6,703 research outputs found

    Binary Classifier Calibration using an Ensemble of Near Isotonic Regression Models

    Full text link
    Learning accurate probabilistic models from data is crucial in many practical tasks in data mining. In this paper we present a new non-parametric calibration method called \textit{ensemble of near isotonic regression} (ENIR). The method can be considered as an extension of BBQ, a recently proposed calibration method, as well as the commonly used calibration method based on isotonic regression. ENIR is designed to address the key limitation of isotonic regression which is the monotonicity assumption of the predictions. Similar to BBQ, the method post-processes the output of a binary classifier to obtain calibrated probabilities. Thus it can be combined with many existing classification models. We demonstrate the performance of ENIR on synthetic and real datasets for the commonly used binary classification models. Experimental results show that the method outperforms several common binary classifier calibration methods. In particular on the real data, ENIR commonly performs statistically significantly better than the other methods, and never worse. It is able to improve the calibration power of classifiers, while retaining their discrimination power. The method is also computationally tractable for large scale datasets, as it is O(NlogN)O(N \log N) time, where NN is the number of samples

    Interacting Components

    Get PDF
    SystemCSP is a graphical modeling language based on both CSP and concepts of component-based software development. The component framework of SystemCSP enables specification of both interaction scenarios and relative execution ordering among components. Specification and implementation of interaction among participating components is formalized via the notion of interaction contract. The used approach enables incremental design of execution diagrams by adding restrictions in different interaction diagrams throughout the process of system design. In this way all different diagrams are related into a single formally verifiable system. The concept of reusable formally verifiable interaction contracts is illustrated by designing set of design patterns for typical fault tolerance interaction scenarios

    Active Learning of Classification Models from Enriched Label-related Feedback

    Get PDF
    Our ability to learn accurate classification models from data is often limited by the number of available labeled data instances. This limitation is of particular concern when data instances need to be manually labeled by human annotators and when the labeling process carries a significant cost. Recent years witnessed increased research interest in developing methods in different directions capable of learning models from a smaller number of examples. One such direction is active learning, which finds the most informative unlabeled instances to be labeled next. Another, more recent direction showing a great promise utilizes enriched label-related feedback. In this case, such feedback from the human annotator provides additional information reflecting the relations among possible labels. The cost of such feedback is often negligible compared with the cost of instance review. The enriched label-related feedback may come in different forms. In this work, we propose, develop and study classification models for binary, multi-class and multi-label classification problems that utilize the different forms of enriched label-related feedback. We show that this new feedback can help us improve the quality of classification models compared with the standard class-label feedback. For each of the studied feedback forms, we also develop new active learning strategies for selecting the most informative unlabeled instances that are compatible with the respective feedback form, effectively combining two approaches for reducing the number of required labeled instances. We demonstrate the effectiveness of our new framework on both simulated and real-world datasets

    Weakly Supervised Semantic Segmentation via Progressive Patch Learning

    Full text link
    Most of the existing semantic segmentation approaches with image-level class labels as supervision, highly rely on the initial class activation map (CAM) generated from the standard classification network. In this paper, a novel "Progressive Patch Learning" approach is proposed to improve the local details extraction of the classification, producing the CAM better covering the whole object rather than only the most discriminative regions as in CAMs obtained in conventional classification models. "Patch Learning" destructs the feature maps into patches and independently processes each local patch in parallel before the final aggregation. Such a mechanism enforces the network to find weak information from the scattered discriminative local parts, achieving enhanced local details sensitivity. "Progressive Patch Learning" further extends the feature destruction and patch learning to multi-level granularities in a progressive manner. Cooperating with a multi-stage optimization strategy, such a "Progressive Patch Learning" mechanism implicitly provides the model with the feature extraction ability across different locality-granularities. As an alternative to the implicit multi-granularity progressive fusion approach, we additionally propose an explicit method to simultaneously fuse features from different granularities in a single model, further enhancing the CAM quality on the full object coverage. Our proposed method achieves outstanding performance on the PASCAL VOC 2012 dataset e.g., with 69.6$% mIoU on the test set), which surpasses most existing weakly supervised semantic segmentation methods. Code will be made publicly available here https://github.com/TyroneLi/PPL_WSSS.Comment: TMM2022 accepte

    Learning ontology aware classifiers

    Get PDF
    Many applications of data-driven knowledge discovery processes call for the exploration of data from multiple points of view that reflect different ontological commitments on the part of the learner. Of particular interest in this context are algorithms for learning classifiers from ontologies and data. Against this background, my dissertation research is aimed at the design and analysis of algorithms for construction of robust, compact, accurate and ontology aware classifiers. We have precisely formulated the problem of learning pattern classifiers from attribute value taxonomies (AVT) and partially specified data. We have designed and implemented efficient and theoretically well-founded AVT-based classifier learners. Based on a general strategy of hypothesis refinement to search in a generalized hypothesis space, our AVT-guided learning algorithm adopts a general learning framework that takes into account the tradeoff between the complexity and the accuracy of the predictive models, which enables us to learn a classifier that is both compact and accurate. We have also extended our approach to learning compact and accurate classifier from semantically heterogeneous data sources. We presented a principled way to reduce the problem of learning from semantically heterogeneous data to the problem of learning from distributed partially specified data by reconciling semantic heterogeneity using AVT mappings, and we described a sufficient statistics based solution

    Predictive Learning with Heterogeneity in Populations

    Get PDF
    University of Minnesota Ph.D. dissertation. October 2017. Major: Computer Science. Advisor: Vipin Kumar. 1 computer file (PDF); x, 119 pages.Predictive learning forms the backbone of several data-driven systems powering scientific as well as commercial applications, e.g., filtering spam messages, detecting faces in images, forecasting health risks, and mapping ecological resources. However, one of the major challenges in applying standard predictive learning methods in real-world applications is the heterogeneity in populations of data instances, i.e., different groups (or populations) of data instances show different nature of predictive relationships. For example, different populations of human subjects may show different risks for a disease even if they have similar diagnosis reports, depending on their ethnic profiles, medical history, and lifestyle choices. In the presence of population heterogeneity, a central challenge is that the training data comprises of instances belonging from multiple populations, and the instances in the test set may be from a different population than that of the training instances. This limits the effectiveness of standard predictive learning frameworks that are based on the assumption that the instances are independent and identically distributed (i.i.d), which are ideally true only in simplistic settings. This thesis introduces several ways of learning predictive models with heterogeneity in populations, by incorporating information about the context of every data instance, which is available in varying types and formats in different application settings. It introduces a novel multi-task learning framework for problems where we have access to some ancillary variables that can be grouped to produce homogeneous partitions of data instances, thus addressing the heterogeneity in populations. This thesis also introduces a novel strategy for constructing mode-specific ensembles in binary classification settings, where each class shows multi-modal distribution due to the heterogeneity in their populations. When the context of data instances is implicitly defined such that the test data is known to comprise of contextually similar groups, this thesis presents a novel framework for adapting classification decisions using the group-level properties of test instances. This thesis also builds the foundations of a novel paradigm of scientific discovery, termed as theory-guided data science, that seeks to explore the full potential of data science methods but without ignoring the treasure of knowledge contained in scientific theories and principles

    Computational Techniques to Identify Rare Events in Spatio-temporal Data

    Get PDF
    University of Minnesota Ph.D. dissertation.May 2018. Major: Computer Science. Advisor: Vipin Kumar. 1 computer file (PDF); xi, 96 pages.Recent attention on the potential impacts of land cover changes to the environment as well as long-term climate change has increased the focus on automated tools for global-scale land surface monitoring. Advancements in remote sensing and data collection technologies have produced large earth science data sets that can now be used to build such tools. However, new data mining methods are needed to address the unique characteristics of earth science data and problems. In this dissertation, we explore two of these interesting problems, which are (1) build predictive models to identify rare classes when high quality annotated training samples are not available, and (2) classification enhancement of existing imperfect classification maps using physics-guided constraints. We study the problem of identifying land cover changes such as forest fires as a supervised binary classification task with the following characteristics: (i) instead of true labels only imperfect labels are available for training samples. These imperfect labels can be quite poor approximation of the true labels and thus may have little utility in practice. (ii) the imperfect labels are available for all instances (not just the training samples). (iii) the target class is a very small fraction of the total number of samples (traditionally referred to as the rare class problem). In our approach, we focus on leveraging imperfect labels and show how they, in conjunction with attributes associated with instances, open up exciting opportunities for performing rare class prediction. We applied this approach to identify burned areas using data from earth observing satellites, and have produced a database, which is more reliable and comprehensive (three times more burned area in tropical forests) compared to the state-of-art NASA product. We explore approaches to reduce errors in remote sensing based classification products, which are common due to poor data quality (eg., instrument failure, atmospheric interference) as well as limitations of the classification models. We present classification enhancement approaches, which aim to improve the input (imperfect) classification by using some implicit physics-based constraints related to the phenomena under consideration. Specifically, our approach can be applied in domains where (i) physical properties can be used to correct the imperfections in the initial classification products, and (ii) if clean labels are available, they can be used to construct the physical properties

    Using behavioral context in process mining : exploration, preprocessing and analysis of event data

    Get PDF
    corecore