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Abstract 

 

Background and purpose: Butyrate has shown benefits in inflammatory bowel diseases 

(IBD). However, its oral administration is infrequent due to rancid smell and unpleasant taste. 

The efficacy of a more palatable butyrate-releasing derivative, N-(1-carbamoyl-2-

phenylethyl) butyramide (FBA), was evaluated in a mouse model of colitis induced by 

dextran sodium sulphate (DSS).  

 

Experimental approach: Male 10-week-old BALB/c mice received DSS (2.5%) in drinking 

water (for 5d) followed by DSS-free water for 7d (DSS group). Oral FBA administration 

(42.5 mg∙kg
-1

) started 7d before DSS as preventive (P-FBA), or 2d after DSS as therapeutic 

(T-FBA), and both treatments lasted at 19d. One DSS-untreated group received only tap 

water (CON) for totally 4 groups. 

 

Key results: FBA treatments reduced colitis symptoms and colon damage. P-FBA and T-

FBA significantly decreased polymorphonuclear cell infiltration score compared to the DSS 

group. FBA revert the imbalance between pro- and anti-inflammatory cytokines (reducing 

inducible NOS protein expression, chemokine (C-C motif) ligand 2 and IL-6 transcripts in 

colon and increasing TGF-β and IL-10). Morever, P-FBA and T-FBA limit neutrophil 

recruitment (by expression and localization of the neutrophil granule protease Ly-6G), restore 

deficiency of butyrate transporter and improve intestinal epithelial integrity, preventing tight-

junction impairment (zonulin-1 and occludin). FBA, such as its parental compound sodium 

butyrate, inhibits histone deacetylase-9 and restores H3 histone acetylation, exerting an anti-

inflammatory activity through NF-B inhibition and PPAR-γ up-regulation. 
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Conclusions and implications: FBA reduces inflammatory intestinal damage in mice 

indicating its potential as post-biotic derivative, to overcome the limits of sodium butyrate’s 

oral administration. 

 

Key words: DSS colitis, short chain fatty acids, postbiotic, Annexin A1, HDAC-inhibitor, 

NF-κB, PPAR-γ, tight-junctions. 
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LIGANDS 

Annexin I 

Butyrate 

CCL2 

IL-6 

IL-10 

TGF-b 

 

TARGETS  

Other protein 

targets
a 

Enzymes
d 

TNF-α HDAC9 

GPCRs
b iNOS 

FFA2 receptor MPO 

FPR1 Nuclear hormone 

receptors
e 

FPR2 PPAR-γ 

Transporters
c  

MCT-1  

 

These Tables of Links list key protein targets and ligands in this article that are hyperlinked 

to corresponding entries in http://www.guidetopharmacology.org, the common portal for data 

from the IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al., 2016), and are 

permanently archived in The Concise Guide to PHARMACOLOGY 2015/16 (
a,b,c,d,e

 

Alexander et al., 2015a,b,c,d,e). 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=summary&ligandId=3568
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1059
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4406
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4998
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4975
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5060
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2635
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2620
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1250
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=226
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2789
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=222
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=223
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=595
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=188#988
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Abbreviations used: Anx-A1 and Anxa1, Annexin A1; Ccl2, chemokine (C-C motif) ligand 

2; CON, control; DSS, dextran sodium sulphate; Ffar2, free fatty acid receptor 2; Fpr1/2, 

formyl peptide receptor 1 and 2; GPR43, G-protein coupled receptor 43; HDAC9, histone 

deacetylase 9; IBD, inflammatory bowel disease; Il6 and Il10, interleukin 6 and 10; Ly-6G 

and Ly6g, lymphocyte antigen 6; MCT-1, monocarboxylate transporter; MPO, 

myeloperoxidase; NF-κB, nuclear factor-κB; iNOS, inducible nitric oxide synthase; Ocln, 

occludin; P-B, sodium butyrate as preventive treatment; P-FBA, N-(1-carbamoyl-2-

phenylethyl) butyramide as preventive treatment; PMNs, polymorphonuclear cells; PPAR-γ, 

peroxisome proliferator-activated receptor gamma; SCFAs, short-chain fatty acids; Slc16a1, 

solute carrier family 16 (monocarboxylic acid transporters), member 1; Tgfb, transforming 

growth factor-β; T-B, sodium butyrate as therapeutic treatment; T-FBA, N-(1-carbamoyl-2-

phenylethyl) butyramide as therapeutic treatment; Tnf, tumour necrosis factor-α; Tregs, 

regulatory T cells; TJ, tight junction; Tjp1, tight junction protein 1; UC, ulcerative colitis; 

ZO-1, zonula occludens 1. 



 

 
This article is protected by copyright. All rights reserved. 

Introduction  

Host-microbial homeostasis requires appropriate immune regulation within the gut mucosa, 

preventing uncontrolled immune responses against the beneficial commensal microbiota, 

which could potentially lead to inflammatory bowel diseases (IBDs), such as ulcerative 

colitis (UC) (Geuking et al., 2014). Several studies indicate that products of bacterial 

metabolism, such as short-chain fatty acids (SCFAs), may modulate the immune response of 

the host (McDermott & Huffnagle, 2014). In particular, butyrate produced by intestinal 

microbial fermentation of undigested resistant starches and dietary fibres, is absorbed by the 

colonic cell and extensively metabolized, constituting the main source of energy. Many 

intestinal and extra-intestinal effects are ascribed to butyrate (Canani et al., 2011), showing 

its possible therapeutic indications in gastroenterology. To date, several studies have 

evaluated butyrate effectiveness in several animal model of UC (Mishiro et al., 2013; Vieira 

et al., 2012). In humans few studies have been performed probably due to low compliance 

with the oral route (for its rancid taste) or rectal enemas administration (for its cumbersome 

application to the patient and irritability due to acid property). Moreover, rectal 

administration of butyrate or mixture of SCFAs did not show beneficial effects or displayed 

only trends towards clinical amelioration (Breuer et al., 1997; Hamer et al., 2010; Scheppach 

et al., 1992; Steinhart et al., 1996; Vernia et al., 2003). The discrepancy in human studies 

using enemas may be due to differences in treatment, duration, use of butyrate alone or 

mixture of SCFAs enemas, and use of several concentrations and volumes of these mixtures. 

Conversely, other studies reported that fermentable dietary fiber supplementation, which 

resulted in increased fecal butyrate levels, was effective in maintaining remission in UC, 

revealing a significant improvement in clinical and inflammatory aspects (Fernandez-Banares 

et al., 1999; Hanai et al., 2004; Wedlake et al., 2014).The importance of butyrate 

supplementation has been demonstrated by the impaired butyrate metabolism in intestinal 
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inflamed mucosa of patients affected by IBD (De Preter et al., 2012). In fact, data show that 

butyrate deficiency results from the reduction of butyrate uptake by the inflamed mucosa due 

to down regulation of the monocarboxylate transporter (MCT)-1 expressed on the apical 

membrane of intestinal epithelium (Thibault et al., 2007). Particularly, the reduction of the 

intracellular availability of butyrate in colonic cells may decrease its protective effects toward 

cancer in IBD patients (Thibault et al., 2010). 

GPR43 is a G-protein-coupled receptor expressed in colonic epithelium, adipose tissue and 

immune cells (Bindels et al., 2013) and together with GPR109A are considered the main 

butyrate targets involved in suppression of colonic inflammation and carcinogenesis (Singh et 

al., 2014). Moreover, butyrate modulates histone acetylation, as histone deacetylase (HDAC) 

inhibitor, and alters host epigenome, leading to its epigenetic mechanism (Canani et al., 2011; 

Hamer et al., 2008).  

On the basis of all its characteristics, butyrate can be considered a postbiotic being a non-

viable bacterial metabolic product obtained from probiotic microorganisms that have biologic 

activity in the host. The purpose of this study was to investigate the efficacy of more 

palatable butyrate-releasing compound, the N- (1-carbamoyl-2-phenyl-ethyl) butyramide 

(FBA), in dextran sodium sulphate (DSS)-induced colitis model as innovative post-biotic 

derivative. Our hypothesis is that FBA similarly or better than its parental compound (sodium 

butyrate) is able to reduce colon imflammation and colitis symptoms by decreasing 

neutrophils recruitment and the production/release of pro-inflammatory mediators in the 

colonic mucosa following DSS exposure. The mechanisms behind these effects could be 

related to the restoration of butyrate transporter, PPAR-γ and tight junctions in colon tissue 

together with the HDAC9/NF-B axis inhibition. 
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Methods 

Reagents and diet. Prof. Antonio Calignano provided FBA (International application patent 

with publication number WO2009130735), whose synthesis and characterization was 

previously reported (Mattace Raso et al., 2013). FBA is stable to acids and alkalis and 

capable of releasing butyric acid at small and large bowel level in a constant manner over 

time. Interestingly, FBA does not present the unpleasant odour of butyrate and, being 

tasteless, overcomes the poor palatability of butyrate that often reduces the therapy 

compliance. All chemicals, included sodium butyrate, were purchased from Sigma-Aldrich 

(Saint Louis, MO, USA). The standard laboratory unpurified diet was purchased from Harlan 

Teklad. The 2018 Teklad Global Protein Rodent Diet contained the following: water, 120 

g∙kg
-1

; protein, 185 g∙kg
-1

; fat, 55 g∙kg
-1

; fiber, 45 g∙kg
-1

; ash, 60 g∙kg
-1

; minerals, 0.13 g∙kg
-1

 

(containing 50 mg ferrous Fe∙kg
-1

 and 44 mg Mn∙kg
-1

); and vitamin mix, 0.52 g∙kg
-1

 

(containing 81 mg vitamin E∙kg
-1

). 

 

Induction of colitis and treatments. Experimental colitis, was induced in 10-week-old 

BALB/c AnNHsd male mice (25±2 g) (Harlan-Corezzano, Italy) by 2.5% wt:vol DSS (36-50 

kDa, MP Biomedical) in drinking water ad libitum from day 7 until 12 followed by DSS-free 

water from day 13 until day 19 (end of experimental protocol). Mice were randomly divided 

into the 4 following  groups (n=10 per group): 1) control mice (CON group); 2) mice 

receiving DSS (DSS group); 3) DSS-fed mice receiving FBA as preventive therapy (P-FBA); 

4) DSS-fed mice receiving FBA therapeutically (T-FBA). Untreated CON and DSS groups 

received tap water by gavage as vehicle. 

In addition, we decided to set up two further groups of DSS-fed mice treated with its parental 

compound sodium butyrate (B): 5) DSS-fed mice receiving sodium butyrate as preventive 

therapy (P-B); 6) DSS-fed mice receiving sodium butyrate therapeutically (T-B). FBA and 
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sodium butyrate were given daily. Sodium butyrate (B, 20 mg∙kg
-1

) or FBA (42.5 mg∙kg
-1

, the 

equimolecular dose of B) was administered by gavage, and the treatment started 7 d before 

(preventive) or 2 d after (therapeutic) DSS challenge, continuing for all experimental period. 

We used the parental compound in the evaluation of body weight, disease activity index, 

colon length, histopathologic score, survival rate and mechanistic studies to confirm the 

similar profile of FBA as butyrate-releasing derivative. Mortality rate was assessed during the 

entire experimental time (from day 1 to day 19) and a Kaplan-Meier survival curve was 

calculated (Supplemental Figure 1). All procedures involving animals and their care were 

conducted in conformity with international and national law and policies (EU Directive 

2010/63/EU for animal experiments, ARRIVE guidelines and the Basel declaration including 

the 3R concept) and were approved by the Institutional Committee on the Ethics of Animal 

Experiments (CSV) of the University of Naples “Federico II” and by the Ministero della 

Salute under protocol no. 0022569-P-20/12/2010. At day 19, following an overnight fast, 

animals were killed by an intraperitoneal injection of a mixture of ketamine/xylazine 

followed by cervical dislocation. 

 

Evaluation of experimental colitis. In all mice, weight, presence of blood, and gross stool 

consistency were determined daily as previously described (Dieleman et al., 1997). Each 

score was determined as follows: 1) change in weight (0: weight loss <1% compared to the 

starting weight, 1: weight loss between 1 and 5%, 2: weight loss between 6 and 15%, 4: 

weight loss >15%); 2) stool blood (0: negative, 2: positive, 4: gross bleeding); and 3) stool 

consistency (0: normal, 2: loose stools, 4: diarrhea) as previously described (Cooper et al., 

1993). Briefly, the disease activity index was determined by combining the scores from these 

3 categories and dividing that number by 3. 
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Histological analysis and scoring of colon sections. At day 19, after mice euthanasia, tissues 

were collected and colon length was measured. Distal sections were stored in formalin 10% 

or O.C.T for histological and immunofluorescent analyses. Following H&E staining, colon 

sections were analyzed in blinded manner for the evaluation of the histopathological score as 

previously described (Chang et al., 2014). 

 

Real-time PCR. Total RNA isolated from colon was extracted using TRIzol Reagent 

(Invitrogen), according to the manufacturer’s instructions. cDNA was synthesized using a 

Maxima First Strand cDNA Synthesis Kit (Fermentas) from 2 μg total RNA. PCRs were 

performed with Bio-Rad CFX96 Connect Real-time PCR System and software (Bio-Rad 

Laboratories). The primer sequences for target genes and PCR conditions are reported in 

Supplemental Table 1.  

 

Serum TNF-α determination. At day 19, mice were euthanized and blood was collected by 

cardiac puncture. Sera were obtained by centrifugation at 1500 x g at 4°C for 15 min, and 

stored at -70°C. TNF-α levels (pg/ml) were measured by Enzyme-Linked ImmunoSorbent 

Assay (ELISA) kits for mice from BD Pharmingen, according to the manufacturer’s 

instructions. 

 

Western blotting. Colon tissue was homogenized and protein lysates were subjected to SDS-

PAGE as already described (Simeoli et al., 2015). The filters were probed with primary 

antibody overnight. To evaluate nuclear factor-κB (NF-κB) activation and histone H3 

acetylation, NF-κB p50 (Cell Signaling Technology), Acetyl-H3 and H3 (EMD Millipore) 

were measured in nuclear extracts. iNOS (Cayman Chemicals) protein expression was 

evaluated in whole colon lysates. The blot was developed using enhanced chemiluminescence 
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detection reagents (Amersham Pharmacia Biotech, Piscataway, NJ) and the immune complex 

visualized by Image Quant. The protein bands were scanned and densitometrically analyzed 

with a model GS-700 imaging densitometer (Bio-Rad Laboratories). Western blots for Lamin 

A and GAPDH (Sigma-Aldrich) were performed to ensure equal sample loading in nuclear 

and whole lysates, respectively. 

 

Measurement of myeloperoxidase (MPO) activity. Proximal colonic tissues were 

homogenized according to (Bradley et al., 1982). The homogenates were assessed for 

myeloperoxidase (MPO) activity as previously described (Smith & Castro, 1978). MPO was 

expressed as units/mg protein with 1unit hydrolyzing 1 μmol H2O2/min. 

 

Immunofluorescence analysis of Ly-6G and Annexin A1. Colon samples for 

immunofluorescence were embedded in O.C.T. (PelcoCryo-Z-T, Ted Pella Inc), and 

cryosectioned (10 µm thick). Tissue sections were then fixed in 4% paraformaldehyde for 10 

min at room temperature (RT). To examine co-localization of Anx-A1(Annexin A1) with Ly-

6G (lymphocyte antigen 6), sections were blocked and then incubated with a monoclonal 

antibody anti Ly-6G FITC (BD Biosciences) and a rabbit anti-AnxA1 antibody overnight at 

4°C. Sections were then incubated with Alexa-Fluor
®
 546 goat anti-rabbit IgG (Invitrogen) 

for AnxA1 1h at RT. After incubation with secondary antibody, sections were incubated with 

DAPI to visualize nuclei. Fluorescence was visualized with Olympus BX51 fluorescence 

microscope (Olympus) equipped with a DS-QiMc monochromatic camera (Nikon) and X-

Cite® Series 120Q Xenon lamp. NIS-Elements BR3.1 software (Nikon) was used for all 

analyses. Merge images were performed with ImageJ
®
 software. Two negative controls were 

used: slides incubated with or without primary antibody. Images were recorded at identical 
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gain settings, and performed in duplicate in non-serial distant sections. Four image fields 

were taken of each section. 

 

Immunofluorescence analysis of Occludin and Zonula occludens (ZO)-1. Colon segments 

were fixed in 10% formalin and embedded in paraffin. 7 µm sections were deparaffinised in 

decreasing ethanol percentage and antigens were unmasked. After antigens retrieval, sections 

were permeabilized in Tris-buffered saline (TBS) plus 0.1% Triton X-100. After non specific 

background blocking sections were incubated with anti-occludin or anti-ZO-1 (1:50 for 

occludin Santa Cruz Biotechnology and 1:100 for ZO-1 Invitrogen). Sections were probed 

with secondary Alexa Fluor
®
 488 antibody (1:200, Invitrogen Corporation). Slides were  

visualized on a fluorescence microscope and images were stored digitally with Leica 

software. Two negative controls were used: slides incubated with or without primary 

antibody. The quantitative measurements of immunofluorescence analysis for Occludin and 

ZO-1 was performed and revealed by Integrated Pixel Intensity using an ImageJ
®
 software. 

 

Statistical analysis. All data are presented as means ± SEMs. The statistical analyses were 

performed with the use of Graph-Pad Prism (Graph-Pad Software). For all the experimental 

data, we evaluated group differences with one-way analysis of variance (ANOVA) followed 

by Bonferroni multiple comparison test. For the analysis of the body weight changes during 

the entire experimental period, we used two-way ANOVA followed by Tukey multiple 

comparison test, setting as variables the treatment and the time. Survival study was analyzed 

using the Kaplan-Meier log-rank test.  Statistical significance was set at P<0.05. 
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Results 

 

FBA similarly to butyrate reduces disease activity index and colon tissue damage. The oral 

treatment with P-FBA and T-FBA  significantly reduced the development of colitis evaluated 

by disease activity index (DAI) at day 12  and 18 compared to DSS group (Figure 1A). A 

similar effect was observed even when DSS-mice were treated with butyrate as preventive or 

therapeutic therapy.   

Beneficial effects of FBA more then butyrate were evident also in the excised colon samples, 

revealing an improvement in the tissue shortening induced by DSS (Figure 1B). Control 

colon sections stained with H&E showed intact epithelium, well-defined crypt length, no 

edema and neutrophil infiltration in mucosa and submucosa, and no ulcers or erosions (Figure 

1C). In contrast, colon tissue from DSS group showed severe inflammatory lesions 

throughout the mucosa and loss of crypt architecture. Both FBA and butyrate were able to 

protect colonic mucosa structure, ameliorating mucosa integrity and crypt structure and 

improving epithelial surface compared to DSS group (Figure 1C). The beneficial effects 

mediated by FBA and butyrate either as preventive and therapeutic schemes, were also 

confirmed by evaluation of  histopathological score performed on distal colon sections 

stained with H&E (Figure 1D).  

The mortality rate and body weight were also monitored during all the experimental period 

(Supplemental Figure 1 and 2).  

 

Effects of FBA on neutrophil infiltration in colonic mucosa. We determined the expression 

and localization of the neutrophil granule protease Ly-6G in colon tissue by fluorescence 

microscopy (Figure 2A). To verify if protective effect of FBA was also associated with 

modulation of pro-resolving factors, such as Annexin A1, double-staining 
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immunofluorescence was performed,  revealing high Anx-A1 levels in neutrophils, confirmed 

by a marked co-localization with Ly-6G in colon of mice with active disease. Both FBA 

schemes were able to counteract neutrophil infiltration induced by DSS-challenge reducing 

the Ly-6G and Anx-A1 staining (Figure 2A). This effect was also quantitatively 

demonstrated since polymorphonuclear cells (PMNs) infiltrating score was lower in P-FBA 

and T-FBA colonic mucosa compared to DSS group (Figure 2B). Similarly, FBA, either as 

preventive or therapeutic treatment, contrasted DSS-mediated effects reducing Anxa1 mRNA 

transcripts (Figure 2C). Furthermore, in both FBA-treated groups, activity of MPO, a 

lysosomal hemoprotein found in the azurophilic granules in neutrophils (Figure 2D), and 

Ly6g mRNA levels (Figure 2E) were significantly less than in the DSS group. 

 

Effect of FBA on neutrophil markers and GPR43 expression in colonic mucosa. Butyrate can 

influence chemotaxis of immune cells through GPR43 receptor (Bindels et al., 2013). 

Therefore, we analysed mRNA levels of this receptor in colon. As depicted in figure 3A, 

FBA, especially when used as therapeutic, was able to increase significantly mRNA levels 

for Ffar2 (free fatty acids receptor-2, which encode for GPR43) compared to control and 

DSS groups. In contrast, FBA, either as preventive or therapeutic treatment, counteracted 

DSS-mediated effects reducing Fpr1 and Fpr2 mRNA levels (Figure 3B-C). These data 

highlight the involvement of GPR43 in neutrophil recruitment during colon inflammatory 

condition and confirm that FBA was able to reduce PMN infiltration compared to DSS group.  

 

FBA modulates pro-and anti-inflammatory mediators in colon and serum. Protein expression 

of inducible nitric oxide synthase (iNOS), which is responsible for NO production, and 

mRNA levels of Ccl2 gene, which encode monocyte chemoatractant protein (MCP)-1, were 

greater in the colon of DSS challenged mice rather than those of control group (Figure 4A 
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and 4B). Similarly, Tnf and Il6 mRNA levels were greater in DSS group than in CON (Figure 

4C-D). Conversely, the transcriptional levels of anti-inflammatory cytokines Il10 and Tgfb 

resulted impaired by DSS (Figure 4E-F). FBA treatments, similarly reduced proinflammatory 

iNOS and Ccl2, Tnf and Il6 and at least in part restored Il10 and Tgfb transcripts in colon 

tissue compared to DSS group. Moreover, we also analysed the TNF-α levels in serum (n=5, 

each group) to confirm the systemic anti-inflammatory properties of FBA and butyrate 

(CON=1,67±0,34 pg/ml and DSS=28,74±4,57, P<0.001; P-FBA=15,22±3,85 and T-

FBA=12,89±2,76, P<0.05 Vs DSS, respectively). 

 

FBA preserves MCT-1 transporter and epigenetically counteracts inflammation induced by 

DSS. DSS-challenged mice showed lower mRNA levels of the monocarboxylic acid carrier, 

the solute transporter family 16 Slc16a1, than the CON group (figure 5A). This reduction was 

preserved only by therapeutic treatments with FBA or butyrate. To determine the 

mechanisms involved in butyrate effect, the modulation of several transcription factors and 

histone acetylation were analyzed. DSS challenge significantly reduced the PPAR- (Pparg) 

mRNA (Figure 5B) and increased nuclear NF-κB p50 protein (Figure 5D) compared to 

control group. These effects were counteracted by preventive and therapeutic treatments with 

FBA. We also assessed the FBA capability to normalize the transcriptional levels of a 

specific member of class IIA HDAC involved in the pathogenesis of colitis in mice (de 

Zoeten et al., 2010), the HDAC9, which resulted impaired in DSS animals. As shown in 

figure 5C, FBA, such as sodium butyrate, counteracted the DSS-induced up-regulation of 

Hdac9 mRNA levels. However, FBA when used as therapeutic scheme was able to 

significantly increase histone H3 acetylation confirming HDAC inhibition (Figure 5E). 

Interestingly, FBA and butyrate did not modify histone 3 (H3) acetylation when used as 

preventive treatment.  
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Effects of FBA on intestinal barrier integrity and tight-junction expression. To evaluate 

barrier integrity, we determined the distribution of two tight junction proteins (TJs), occludin 

and ZO-1, in distal colon. Staining for occludin (Figure 6A) and ZO-1 (Figure 6C) in colonic 

mucosa of DSS-fed mice displayed less intensity than CON group, as confirmed even by the 

integrated pixel intensity analysis for occludin and ZO-1 (Figure 6B and D, respectively). 

However, compared to DSS group, P-FBA and T-FBA significantly restored the distribution 

of occludin and ZO-1, through colonic mucosa with a continuous staining pattern. These 

effects were highlighted by the evaluation of mRNA transcriptional levels for both proteins in 

colon sections (see Supplemental figure 3). Furthermore, both FBA-based treatments more 

than P-B and T-B, were able to preserve not only the TJs distribution but even the 

architecture of colons in DSS-fed mice similarly to that of control mice. 
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Discussion 

 

In this study, we demonstrated that FBA, a butyrate-releasing derivative, protects mice from 

DSS-induced colon injury, by reducing inflammation and restoring epithelial barrier integrity. 

The effects of SCFA, in particular butyrate, in intestinal diseases and their role on colonic 

functions are known (Canani et al., 2011; Hamer et al., 2008; Hamer et al., 2009). However, 

despite the wide spectrum of possible indications, the major limits of butyrate in clinical 

practice are its unpleasant taste and odour, when orally administered, or discomfort, by rectal 

preparations. Even if dietary fiber intake, leading to SCFA production, has shown benefits in 

IBD (Hanai et al., 2004; Wedlake et al., 2014), other data had demonstrated an inverse 

association between intake of fruits and vegetables and risk of IBD (Amre et al., 2007) and 

more recently dietary intake and risk of developing IBD have been reviewed 

(Ananthakrishnan et al., 2013; Hou et al., 2011). Very recently the rational identification of 

diet-derived postbiotics in restoring intestinal microbiota composition and function has been 

reviewed (Klemashevich et al., 2014). For all these reasons the use of postbiotics, such as 

butyrate, may be potential alternative to the use of live probiotic organisms or dietary fiber 

intake as prebiotics. In fact, the beneficial effects of sodium butyrate in different models of 

DSS-induced colitis in mice have been already reported after oral or topical administration 

(Mishiro et al., 2013; Vieira et al., 2012). Recently, we investigated the role of butyrate and 

FBA in pain behaviour, identifying different and converging non-genomic and genomic 

mechanisms of action, which cooperate in nociception maintenance (Russo et al., 2016). 

Notably, we found a major activity of both compounds on inflammatory visceral pain 

probably due to butyrate physiological role in gut and to the possible elevated number of its 

transporters (i.e. MCT1) involved in its absorption.  
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Here, we tested oral FBA efficacy in DSS colitis which leads to a significant loss of body 

weight, associated to diarrhea, rectal bleeding and colon shortening (Yan et al., 2009). These 

macroscopic and pathologic changes were counteracted by FBA, similarly to sodium 

butyrate, especially when used as therapeutic protocol.  

The role of immune cells infiltration in the inflammatory response during the development of 

colitis was already assessed, as well as the efficacy of butyrate supplementation in limiting 

myeloid and lymphoid cells recruitment into the colonic mucosa (Tsou et al., 2007). 

According with these findings, FBA reduced DSS-induced PMN infiltration in colonic 

mucosa, decreasing MPO activity and Ly6g mRNA levels. Ly-6G, reacting only in 

neutrophils, is a very useful marker to detect specifically cells of the neutrophil lineage (Tsou 

et al., 2007). Dense neutrophil infiltration and crypt abscess formation are pathological 

characteristics in the inflamed mucosa of UC patients (Raab et al., 1993). In fact, in Japan, 

granulocyte adsorption apheresis therapy had been reported to show a remarkable therapeutic 

effect in active UC patients (Shimoyama et al., 2001). Moreover, the faecal neutrophil-

derived biomarkers, calprotectin and lactoferrin, represent an ideal non-invasive test for 

detecting intestinal inflammation (Sipponen, 2013). These findings strengthen the pivotal role 

of neutrophils in the pathogenesis of UC. Moreover, trans-epithelial migration of PMNs from 

the microcirculation to the mucosa results in impaired barrier function and tissue destruction 

(Nusrat et al., 1997).  

Among SCFAs, butyrate can influence chemotaxis of immune cells through GPR43 receptor 

but this effect depends on the type of immune cells and butyrate concentration (Maslowski et 

al., 2009; Sina et al., 2009). Here, Ffar2 mRNA expression was increased by FBA alongside 

of the reduction of Ly6g mRNA transcripts mediated by both FBA-based treatments. These 

data confirm the involvement of GPR43 in neutrophil recruitment during inflammation and, 

at the same time, display FBA ability in reducing PMN infiltration. Therefore, we 
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hypothesize that, when neutrophil recruitment is reduced by FBA treatments, GPR43 could 

be expressed on other cell populations, e.g. intestinal enteroendocrine L and epithelial cells, 

which are involved in intestinal barrier integrity. 

We also assessed if protective effect of FBA was associated with modulation of pro-resolving 

factors, such as Annexin A1 and its receptors, Fpr1 and Fpr2. Annexin A1, a member of the 

superfamily of annexins, is a downstream mediator of glucocorticoids action (Gerke et al., 

2005). In resting conditions, neutrophils, monocytes and macrophages constitutively contain 

high levels of Annexin A1 in their cytoplasm (Mulla et al., 2005; Perretti et al., 2000), that 

are promptly secreted following cell activation (Perretti et al., 1996). Increased expression 

and secretion of Annexin A1 has been reported to occur in inflamed mucosal tissues in 

rodents and humans (Vergnolle et al., 1995; Vergnolle et al., 2004). In particular, increased 

Anx-A1 was observed in the intestinal epithelium and infiltrating leukocytes in the mucosa of 

UC patients compared with normal intestinal mucosa (Leoni et al., 2013). Anx-A1 has also 

been reported to inhibit neutrophil influx and promote neutrophil apoptosis at the site of 

resolving inflammation (Perretti et al., 1996). In our experiments, a co-localisation between 

Ly-6G and Anx-A1 positive cells was obtained: FBA reduced Anx-A1 levels as well as Ly-

6G
+
 cells. Moreover, both schemes of treatment with FBA reduced the transcriptional levels 

of Fpr1 and Fpr2. Therefore, in these settings Anx-A1 and its receptors seem to be a marker 

of neutrophil infiltration.  

Our data clearly demonstrate that the preventive and therapeutic treatments with FBA 

corrected the imbalance between pro- and anti-inflammatory mediators reducing iNOS 

protein expression and Ccl2, Tnf, and Il6 transcripts in colon tissue; at the same time both 

FBA protocols recovered, at least in part, mRNA levels of Tgfb and Il10. Consistently, 

previous data showed the reduction of several pro-inflammatory mediators in colon lamina 

propria macrophages by butyrate (Chang et al., 2014).  
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Butyrate regulates epigenetically gene expression by inhibiting HDAC, specifically class IIA 

and I (Steliou et al., 2012), and its anti-inflammatory effects are related to this mechanism in 

many cell types (Chang et al., 2014). In particular class IIA HDAC has been reported to 

suppress regulatory T cells (Tregs) expansion (Smith et al., 2013) and the inhibition of 

HDAC9 increases Treg function, reducing colitis in mice (Glauben et al., 2006). Due to 

HDAC inhibition, butyrate can avoid NF-κB activation in human colonic epithelial cells 

(CECs) (Segain et al., 2000). NF-κB regulates many cellular genes involved in early immune 

inflammatory response frequently dysregulated in IBDs (Schwab et al., 2007). Here, FBA 

reproduced the same effect of butyrate limiting the Hdac9 transcript up-regulation induced by 

DSS challenge. Accordingly, FBA, especially when used as therapeutic treatment, inhibits 

NF-κB activation and promotes histone H3 acetylation.  

Moreover, we demonstrate in vivo model that FBA restored Pparg transcription in colonic 

mucosa, confirming previous in vitro data displaying PPARγ involvement in butyrate anti-

inflammatory activity (Schwab et al., 2006). Genetic ablation of PPARγ resulted in increased 

susceptibility to experimental colitis in mice (Dubuquoy et al., 2006) and PPARγ protein 

expression is 60% lower in the inflamed colonic mucosa of UC patients than in controls 

(Dubuquoy et al., 2003). Previous data have shown that PPARγ can inhibit NF-κB activation 

and cytokine expression in monocytes and CECs (Desreumaux et al., 2001).  

Interestingly, we also observed a strong reduction of MCT1 transporter in colonic mucosa of 

DSS mice, highlighting an impairment of butyrate uptake. MCT1 plays an important role in 

the absorption of butyrate by the colonocytes (Cuff et al., 2002) and previous data report that 

butyrate stimulates MCT1 promoter activity in Caco-2, IEC-6 and in rat intestinal mucosa 

(Borthakur et al., 2012; Borthakur et al., 2008). Both therapeutic FBA and butyrate preserved 

Slc16a1 down-regulation, normalizing its transcriptional levels. These results may have 

translational potential, since down-regulation of MCT1 in IBD patients could result in 
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butyrate uptake deficiency (Thibault et al., 2010). We hypothesize that in our experimental 

conditions the stronger effect of FBA could be related not only to MCT1 induction by 

butyrate released from FBA, but also to the capability of undissociated FBA to interact and 

be carried by several members of SLCs, such as those of phenyl-alanine. 

TJ alteration in UC results in impaired barrier function, which may lead to increased uptake 

of luminal antigens and/or adjuvant that overcome the net suppressive tone of the mucosal 

immune system. SCFAs modulate key epithelial cell functions that help to maintain intestinal 

epithelial barrier integrity preventing injury (Peng et al., 2009). Analysis of the distribution 

and intensity of occludin and ZO-1 staining and mRNA confirmed the beneficial effect 

elucidated by both butyrate-based compounds. Gut permeability integrity is essential to limit 

bacterial translocation and preserves mucosal immune homeostasis. In fact, damage- and 

pathogen-associated molecular patterns penetration determines a strong recruitment of 

immune cells in impaired mucosa causing subsequent inflammation. 

In conclusions, FBA treatments confirm and improve the beneficial effect of butyrate at 

intestinal level, counteracting colon inflammation, neutrophil recruitment and alteration of 

intestinal permeability in DSS-induced colitis model. Indeed, our data indicate the potential 

clinical utility of FBA as preventive or therapeutic strategy for UC, as an optimization of a 

direct “postbiotic” approach, diversifying this treatment from prebiotic (i.e. fibers) or 

probiotic (i.e. bacteria) one. Since this synthetic derivative of butyrate does not have the 

characteristic odour of rancid cheese, it may represent a viable alternative to butyrate, 

favouring a better oral compliance and a greater effectiveness. 
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Figure 1 

Effects of FBA and butyrate on DSS-induced colitis. (A) Disease activity index (DAI) on 

day 0, 7, 12 and 18. (B) Colon length expressed in cm. (C) Distal colons were stained with 

H&E. Scale bar:100 µm. White arrows indicate areas shown in the inset squares (objective 

40X). Black arrows indicate infiltrated cells in the submucosa. (D) Histopathological scores 

were determined in a blinded fashion. Colons were excised at day 19. Data are means ± 

SEMs, n=8. ** P<0.01 and *** P<0.001 Vs CON; ## P<0.01 and ### P<0.001 Vs DSS.  
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Figure 2 

FBA reduces PMN infiltration in colonic mucosa. (A) Double-staining 

immunofluorescence detection of Anx-A1 and Ly-6G (Ly-6G+Anx-A1 yellow staining) in 

DSS compared to control and FBA groups. White arrows indicate PMN infiltrate. (B) PMN 

infiltration score was obtained by counting Ly-6G
+
 cells in four random mucosal and 

submucosal views of three different sections from the descendent colon and was expressed as 

number of cells∙mm
-2

. (C) Real-time PCR of Anxa1 is shown. (D) MPO activity measurement 

and Ly6g mRNA levels (E) are also reported. Real-Time data are presented as means ± 

SEMs, n=8. * P<0.05, ** P<0.01 and *** P<0.001 Vs CON; # P<0.05, ## P<0.01 and ### 

P<0.001 Vs DSS. Immunofluorescence stainings are representative of 3 slides for each 

group, magnification 200X.  
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Figure 3 

Effect of FBA on GPR43 expression and neutrophil markers in colonic mucosa. 

Transcriptional levels of Ffar2 (A), Fpr1 (B) and Fpr2 (C) were also evaluated following 

treatment with FBA (preventive and therapeutic). Real-Time PCR data are presented as 

means ± SEMs, n=8. * P<0.05 and ** P<0.01 Vs CON; # P<0.05, ## P<0.01 Vs DSS. 
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Figure 4 

FBA reduces pro-inflammatory mediators and increases anti-inflammatory markers in 

colon tissue. (A) Western blot showing iNOS protein expression. GAPDH blot was used as 

equal loading control. mRNA transcriptional levels of Ccl2 (B), Tnf (C) and Il6 (D) are also 

shown. Real-time PCR of Il10 (E) and Tgfb (F) were performed in colon from CON and DSS 

mice treated or not with FBA. Data are presented as means ± SEMs, n=8. * P<0.05, ** 

P<0.01 and *** P<0.001 Vs CON; # P<0.05 and ## P<0.01 Vs DSS.  
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Figure 5 

Mechanisms of anti-inflammatory action mediated by FBA and sodium butyrate in 

DSS-induced colon damage. (A) mRNA expression of Slc16a1, (B) Pparg and (C) Hdac9 

are shown. Real-Time PCR data are presented as means ± SEMs, n=8. (D) Western blot  

showing p50 NF-κB expression in nuclear extract is also reported. Both butyrate-based 

compounds reduced Hdac9 transcriptional levels (C) and induced histone H3 acetylation (E). 

* P<0.05, ** P<0.01 and *** P<0.001 Vs CON; # P<0.05, ## P<0.01 and ### P<0.001 Vs 

DSS.  
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Figure 6  

FBA-based compounds restore TJ-barrier function improving intestinal permeability. 

Immunofluorescence staining for occludin (A) and ZO-1 (C) in colons of DSS-fed mice 

treated or not with FBA or butyrate before or after DSS consumption is shown. Scale bar: 

100 µm. White arrows indicate areas shown in the inset squares (objective 40X). 

Quantification of occludin (B) and ZO-1 (D) expression is reported as integrated pixel 

intensity/area. Data are presented as means ± SEMs, n=4. *** P<0.001 Vs CON; ## P<0.01 

Vs DSS.  

 


