeric/dimeric conformation showed that whereas most synaptosomes were 

still whole, a few of them seemed to have impaired membranes (Fig. 3 B1 and B2). 

Occasionally, a larger conformation, similar to that of small oligomers, could be 

observed either close to or upon synaptosomes. These images were more often 

seen in the presence of the highest concentration of the peptide (Fig. 3 B2). When 

synaptosomes were exposed to 0.1 µM Aβ1-40 peptide oligomeric conformations, 

many of these structures showed no unimpaired membrane but had 

indistinguishable borders instead (Fig. 3 C1). These structures were most 

frequently seen at 1 µM oligomer concentration and represented the majority of the 

synaptosomes observed in these preparations (Fig. 3 C2). The damaged 

synaptosomes in these fields coexisted with one or two oligomers upon them (Fig. 

3 C). On the other hand, Aβ1-40 peptide fibrils at a concentration of 0.1 µM evoked 

the aggregation of synaptosomes around them and, similarly to what occurred with 

oligomers, the synaptosomal surrounding membranes were extremely damaged 

(Fig. 3 D1). In these preparations, peptides with a conformation similar to that of 

oligomers were also observed (Fig. 3 D1 2). Similar results were observed with the 
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highest concentration of Aβ1-40 peptide fibrils, being even more difficult to find fields 

with isolated synaptosomes (Fig. 3 D2). 

Synaptosomal damage markers in the presence of different amyloid β1-40 and 

amyloid β1-42 peptide conformations 

In order to evaluate synaptosomal damage by the presence of Aβ 

monomers/dimers, oligomers and fibrils, different parameters were analyzed. 

Mitochondrial function was determined by the reduction of MTT to formazan 

crystals and lipid peroxidation was determined by the formation of TBARS. None of 

these parameters changed when synaptosomes were preincubated with the 

different Aβ1-40 structures (data not shown). Membrane integrity was determined by 

measuring the release of LDH from synaptosomes after treatment with Aβ 

conformations. Results with Aβ1-40 showed that, while monomers/dimers did not 

modify LDH activity, both oligomers and fibrils at either 0.1 µM or 1 µM 

concentration increased this enzymatic activity. LDH activity in the presence of 

oligomeric Aβ1-40 was similar at both concentrations used (12-13 %) and showed 

no differences compared to what occurred with 0.1 µM fibrils (11 %). However, the 

increase in LDH activity with 1 µM fibrils (7 %) was significantly lower than with 1 

µM oligomers (Fig. 4A). The effects observed on the treatment with Aβ1-40 

oligomers appeared to be dose-independent. However, LDH activity assays after 

the incubation of synaptosomes with low Aβ1-40 oligomer concentrations (0.02 µM - 

1 µM) indicated that the impairment exerted by oligomers is dose-dependent, 

showing statistical significant membrane damage at concentrations either equal to 

or higher than 0.1 µM (Fig. 4B). In view of this, 0.1 µM of Aβ1-40 was used to 

perform the enzymatic assays because it significantly evoked a synaptosomal 

membrane damage which is a specific effect of oligomeric conformations and is 

also consistent with Aβ concentration in AD patients´ cerebrospinal fluid (Grimmer 

et al., 2009). The highest concentration (1 µM) was used taking into account our 

previous work, where a concentration-effect curve within 0.1 and 1 µM 

concentrations of Aβ was assayed (Mulder et al., 2011). When LDH activity was 

assayed with the preparations of Aβ1-42 (at 0, 2 and 24 hours of incubation),  results 
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showed a 10-18 % increase in LDH release from the synaptosomes with no 

differences among each other at either 0.1 or 1 µM concentration (data not shown). 

LPAase activity in synaptosomes incubated with different amyloid β1-40 

peptide conformations 

Synaptosomes preincubated for 10 minutes with 0.1 µM of the different Aβ1-40 

peptide conformations showed no differences in LPAase activity (Fig. 5A). When a 

similar assay was carried out at 1 µM of the different Aβ1-40 peptide structures, only 

the fibrillar conformation of the peptide produced a significant increase (9 %) 

compared to that observed in the absence of the peptide (Fig. 5A). 

DAGL activity in synaptosomes incubated with different amyloid β1-40 peptide 

conformations 

Synaptosomes preincubated with either 0.1 µM or 1 µM Aβ1-40 monomers/dimers 

for 10 minutes caused no changes in DAGL activity, as observed in the absence of 

Aβ1-40 peptide (control condition) (Fig. 5B). On the other hand, oligomeric Aβ1-40 

produced a decrease in DAGL activity of 41 % and 49 % at 0.1 µM and 1 µM, 

respectively, with no significant differences between these concentrations (Fig. 

5B). Conversely, whereas fibrillar conformation of the peptide at the highest 

concentration used (1 µM) increased DAGL activity (26 %) with respect to control, 

at the lowest concentration (0.1 µM) no significant differences were observed (Fig. 

5B). 

MAGL activity in synaptosomes incubated with different amyloid β1-40 peptide 

conformations 

MAGL activity in synaptosomes exposed to Aβ1-40 monomers/dimers in both 

assayed concentrations showed no changes with respect to the control condition 

(Fig. 5C). Furthermore, the oligomeric conformation of the peptide induced a 

decrease in MAGL activity (8-9 %) with no differences between 0.1 µM and 1 µM 

concentrations (Fig. 5C). In contrast to what was observed with oligomers, 1 µM of 

fibrillar Aβ1-40 increased enzymatic activity (4 %) with respect to the control 
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condition whereas 0.1 µM of this conformation produced no changes in MAG 

hydrolysis (Fig. 5C).  
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Discussion 

Amyloid beta accumulation in the brain is a hallmark of AD pathology. Aβ 

deposition occurs not only extra- but also intraneuronally (Takahashi et al., 2004; Li 

et al., 2007; Gouras et al., 2010). Intraneuronal Aβ is found in the brain of AD 

patients and individuals with mild cognitive impairment (Gouras et al., 2000). 

Therefore, intracellular conglomeration is the first signal of a neuronal alteration 

that correlates with cognitive decline. Observations in AD human brain have also 

been corroborated in animal models (Takahashi et al., 2002; Billings et al., 2005; 

Bayer et al., 2008). 

Due to its high aggregation rate, Aβ1-42 peptide is thought to be more toxic than 

Aβ1-40 (Jarrett et al., 1993; Dahlgren et al., 2002). However, as the 17-21 fragment 

of the native protein is the nucleation site, using either Aβ1-40 or Aβ1-42 could be 

considered the same (Hilbich et al., 1991). Our results from TEM analysis with the 

different preparations (at 0, 2 and 24 hours of incubation) of both Aβ1-40 and Aβ1-42 

peptides evidenced that, while the shortest peptide formed monomers or dimers, 

oligomers, and fibrils at each incubation period, the largest fragment formed 

oligomer structures rapidly, and protofibrils at a 24-hour  incubation. Moreover, 

Western Blot analysis demonstrated i) that the immediately solubilized Aβ1-40 

peptide (not "aged") corresponded mainly to molecular structures below 10 kDa 

weight (monomers or dimers), ii) that after a 2-hour incubation, Aβ1-40 

corresponded to oligomeric molecular species larger than 250 kDa (more than 58 

subunits), and iii) that after a 24-hour incubation, it corresponded to fibrils which 

remain in the stacking gel. In line with this, Bitan and co-workers (Bitan et al., 

2003) demonstrated that Aβ1-40 oligomerization is slower than that of Aβ1-42, thus 

forming more easily monomer, dimer and tetramer structures while the larger 

peptide forms predominantly pentamers and hexamers.  

LDH assays in synaptosomes incubated with Aβ1-42 revealed that all the 

preparations exerted damage in the synaptosomal membrane at the same rate 

(data not shown). These results are in accordance with the above-mentioned TEM 

assays, as the structures obtained before and after "aging" Aβ1-42 peptide for 2 
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hours not only had the same oligomeric structure but also evoked the same 

synaptosomal damage. Taking into account that the main purpose of our study was 

to analyze if 2-AG metabolism is modified by the presence of Aβ peptide in an 

oligomeric or fibrillar conformation, our results suggest that it is more convenient to 

use Aβ1-40 than Aβ1-42 because the former forms structures similar to monomers or 

dimers, oligomers, and fibrils more easily than Aβ1-42. 

Our results obtained by TEM in synaptosomes incubated in the presence of either 

Aβ1-40  oligomers or fibrils showed an increase in the release of LDH, thus 

indicating that both Aβ1-40 conformations alter synaptosomal membrane. In 

addition, fibrils generated the association of the synaptosomes which presented 

oligomers upon them, thus suggesting that oligomeric conformation could also be 

generated from Aβ fibrils. The fact that these oligomers were observed in those 

synaptosomes whose membranes were damaged suggests a localization of these 

Aβ1-40 structures inside axon terminals, in agreement with results from previous 

studies (Kokubo et al., 2005; Pickett et al., 2016) It has also been reported that 

although oligomers are assembled from extracellular monomers, they are also 

released from intracellular pools (Walsh et al., 2000). 

In the presence of Aβ1-40 fibrils, especially at the highest concentration (1 µM), 

synaptosomes were found to be agglomerated, being very difficult to observe 

isolated synaptosomes. At 1 µM only a few of these synaptosomes showed 

oligomers on them. Although the presence of 1 µM Aβ1-40 oligomers or fibrils 

favored LDH release from synaptosomes, this release was higher in the presence 

of oligomers. This suggests that the deleterious effect on the synaptosomal 

membrane is mainly produced by the oligomeric conformation of Aβ1-40. Although 

membrane damage possibly implies alterations in its components, when lipid 

peroxidation was analyzed, no differences were observed with respect to Aβ1-40 

monomeric/dimeric form (data not shown). In spite of this, our results do not lead 

us to discard a change in membrane lipid composition. As to the mechanism of 

action of Aβ, whereas some studies favor the insertion of Aβ oligomeric form into 

the lipid bilayer and the disruption of membrane-generating pores, others support 
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its accumulation by binding to a ligand at particular synapses (Kayed et al., 2003; 

Arispe, 2004; Jang et al., 2013; Yates et al., 2013). In this respect, previous 

research showed an association of oligomers with surface membrane proteins in 

the early stages of AD. These proteins, in particular, have been reported to be 

enriched in isolated synaptosomes (Lacor et al., 2004). Regardless of the 

mechanism by which Aβ oligomers produce this deleterious effect, we corroborated 

that synaptic membrane disruption is a consequence of their action. 

Results derived from MTT assay showed that Aβ1-40 did not appear to affect 

mitochondrial viability (data not shown) although mitochondria in AD may be 

affected by Aβ (Pinho et al., 2014), which may, in turn, induce impairment of its 

function (Lin et al., 2006). 

Maintaining adequate levels of endocannabinoids is helpful as it not only mitigates 

the harmful effects of Aβ but also facilitates its clearance (Bachmeier et al., 2013). 

In AD some changes have been reported in the levels and/or activity of the 

enzymes and receptors related to ECS. In line with this, previous research has 

shown controversial results depending on the AD stage and the nervous system 

region analyzed (Basavarajappa et al., 2017). Previous research found loss of 

CB1-positive neurons in areas of microglial activation in the frontal cortex of 

postmortem AD patient brains and decreased protein expression and G-protein 

coupling although CB1 radioligand binding was preserved (Ramirez et al., 2005). A 

decrease in CB1 protein expression in postmortem cortical brain tissue from AD 

patients staged at Braak V/VI was also reported by Solas and co-workers (Solas et 

al., 2013). Conversely, autoradiography with a CB1 radioligand on postmortem 

prefrontal cortex samples from AD patients from Braak stages I to VI indicated an 

up-regulation of CB1 receptor density in early AD stages followed by a reduction of 

this increase in later stages (Farkas et al., 2012). In addition, no differences in CB1 

protein density or location were found in cortical neurons from AD brains by 

immunohistochemical studies (Benito et al., 2003) nor in hippocampus from Braak 

stage III, IV or VI AD patients by immunoblotting or immunohistochemical assays 

(Mulder et al., 2011). In agreement with this, immunoblotting and radioligand 
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binding assays in frontal cortex, anterior cingulate gyrus, hippocampus and 

caudate nucleus (Lee et al., 2010), and in vivo positron emission tomography 

(PET) demonstrated that CB1 receptor levels were unchanged in AD brains 

(Ahmad et al., 2014). As to CB2, whereas previous reports revealed an 

overexpression in AD brain cortex by immunoblotting (Solas et al., 2013), 

specifically in neuritic plaque-associated astrocytes and microglia (Benito et al., 

2003), other studies showed either no changes in frontal cortex (Ramirez et al., 

2005) or a decrease in CB2 brain availability by in vivo PET studies (Ahmad et al., 

2016). Additionally, Ramirez and co-workers reported an enhanced CB1 and CB2 

receptor protein nitration in frontal cortex AD brains (Ramirez et al., 2005). As to 

the enzymes involved in 2-AG metabolism, and in parallel with AD progression,  

immunoblotting showed a gradual increase in DAGL and DAGLβ protein 

expression in human hippocampus and immunochemistry showed a redistribution 

of DAGLβ to activated microglia surrounding senile plaques in  Braak stage VI AD 

brains (Mulder et al., 2011). In this report immunoblotting and 

immunohistochemistry techniques were also used to demonstrate changes in 2-AG 

hydrolyzing enzymes serine hydrolase α/β-hydrolase domain-containing 6 

(ABHD6) and MAGL in human hippocampus during AD progression. The former, 

which was expressed in microglia (particularly in Braak stage VI), was found to 

decrease gradually, while the latter was reported to increase and to shift 

progressively from damaged neurons to activated glia (Mulder et al., 2011). 2-AG 

hydrolysis assays revealed a subcellular redistribution of MAGL from cytosol to 

membranes in frontal cortex postmortem AD brain (Mulder et al., 2011). Although 

FAAH up-regulation was identified by immunohistochemistry in AD neuritic plaque-

associated glia together with an increase in its activity in entorhinal and 

parahippocampal areas (Benito et al., 2003), we have demonstrated that  whereas 

FAAH activity decreases in the frontal cortical membranes from AD patients, it 

undergoes no changes at the protein level (Pascual et al., 2014b). 

As discussed above, changes in ECS strongly depend not only on the brain area 

but also on the type of cells (neuron or glia) to be analyzed. In our study, 

synaptosomes (subcellular fraction containing exclusively synaptic terminals) were 
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used to assay the effect of different Aβ1-40 peptide conformations on the ECS, 

particularly on 2-AG metabolism. However, astrocytes have an important role in 

‘‘tripartite synapses’’ influencing neuronal function. Furthermore, endocannabinoids 

participate in this neuron-astrocyte communication. Bari and co-workers have 

identified differences and similarities in the ECS between synaptosomes and 

gliosomes (sub-cellular particles obtained from astrocytes) from rat brain cortex 

(Bari et al., 2011). In this respect, no differences were reported in 2-AG and AEA 

levels, AEA metabolizing enzymes activities and 2-AG hydrolysis activity. However, 

compared to synaptosomes, DAGL activity was found to be greater in gliosomes. 

Also, while in synaptosomes ionotropic transient receptor potential vanilloid 1 

(TRPV1, which can bind AEA) was found to have no effect and both CB1 and CB2 

receptors inhibited the stimulus-induced release of glutamate in gliosomes, CB1 

receptor increased this neurotransmitter release but CB2 receptor and TRPV1 

inhibited it (Bari et al., 2011). 

In the presence of Aβ1-40 oligomers, we observed a greater decrease in DAGL 

activity compared to that observed in MAGL activity, without changes in LPAase 

activity, thus leading to a decrease in 2-AG availability (Fig. 6A). This decrease in 

the neuroprotector 2-AG caused by this Aβ1-40 conformation could contribute to the 

progression of AD. As the enzymes involved in endocannabinoid metabolism exert 

their activities when they are associated to the membrane, it is therefore feasible 

that the damage caused by oligomers in the synaptosomal membrane could modify 

either the environment of the enzymes or their structures, thus decreasing their 

activities. This was observed for DAGL and MAGL which could suggest that 

oligomers interfere particularly in lipase activity (Prescott et al., 1983; Dinh et al., 

2004) since LPAase, whose mechanism of action is different (Nakane et al., 2002), 

is not affected. 

On the other hand, in the presence of Aβ1-40 fibrils, a higher increase in the 

synthetic activities with respect to the increase observed in the hydrolytic activity 

may lead to higher 2-AG availability (Fig. 6B). The effect exerted by fibrils could be 

a consequence of synaptosomal agglomeration produced by this Aβ1-40 
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conformation, partially preventing the access of oligomers to the synaptic terminal, 

which could minimize the damage in the synaptosomal membrane. This is 

supported by the fact that when a higher concentration of fibrils was used, 

synaptosomes were much more agglomerated and membrane damage was lower 

than with oligomers. This is consistent with the above-mentioned hypothesis, 

according to which fibril deposits could constitute a reservoir of neurotoxic 

oligomers (Lacor et al., 2004), thus preventing their deleterious action. 

We have previously reported that the net balance between 2-AG synthesis and 

hydrolysis reveals low availability of this endocannabinoid in synaptic terminals 

during aging (Pascual et al., 2013). The results collected in the presence of Aβ1-40 

oligomers are consistent with those observed in aging, thus suggesting in both 

cases a decrease in the neuroprotection exerted by 2-AG.  
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Conclusions 

Summing up, our results lead us to conclude that 2-AG availability is differently 

modulated by Aβ1-40 conformations through the enzymatic activities responsible for 

its metabolism. Thus, oligomeric Aβ1-40 conformation, which has been recently 

proposed to be the neurotoxic agent in AD, decreases neuroprotector 2-AG 

availability. In this respect, the enzymes involved in 2-AG synthesis and hydrolysis 

could, therefore, be promising therapeutic targets in AD. 
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Figure legends 

Figure 1. TEM of amyloid β1-40 peptide preparation during the different incubation 

periods: A: 0 hours, B: 2 hours and C: 24 hours. Aliquots from 1 µM (A, B, C1, and 

C2) or 80 µM Aβ1-40 (C3 and C4) were taken before (A) and after “aging” the 

peptide at different incubation periods (B and C). Aliquots were placed on carbon-

coated (A, B1, C1 and C2) or -uncoated (B2, C3 and C4) grids, fixed with 0.5 % 

glutaraldehyde, stained with 2 % uranyl acetate and examined with an electron 

microscope. Figures correspond to: C3 and B1 40,000x, C1 80,000x, A1, B2, C2 

and C4 140,000x, A2 200,000x. 

Figure 2. Immunoblot analysis of amyloid β1-40 peptide preparation during different 

incubation periods: A: 0 hours, B: 2 hours and C: 24 hours. Aliquots (0.1-1.5 µg 

protein) were taken before (A) and after “aging” the peptide in different incubation 

periods (B and C), and they were separated by SDS-PAGE in 8 % (B1 and C) 

and/or 16 % (A and B2) acrylamide-bisacrylamide gels under nonreducing 

conditions. Transference to membranes, blocking, incubation with primary and 

secondary antibodies and chemiluminescence detection were performed as 

specified in the Experimental procedure section. Numbers on the right indicate 

molecular weights. 

Figure 3. TEM of adult rat CC synaptosomes incubated with A: DMSO, B: Aβ1-40 

monomers/dimers, C: Aβ1-40 oligomers and D: Aβ1-40 fibrils. Aliquots of 

synaptosomes equivalent to 50 µg of protein were incubated for 10 minutes with 

DMSO (Aβ1-40 vehicle) or with 0.1 µM and 1 µM of the different Aβ1-40 

conformations: monomers/dimers, oligomers, and fibrils. After incubation, samples 

were fixed with glutaraldehyde in a final concentration of 2.5 %, post-fixed with 2 % 

OsO4, dehydrated through acetone and embedded in resin. Sections were cut on 

an ultramicrotome and examined with an electron microscope. Figures correspond 

to: D1 1 40,000x, A1, B1 1, B2 1, C1 1, C1 2, C2 1, D2 1 and D2 2 80,000x; A2, B1 

2, B2 2, C1 3, C1 4, C2 2, D1 2, D2 3 and D2 4 140,000x. Black arrows indicate 

synaptosomes with impaired membrane while white arrows indicate the presence 

of Aβ1-40 oligomers. 
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Figure 4. Activity of LDH released from adult rat CC synaptosomes after 

treatments with Aβ1-40 peptide. Synaptosomes (50 µg of protein) were preincubated 

for 10 minutes with Aβ1-40 monomers/dimers, oligomers or fibrils at 0.1 µM and 1 

µM concentrations (A) or Aβ1-40 oligomers at 0.02, 0.05, 0.07, 0.1 µM and 1 µM 

concentrations (B), precipitated by centrifugation and LDH activity was measured 

in the supernatant by spectrophotometry using the LDH-P UV AA kit. Results are 

expressed as a percentage of corresponding control values (100 %) and represent 

the mean ± SE of a minimum of three individual samples. ***p<0.001, **p<0.01 and 

*p<0.05 with respect to control condition; ++p<0.01 with respect to 1 µM oligomers. 

Figure 5.  Enzymatic activities involved in 2-AG metabolism. LPAase (A), DAGL 

(B) and MAGL (C) activities in adult rat CC synaptosomes after treatments with 

Aβ1-40. Synaptosomes (50 µg of protein) were preincubated with 0.1 µM or 1 µM of 

Aβ1-40 monomers/dimers, oligomers or fibrils and subsequently incubated with the 

radiolabeled substrate as specified in Experimental procedure section. Results are 

expressed as a percentage of corresponding control values (100 %) and represent 

the mean ± SE of a minimum of three individual samples. ***p<0.001 and **p<0.01 

with respect to control condition. 

Figure 6. Modulation of 2-AG metabolism by Aβ1-40 peptide. A: Aβ1-40 oligomers 

decreased 2-AG availability in adult rat CC synaptosomes by inhibiting its 

synthesis (DAGL) in a higher percentage than its hydrolysis. B: Aβ1-40 fibrils 

increased 2-AG availability in adult rat CC synaptosomes by stimulating its 

synthesis (DAGL and LPAase) in a higher percentage than its hydrolysis. LPA: 1-

oleoyllysophosphatidicacid, DAG: diacylglycerol, 2-AG: 2-arachydonoylglycerol, 

LPAase: lysophosphatidic acid phosphohydrolase, DAGL: diacylglycerol lipase, 

MAGL: monoacylglycerol lipase. 
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Highlights  

• Aβ oligomers disrupt synaptosomal membrane and impair lipase activities 

• 2-AG synaptosomal availability is diminished in the presence of Aβ 

oligomers 

• Aβ fibrils trigger synaptosomal aggregation  

• 2-AG synaptosomal availability increases by stimulus of its synthesis in the 

presence of Aβ fibrils 

 



23/8/2017 View Letter

https://eeslive.elsevier.com/nsc/viewLetter.asp?id=1225601&lsid={58A2F6A6-47F9-4A01-B681-2DE7CE098323} 1/2

View Letter

Close

Date: 08/23/2017
To: "Susana Pasquare" pasquare@criba.edu.ar
cc: yuri Bozzi
From: "Neuroscience, Editorial" eesserver@eesmail.elsevier.com
Reply To: "Neuroscience, Editorial" neuroscience@journal-office.com
Subject: Acceptance of NSC-17-513R2

Ms. No.: NSC-17-513R2 
Title: 2-arachidonoylglycerol metabolism is differently modulated by oligomeric and fibrillar conformations of
amyloid beta in synaptic terminals 
Section: Cellular and Molecular Neuroscience 
 
Dear Dr. Pasquare, 
 
We are pleased to inform you that your manuscript referenced above has been accepted for publication in
Neuroscience. We hope that the review has been a positive experience and that your manuscript has been
improved by the process. 
 
We are currently planning to publish your paper in the Cellular and Molecular Neuroscience section, based on
the Section you chose when you submitted your paper. Please notify us if you would prefer to have your paper
published in a different section. The sections are:  
 
- Cellular and Molecular Neuroscience  
- Developmental Neuroscience 
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color artwork will appear online in color at no charge. If you wish to substitute separate black and white images
for the print edition, please notify the production department when you receive the article registration notice in
the next few days. 
 
Many thanks for submitting your fine paper to Neuroscience. We look forward to receiving additional papers
from your laboratory in the future. 
 
To update your personal classifications please click here:  
https://eeslive.elsevier.com/nsc/l.asp?i=894026&l=P3I91VRG 
 
When your paper is published on ScienceDirect, you want to make sure it gets the attention it deserves. To help
you get your message across, Elsevier has developed a new, free service called AudioSlides: brief, webcast-
style presentations that are shown (publicly available) next to your published article. This format gives you the
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NEUROSCIENCE LAUNCHES COVER COMPETITION! 
 
Neuroscience once again invites all authors whose papers have been accepted for publication in the journal in
2015 to enter a competition for the best cover. 
 
A new color cover will be chosen for each of the 28 issues of 'Neuroscience' in 2016.  All covers for 2016 will be
posted on the IBRO web site www.ibro.org in early 2017, when IBRO members will be invited to vote for the
best cover for 2016! 
 
The winner will receive a cash prize of $500 (USD).  
 
Illustrations for the cover should be related to the author's submitted article, but would not necessarily be
included in the paper. We invite authors to produce exciting graphical images that represent the subject matter
of their accepted article. Submitted cover images not created by the author group must include the reprint
permission and source. Cover art should be sent to: 
 
Neuroscience Editorial Office 
Email: neuroscience@journal-office.com
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