1,899 research outputs found
Microbial lysate upregulates host oxytocin
Neuropeptide hormone oxytocin has roles in social bonding, energy metabolism, and wound healing contributing to good physical, mental and social health. It was previously shown that feeding of a human commensal microbe Lactobacillus reuteri (L. reuteri) is sufficient to up-regulate endogenous oxytocin levels and improve wound healing capacity in mice. Here we show that oral L. reuteri-induced skin wound repair benefits extend to human subjects. Further, dietary supplementation with a sterile lysate of this microbe alone is sufficient to boost systemic oxytocin levels and improve wound repair capacity. Oxytocin-producing cells were found to be increased in the caudal paraventricular nucleus [PVN] of the hypothalamus after feeding of a sterile lysed preparation of L. reuteri, coincident with lowered blood levels of stress hormone corticosterone and more rapid epidermal closure, in mouse models. We conclude that microbe viability is not essential for regulating host oxytocin levels. The results suggest that a peptide or metabolite produced by bacteria may modulate host oxytocin secretion for potential public or personalized health goals.Published versio
Effects of feeding different postbiotic metabolite combinations produced by Lactobacillus plantarum strains on egg quality and production performance, faecal parameters and plasma cholesterol in laying hens
Background: Probiotics are beneficial bacteria that are able to colonize the host digestive system, increasing the natural flora and preventing colonization of pathogenic organisms and thus, securing optimal utility of the feed. However, commercial probiotic often do not meet the expected standards and the viability of the efficacy of these strains remains questionable. Another major issue has been highlighted in relation to the application of antibiotic resistant probiotics, the antibiotic resistant gene can be transferred between organisms. Recently, postbiotic metabolites produced from microbes have been extensively studied as feed additive in order to substitute in-feed antibiotics. Results: No significant difference (P > 0.05) was found among the treatment groups on overall feed intake, egg weight, egg mass and feed conversion efficiency. COM456 had a significant reduction (P < 0.05) in faecal pH compared to the other groups at 28 weeks of age onwards. COM456 had significant higher (P < 0.05) level of lactic acid bacteria counts from 30 weeks of age onwards, followed by COM246 and COM345 at 32 and 34 weeks of age, respectively. Significant reduction of faecal Enterobacteriaceae (P < 0.05) were observed in COM246 and COM456 from 30 weeks of age onwards. The lowest levels (P < 0.05) of plasma and egg yolk cholesterol were observed in COM456, followed by COM345 and COM246. There was no significant difference in terms of yolk weight between the treatment groups. Significant higher (P < 0.05) content of C18:3, C20:2 and C22:6 were found in treatments supplemented with metabolite combinations as compared with the control group. Conclusions: The present study demonstrated the positive effects of metabolite combinations supplementation in laying hens. Increase in hen-day egg production was observed in all treatments supplemented with metabolite combinations. In addition, the metabolite combinations, COM456 had reduced the faecal pH and faecal Enterobacteriaceae population, improved the faecal lactic acid bacteria, reduced the plasma and yolk cholesterol and improved the faecal volatile fatty acids content. Postbiotic metabolite combinations can be used as an alternative feed additive to achieve high productivity and better animal health while reducing the use of conventional chemotherapeutic agents such as in-feed antimicrobials
A microfluidic chip based model for the study of full thickness human intestinal tissue using dual flow
© 2016 Author(s). The study of inflammatory bowel disease, including Ulcerative Colitis and Crohn's Disease, has relied largely upon the use of animal or cell culture models; neither of which can represent all aspects of the human pathophysiology. Presented herein is a dual flow microfluidic device which holds full thickness human intestinal tissue in a known orientation. The luminal and serosal sides are independently perfused ex vivo with nutrients with simultaneous waste removal for up to 72 h. The microfluidic device maintains the viability and integrity of the tissue as demonstrated through Haematoxylin & Eosin staining, immunohistochemistry and release of lactate dehydrogenase. In addition, the inflammatory state remains in the tissue after perfusion on the device as determined by measuring calprotectin levels. It is anticipated that this human model will be extremely useful for studying the biology and tes ting novel interventions in diseased tissue
An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis
BACKGROUND AND PURPOSE:
Butyrate has shown benefits in inflammatory bowel diseases. However, it is not often administered orally because of its rancid smell and unpleasant taste. The efficacy of a more palatable butyrate-releasing derivative, N-(1-carbamoyl-2-phenylethyl) butyramide (FBA), was evaluated in a mouse model of colitis induced by dextran sodium sulphate (DSS).
EXPERIMENTAL APPROACH:
Male 10 week-old BALB/c mice received DSS (2.5%) in drinking water (for 5 days) followed by DSS-free water for 7 days (DSS group). Oral FBA administration (42.5 mg·kg-1 ) was started 7 days before DSS as preventive (P-FBA), or 2 days after DSS as therapeutic (T-FBA); both treatments lasted 19 days. One DSS-untreated group received only tap water (CON).
KEY RESULTS:
FBA treatments reduced colitis symptoms and colon damage. P-FBA and T-FBA significantly decreased polymorphonuclear cell infiltration score compared with the DSS group. FBA reversed the imbalance between pro- and anti-inflammatory cytokines (reducing inducible NOS protein expression, CCL2 and IL-6 transcripts in colon and increasing TGFβ and IL-10). Morever, P-FBA and T-FBA limited neutrophil recruitment (by expression and localization of the neutrophil granule protease Ly-6G), restored deficiency of the butyrate transporter and improved intestinal epithelial integrity, preventing tight-junction impairment (zonulin-1 and occludin). FBA, similar to its parental compound sodium butyrate, inhibited histone deacetylase-9 and restored H3 histone acetylation, exerting an anti-inflammatory effect through NF-κB inhibition and the up-regulation of PPARγ.
CONCLUSIONS AND IMPLICATIONS:
FBA reduces inflammatory intestinal damage in mice indicating its potential as a postbiotic derivative without the problems associated with the oral administration of sodium butyrate
Arabinoxylans, inulin and Lactobacillus reuteri 1063 repress the adherent-invasive Escherichia coli from mucus in a musosa-comprising gut model
The microbiota that colonises the intestinal mucus may particularly affect human health given its proximity to the epithelium. For instance, the presence of the adherent-invasive Escherichia coli (AIEC) in this mucosal microbiota has been correlated with Crohn's disease. Using short-term screening assays and a novel long-term dynamic gut model, which comprises a simulated mucosal environment (M-SHIME), we investigated how (potential) pro-and prebiotics may repress colonisation of AIEC from mucus. Despite that during the short-term screening assays, some of the investigated Lactobacillus strains adhered strongly to mucins, none of them competed with AIEC for mucin-adhesion. In contrast, AIEC survival and growth during co-culture batch incubations was decreased by Lactobacillus rhamnosus GG and L. reuteri 1063, which correlated with (undissociated) lactic acid and reuterin levels. Regarding the prebiotics, long-chain arabinoxylans (LC-AX) lowered the initial mucin-adhesion of AIEC, while both inulin (IN) and galacto-oligosaccharides (GOS) limited AIEC survival and growth during batch incubations. L. reuteri 1063, LC-AX and IN were thus retained for a long-term study with the M-SHIME. All treatments repressed AIEC from mucus without affecting AIEC numbers in the luminal content. As a possible explanation, L. reuteri 1063 treatment increased lactobacilli levels in mucus, while LC-AX and IN additionally increased mucosal bifidobacteria levels, thus leading to antimicrobial effects against AIEC in mucus. Overall, this study shows that pro-and prebiotics can beneficially modulate the in vitro mucosal microbiota, thus limiting occurrence of opportunistic pathogens among those mucosal microbes which may directly interact with the host given their proximity to the epithelium
Is lactate an undervalued functional component of fermented food products?
Although it has been traditionally regarded as an intermediate of carbon metabolism and major component of fermented dairy products contributing to organoleptic and antimicrobial properties of food, there is evidence gathered in recent years that lactate has bioactive properties that may be responsible of broader properties of functional foods. Lactate can regulate critical functions of several key players of the immune system such as macrophages and dendritic cells, being able to modulate inflammatory activation of epithelial cells as well. Intraluminal levels of lactate derived from fermentative metabolism of lactobacilli have been shown to modulate inflammatory environment in intestinal mucosa. The molecular mechanisms responsible to these functions, including histone deacetylase dependent-modulation of gene expression and signaling through G-protein coupled receptors have started to be described. Since lactate is a major fermentation product of several bacterial families with probiotic properties, we here propose that it may contribute to some of the properties attributed to these microorganisms and in a larger view, to the properties of food products fermented by lactic acid bacteria.Fil: Garrote, Graciela Liliana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Abraham, Analia Graciela. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Área de Bioquímica y Control de Alimentos; ArgentinaFil: Rumbo, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentin
Characterization of a bacteriocin produced by enterococcus gallinarum CRL 1826 Isolated from captive bullfrog: evaluation of its mode of action against Listeria monocytogenes and gram-negatives
Enterococcus gallinarum CRL 1826 isolated from an American bullfrog (Lithobates catesbeianus) skin inhibits the growth of Citrobacter freundii, Pseudomonas aeruginosa (bullfrog pathogens) and Listeria monocytogenes by a synergistic effect between organic acids and a bacteriocin-like molecule. This bacteriocin, named enterocin CRL 1826, showed a proteinaceous nature, heat stability and polar characteristics. Its production followed kinetics of primary metabolites synthesis reaching a maximum of 61,400 AU/mL. The minimum inhibitory and minimumbactericidal concentrations were 2,640 and 5,280 AU/mL, respectively, against L. monocytogenes. The addition of 120,000 AU/mL of enterocin to growing L. monocytogenes and Gram-negative (P. aeruginosa and C. freundii) bacteria showed bactericidal and bacteriostatic effects, respectively. However, enterocin derived-peptides had bactericidal effect only against Gram-negatives.Enterocin produced cell envelope damages and efflux of citosolic content on L. monocytogenes, while enterocin derived-peptides showed granulation and contraction of cytoplasm material on P. aeruginosa and increase in theperiplasmic space and empty cells appearance on C. freundii.Enterocin CRL 1826 is the first bacteriocin described for E. gallinarum from raniculture. It could be used as a biopreservative while the derived-peptides represent an alternative to control multi-drug resistant Gram-negatives.The antimicrobial spectrum and the stability of enterocin and its derived-peptides indicate that they could be applied in different biotechnological areas.Fil: Montel Mendoza, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucuman. Instituto Superior de Investigaciones Biologicas; ArgentinaFil: Ale, Cesar Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucuman. Instituto Superior de Investigaciones Biologicas; ArgentinaFil: Nader, Maria Elena Fatima. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Pasteris, Sergio Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucuman. Instituto Superior de Investigaciones Biologicas; Argentin
Mixed Spices at Culinary Doses Have Prebiotic Effects in Healthy Adults: A Pilot Study.
Spices were used as food preservatives prior to the advent of refrigeration, suggesting the possibility of effects on microbiota. Previous studies have shown prebiotic activities in animals and in vitro, but there has not been a demonstration of prebiotic or postbiotic effects at culinary doses in humans. In this randomized placebo-controlled study, we determined in twenty-nine healthy adults the effects on the gut microbiota of the consumption daily of capsules containing 5 g of mixed spices at culinary doses by comparison to a matched control group consuming a maltodextrin placebo capsule. The 16S ribosomal RNA sequencing data were used for microbial characterization. Spice consumption resulted in a significant reduction in Firmicutes abundance (p < 0.033) and a trend of enrichment in Bacteroidetes (p < 0.097) compared to placebo group. Twenty-six operational taxonomic units (OTUs) were different between the spice and placebo groups after intervention. Furthermore, there was a significant negative correlation between fecal short-chain fatty acid propionate concentration and Firmicutes abundance in spice intervention group (p < 0.04). The production of individual fecal short-chain fatty acid was not significantly changed by spice consumption in this study. Mixed spices consumption significantly modified gut microbiota, suggesting a prebiotic effect of spice consumption at culinary doses
Coupled noble gas-hydrocarbon evolution of the early Earth atmosphere upon solar UV irradiation
International audienceUsing a new photochemical model of the Earth's early atmosphere, the relationship between noble gas photoionization and organic photochemistry has been investigated from the Archean eon to the present day. We have found that the enhanced UV emission of the young Sun triggered a peculiar atmospheric chemistry in a CH4-rich early atmosphere that resulted in the increased formation of an organic haze, similar to the preliminary results of a previous study (Ribas et al., 2010). We have investigated the interaction between this haze and noble gases photoionized by the UV light from the younger Sun. Laboratory experiments have shown indeed that ionized xenon trapping into organics (1) is more efficient that other ionized noble gases trapping and (2) results in a significant enrichment of heavy xenon isotopes relative to the light ones (e.g., Frick et al., 1979; Marrocchi et al., 2011). We find moreover preferential photoionization of xenon that peaks at an altitude range comparable to that of the organic haze formation, in contrast to other noble gases. Trapping and fractioning of ionized xenon in the organic haze could therefore have been far more efficient than for other noble gases, and could have been particularly effective throughout the Archean eon, since the UV irradiation flux from the young Sun was expected to be substantially higher than today (Ribas et al., 2010; Claire et al., 2012). Thus we suspect that the unique isotopic fractionation of atmospheric xenon and its elemental depletion in the atmosphere relative to other noble gases, compared to potential cosmochemical components, could have resulted from a preferential incorporation of the heaviest xenon isotopes into organics. A fraction of atmospheric xenon could have been continuously trapped in the forming haze and enriched in its heavy isotopes, while another fraction would have escaped from the atmosphere to space, with, or without isotope selection of the lightest isotopes. The combination of these two processes over long periods of time provides thereby a key process for explaining the evolution of its isotopic composition in the atmosphere over time that has been observed in Archean archives (Pujol et al., 2011)
Human gut dendritic cells drive aberrant gut-specific T-cell responses in ulcerative colitis, characterized by increased IL-4 production and loss of IL-22 and IFNγ
The pathogenesis of inflammatory bowel disease is incompletely understood but results from a dysregulated intestinal immune response to the luminal microbiota. CD4 T cells mediate tissue injury in the inflammatory bowel disease-associated immune response. Dendritic cells (DC) generate primary T-cell responses and mediate intestinal immune tolerance to prevent overt inflammation in response to the gut microbiota. However, most information regarding function of intestinal DC has come from mouse models, and information in humans is scarce. We show here that intestinal DC subsets are skewed in ulcerative colitis (UC) in humans, with a loss of CD103 lymph-node homing DC; this intestinal DC subset preferentially generates regulatory T cells in mice. We show infiltrates of DC negative for myeloid marker CD11c, with enhanced expression of Toll-like receptors for bacterial recognition. After mixed leukocyte reaction, DC from the inflamed UC colon had an enhanced ability to generate gut-specific CD4 T cells with enhanced production of interleukin-4 but a loss of interferon γ and interleukin-22 production. Conditioning intestinal DC with probiotic strain Lactobacillus casei Shirota in UC partially restored their normal function indicated by reduced Toll-like receptor 2/4 expression and restoration of their ability to imprint homing molecules on T cells and to generate interleukin-22 production by stimulated T cells. This study suggests that T-cell dysfunction in UC is driven by DC. T-cell responses can be manipulated indirectly through effects of bacterial conditioning on gut DC with implications for immunomodulatory effects of the commensal microbiota in vivo. Manipulation of DC to allow generation of DC-specific therapy may be beneficial in inflammatory bowel disease. </p
- …
