5,670 research outputs found
Simulating Postbuckling Behaviour and Collapse of Stiffened CFRP Panels
Advanced composite materials are well known for their outstanding potential in weight-related stiffness and strength leading to an ever increasing share in aerospace structural components out of Carbon Fibre Reinforced Plastics (CFRP). In order to fully exploit the load-carrying capacity of such structures an accurate and reliable simulation is indispensable. Local buckling is not necessarily the load bearing limit for stiffened panels or shells; their full potential can be tapped only by utilizing the postbuckling region. That, however, requires fast tools which are capable of simulating the structural behaviour beyond bifurcation points including material degradation up to collapse. The most critical structural degradation mode is skin stringer separation; delamination, especially within the stringer, is a critical material degradation. A reliable prediction of collapse requires knowledge of degradation due to static as well as low cycle loading in the postbuckling region.
Earlier projects have shown that it needs considerable experience in simulating the postbuckling behaviour. Though a great deal of knowledge about CFRP structural and material degradation is available its influence on collapse is not yet sufficiently investigated. It is the aim of the project COCOMAT (Improved MATerial exploitation at safe design of COmposite airframe structures by accurate simulation of COllapse) to develop means for and gain experience in fast and accurate simulation of the collapse load of stringer stiffened CFRP curved panels taking degradation and cyclic loading as well as geometric nonlinearity into account. COCOMAT is a Specific Targeted Research Project supported by the EU 6th Framework Programme; it started 2004 and runs for 4 years. Main deliverables are:
• test results for buckling and collapse of undamaged and pre-damaged stiffened CFRP panels under static and cyclic loading,
• improved material properties and degradation models,
computational tools for design and certification of stiffened fibre composite panels which take postbuckling behaviour, degradation and collapse into account,
• and finally design guidelines and industrial validation.
The work will lead to an extended experimental data base, relevant degradation models and improved simulation tools for certification as well as for design. These results should allow setting up a future design scenario which exploits the existing reserves in primary fibre composite structures. The paper starts out from results provided by the forerunners of COCOMAT, describes the main objectives of the project, gives a general status of the progress reached so far and presents first results
Postbuckling behavior of graphite-epoxy panels
Structurally efficient fuselage panels are often designed to allow buckling to occur at applied loads below ultimate. Interest in applying graphite-epoxy materials to fuselage primary structure led to several studies of the post-buckling behavior of graphite-epoxy structural components. Studies of the postbuckling behavior of flat and curved, unstiffened and stiffened graphite-epoxy panels loaded in compression and shear were summarized. The response and failure characteristics of specimens studied experimentally were described, and analytical and experimental results were compared. The specimens tested in the studies described were fabricated from commercially available 0.005-inch-thick unidirectional graphite-fiber tapes preimpregnated with 350 F cure thermosetting epoxy resins
The use of damage as a design parameter for postbuckling composite aerospace structures
Advanced fibre-reinforced polymer composites have seen a rapid increase in use in aircraft structures in recent years due their high specific strength and stiffness, amongst other properties. The use of postbuckling design, where lightweight structures are designed to operate safely at loads in excess of buckling loads, has been applied to metals for decades to design highly efficient structures. However, to date, the application of postbuckling design in composite structures has been limited, as today’s analysis tools are not capable of representing the damage mechanisms that lead to structural collapse of composites in compression. The currently running four-year European Commission Project COCOMAT [1] is addressing this issue, and aims to exploit the large strength reserves of composite aerospace structures through a more accurate prediction of collapse.
A methodology has been developed to analyse the collapse of composite structures that is focused on capturing the critical damage mechanisms. One aspect of the methodology is a global-local analysis technique that uses a strength criterion to predict the initiation of interlaminar damage in intact structures. Another aspect of the approach was developed for representing the growth of a pre-existing interlaminar damage region, and is based on applying multi-point constraints in the skin-stiffener interface that are controlled using fracture mechanics calculations. A separate degradation model was also included to model the in-plane ply damage mechanisms of fibre fracture, matrix cracking and fibre-matrix shear that uses a progressive failure approach. The complete analysis methodology was implemented in MSC.Marc v2005r3 using several user subroutines, and has been validated with a range of experimental tests, including fracture mechanics coupons [2], single-stiffener specimens [3] and multi-stiffener curved panels [4].
The developed methodology was used to design and analyse fuselage-representative composite panels in various pre-damaged configurations. Two panel designs were investigated, D1 and D2, which both consisted of a curved skin adhesively bonded to blade-shaped stiffeners. For the D1 panel, the pre-damage applied was a full-width skin-stiffener debond created using a Teflon insert in the adhesive layer, whilst the D2 panel was investigated with Barely Visible Impact Damage (BVID). For both panels, parametric studies were conducted using the developed methodology in order to recommend a damaged configuration suitable for experimental testing. For the D1 panel, a 100 mm length debond was selected, and the location of the damage was investigated, whilst for the D2 panel both the location and the representation of damage was varied. Based on these parametric studies, two pre-damaged configurations of the D1 panel and one pre-damaged D2 configuration were selected for experimental testing.
The selected pre-damaged configurations were manufactured by Aernnova Engineering Solutions and manufactured at the Institute of Composite Structures and Adaptive Systems at the German Aerospace Center (DLR) as part of the COCOMAT project. Following manufacture, panel quality was inspected with ultrasonic and thermographic scanning and panel imperfection data was measured using the three-dimensional (3D) optical measurement system ATOS. During the test, measurements were taken using displacement transducers, strain gauges, the 3D optical measuring system ARAMIS, and optical lock-in thermography. Under compression, the panels developed a range of buckling mode shapes, and the progression of damage was monitored leading to structural collapse.
In comparison with the experimental results, the analysis methodology was shown to give accurate predictions of the load-carrying behaviour, damage development and collapse load of both panels. The results demonstrated the capability of the developed tool to capture the critical damage mechanisms leading to collapse in composite structures. The advanced analysis methodology also allowed for damage to be used as a design parameter in postbuckling structures, either in the comparative analysis context of a design procedure, to assess the damage tolerance of a design, or as pre- and post-test simulations of intact and pre-damaged structures. More broadly, the results demonstrated the potential of postbuckling composite structures, and the large strength reserve available in the postbuckling region. The success of the developed analysis methodology and the potential of postbuckling composite structures have application for the next generation of lightweight aerospace structures
Computational procedures for postbuckling of composite shells
A recently developed finite-element capability for general nonlinear shell analysis, featuring the use of three-dimensional constitutive equations within an efficient resultant-oriented framework, is employed to simulate the postbuckling response of an axially compressed composite cylindrical panel with a circular cutout. The problem is a generic example of modern composite aircraft components for which postbuckling strength (i.e., fail-safety) is desired in the presence of local discontinuities such as holes and cracked stiffeners. While the computational software does a reasonable job of predicting both the buckling load and the qualitative aspects of postbuckling (compared both with experiment and another code) there are some discrepancies due to: (1) uncertainties in the nominal layer material properties, (2) structural sensitivity to initial imperfections, and (3) the neglect of dynamic and local material delamination effects in the numerical model. Corresponding refinements are suggested for the realistic continuation of this type of analysis
Static and Dynamic Thermomechanical Buckling Loads of Functionally Graded Plates.
In the paper the buckling phenomenon for static and dynamic loading (pulse of finite
duration) of FGM plates subjected to simultaneous action of one directional compression and thermal field is presented. Thin, rectangular plates simply supported along all edges are considered. The investigations are conducted for different values of volume fraction exponent and uniform temperature rise in conjunction with mechanical dynamic pulse loading of finite duration
Postbuckling delamination of a stiffened composite panel using finite element methods
A combined numerical and experimental study is carried out for the postbuckling behavior of a stiffened composite panel. The panel is rectangular and is subjected to static in-plane compression on two opposite edges to the collapse level. Nonlinear (large deflection) plate theory is employed, together with an experimentally based failure criterion. It is found that the stiffened composite panel can exhibit significant postbuckling strength
Eighth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, Part 2
Papers presented at the conference are compiled. The conference provided a forum for the scientific community to exchange composite structures design information and an opportunity to observe recent progress in composite structures design and technology. Part 2 contains papers related to the following subject areas: the application in design; methodology in design; and reliability in design
Interlaminar shear stress effects on the postbuckling response of graphite-epoxy panels
The influence of shear flexibility on overall postbuckling response was assessed, and transverse shear stress distributions in relation to panel failure were examined. Nonlinear postbuckling results are obtained for finite element models based on classical laminated plate theory and first-order shear deformation theory. Good correlation between test and analysis is obtained. The results presented analytically substantiate the experimentally observed failure mode
Probabilistic Approach for better Buckling Knock-down Factors of CFRP Cylindrical Shells - Tests and Analyses
The industry in the fields of civil and mechanical engineering, and in particular of aerospace demands for significantly reduced development and operating costs. Reduction of structural weight at safe design is one avenue to achieve this objective. The running ESA (European Space Agency) study Probabilistic Aspects of Buckling Knock Down Factors – Tests and Analyses contributes to this goal by striving for an improved buckling knock-down factor (the ratio of buckling loads of imperfect and perfect structures) for unstiffened CFRP (carbon fiber reinforce plastics) cylindrical shells, and by validation of the linear and non-linear buckling simulations based on test results. DLR is acting as study contractor. The paper presents an overview about the DLR buckling tests, the measurement setup and the buckling simulations which are done so far, and gives an outlook to the results which are expected until the end of the running project
- …
